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Abstract

The selection of valuable features is crucial in pattern recognition. In this paper we deal with the issue that part of features originate from
directional instead of common linear data. Both for directional and linear data a theory for a statistical modeling exists. However, none of
these theories gives an integrated solution to problems, where linearanddirectional variables are to be combined in asingle, multivariate
probability density function. We describe a general approach for a unified statistical modeling, given the constraint that variances of the
circular variables are small. The method is practically evaluated in the context of our online handwriting recognition systemfrog on hand
and the so-calledtangent slope anglefeature. Recognition results are compared with two alternative modeling approaches. The proposed
solution gives significant improvements in recognition accuracy, computational speed and memory requirements.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords:Feature selection; Directional data; Distribution on a circle; Multivariate semi-wrapped Gaussian distribution; Online handwriting recognition;
UNIPEN online handwriting database

1. Introduction

In statistical pattern recognition the modeling of an
abstractfeature spacewith parametric probability density
functions (PDFs) is very common. Often the Gaussian (or
normal) PDF

p(x) = N�x,�x(x)

= (|2��x| exp((x − �x)
T�−1
x (x − �x)))

−1/2 (1)

or a mixture of it is used to describe the probability density
of a random vectorx ∈ RF . For linear data, i.e., data that
are distributed on the real lineR, sensible definitions of the
Gaussian parametersmeanandcovarianceexist, namely

�x = E[x] and (2)

�x = E[(x − �x)(x − �x)
T], (3)

with E[·] the expectation value of its argument.
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However, not all data in real world applications are of this
particular linear type. In some situations[1–5] data originate
from directions. Directions, in general, may be visualized as
points on the surface of a hypersphere, in two dimensions on
the circumference of a circle. In the latter situation we will
talk about circular data. A directional variable is inherently
cyclic and the common statistical modeling used for linear
data—including Eqs. (1)–(3) —are not appropriate here, as
will be shown later.

Also in (online) handwriting recognition (HWR) we are
faced with the problem of directional data, since a valuable
feature of this particular circular type exists, namely thetan-
gent slope angle�. Details about� will follow. The answer
of many HWR systems[6–8] to the problem of modeling
circular features with parametric PDFs is somewhat defen-
sive. There, a direct modeling of� is avoided by transform-
ing it into the representation(cos�, sin�). Contrary to�,
the quantities cos� and sin� themselves are not circular. In
this respect, previous systems take cos� and sin� for a lin-
ear feature and model(cos�, sin�) instead of� as part of a
linear feature vector by Eqs. (1)–(3).

However, there are some drawbacks in this strategy.First,
the dimension of the resulting feature space is unnecessarily
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increased (by one), since the strategy uses two dimensions
to describe one degree of freedom. Among others, com-
putational speed and memory requirements are negatively
affected.Second, the (cos�, sin�) representation includes
high dependencies: the feature pair(cos�, sin�) lies on the
circumference of the unit circle. In situations when paramet-
ric basis functions are used to model probability densities,
those dependencies have to be addressed. This, however, is
very difficult to achieve since basis functions generally as-
sume a restrictive shape.

On the other hand, statisticians have developed method-
ologies that deal with directional data, in last decades espe-
cially influenced by the work of Mardia[1]. Remarkably, it
seems that this work has not found its way into the pattern
and handwriting recognition community.

This unfortunate situation might be explained by the
following reason. While the directional methodologies de-
veloped so far are well suited for distributions of solely
directional variables (as they appear in physical, biological,
geological, geographical or medical applications) they still
lack a clear description how they can be advantageously
applied for multivariate PDFs of both linearanddirectional
variables. Contrary to the applications listed above, where
mostly a two- or three-dimensional space of spatial or phys-
ical coordinates is to be modeled, in pattern recognition we
are faced with the problem of modeling an abstract feature
space. Mostly, in these cases the situation of mixed linear
and directional data exist.

The intention of this paper is twofold. First, statistics of
directional data shall be introduced to the pattern and hand-
writing recognition community. Second, we want to propose
an approach to the already addressed problem of integrating
directionaland linear data into a multivariate PDF that aims
to model an abstract feature space: themultivariate semi-
wrapped GaussianPDF. In order to reduce analytic com-
plexity, considerations are confined to a special constraint:
it is assumed that the circular feature has a small variance.

Note that the emphasis of this paper concerns a generic
approach to the modeling of semi-directional data with mul-
tivariate semi-wrapped Gaussian modeling rather than the
description of an online HWR system. However, to put the
theory into context, the effectiveness of themultivariate
semi-wrapped Gaussianmodeling will be demonstrated and
evaluated in the context of our online HWR systemfrog on
hand. For this, a brief description offrog on handis included
in this paper; a more thorough presentation and compari-
son in the context to other state-of-the-art HWR systems is
given elsewhere[9–11].

We shall start with a brief description of our online hand-
writing recognition application in the section that follows.
Section 3 first motivates and reviews basic concepts from the
statistics of directional data. Section 4 introduces a distribu-
tion for directional data (thewrapped Gaussian distribution)
and proposes an approximation of it. Following this, Section
5 introduces the formulation of amultivariate semi-wrapped
Gaussian distributionand transfers the deliberations made

about approximation issues from Section 4 to this construct.
In Section 6 experimental results of the proposed concept
in the context of our online handwriting recognitionfrog on
hand[9] and the UNIPEN[12] online handwriting database
are presented. Section 7 concludes this contribution.

2. Online handwriting recognition

Handwriting recognition (HWR) is a task of transform-
ing a language represented in its spatial form of graphical
marks into its symbolic representation[13]. Online HWR
refers to the situation where the recognition is performed
concurrently to the writing process.

In the following, we give a brief overview of our online
handwriting recognition systemfrog on hand, which is an
acronym for “f reiburgrecognition of online handwriting”.
For details please refer to original work[10,9,14,15]. Read-
ers with no particular interest in the handwriting recogni-
tion application can skip the rest of this section and directly
proceed to Section 3.

2.1. Data and features

Online HWR is a prominent example for a pattern recog-
nition problem, where data are of variable-length sequential
type. Online handwriting data is typically represented by the
sequence

p = [p1, . . . ,pN ],
where the vectorspi = (xi, yi)

T denote the horizontal and
vertical coordinates, sampled from the writer’s pen move-
ment. Indeed, this representation is much different from of-
fline HWR, where data are typically image matrices.

In this paper we focus on the situation where a writing
represents an isolated character.

It is widely acknowledged that the selection of meaning-
ful features is crucial in pattern and handwriting recogni-
tion. In thefrog on handfeature selection, the writingp =
[p1, . . . ,pN ] is transformed into a sequencet=[t1, . . . , tN ]
of feature vectorsti = (ti1, . . . , tiF )T ∈ RF .

We experienced best performance with the following local
features:
Normalized horizontal and vertical coordinatesti1 =

x̃i = (xi − �x)/�y and ti2 = ỹi = (yi − �y)/�y , are
the pen coordinates normalized by the sample mean
� = (�x, �y)

T = 1/N
∑N

i=1 pi and (vertical)y standard de-

viation�y =
√

1/(N − 1)
∑N

i=1(�y − yi)
2 of the character’s

sample points.
Tangent slope angleti3 = �i = arg((xi+1 − xi−1) + J ·

(yi+1 − yi−1)) with J 2 = −1, the imaginary unit and “arg”
the phase of the complex number above, is an approximation
of the tangent slope angle at pointi.

To summarize, a feature vector sequence is defined as
t=[t1, . . . , tN ], each vector of it asti=(x̃i , ỹi , �i )

T. Fig. 1(a)
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Fig. 1. (a) Shows an illustration of a feature sequencet and the features
x̃i , ỹi and �i : x̃i and ỹi are plotted according to their value in the
x̃–ỹ-plane. The dotted lines illustrate�i by the direction of the tangent.
In (b) the reader can see a connected sequence of dots, each one with
two additional lines attached. As a reference model is represented by a
sequence of Gaussian PDFs�j (x) = N�j ,�j

(x), j = 1, . . . , NR, each
dot illustrates the mean of the Gaussian and the lines the covariance
matrix. The direction of the two lines match the projection of the first
two eigenvectors onto thẽx–ỹ-plane, their length the square root of the
corresponding eigenvalues. Thus, the lines indicate the orientation and
width of the projected Gaussian. Note that�j is not illustrated within
this figure.

gives a graphical illustration of the feature representation of
a character ‘b”.

Note that the feature�i codes a direction in two dimen-
sions and thus is an example for circular data.

2.2. Classification framework

We give a brief summary offrog on hand’s generative clas-
sification framework CSDTW, which abbreviates the term
cluster generative statistical dynamic time warping[9]. CS-
DTW is a general, scalable training and classification frame-
work for variable-sized, sequential data. It supplements
dynamic time warping (DTW)[16] by a holistic combina-
tion of cluster analysis and statistical sequence modeling.

Similar to hidden Markov modeling (HMM)[16], CS-
DTW statistically represents a reference model for a hand-
written character by a sequence

R = [(�1, �1), . . . , (�NR , �NR
)], (4)

where�j (��) statistically models transitions�� between
sequence elements and�j (x) = N�j ,�j

(x) the PDF of a

feature vectorx ∈ RF by a unimodal multivariate Gaussian,
each for the sequence indexj. NR is the length ofR.

The particularity of CSDTW compared to other HMM
based HWR classifiers is an advanced, statistical modeling of
explicit sub-classes. A sub-class corresponds to a “compact”
cluster in the feature space of training examples. In the HWR
context, it is meant to model a particular style or shape of a
character, which is also namedallograph.

In this respect, a CSDTW classifier for anL-class problem
comprises a setR = {Rlk}l∈{1,...,L},k∈{1,...,Kl} of allograph

reference models, withl the class,k the sub-class index
andKl the number of sub-classes in classl. EachRlk is a
generative statistical model of the type of Eq. (4) for one
particular sub-class. A graphical illustration for an example
of R—a reference model of a character “b”—is shown in
Fig. 1(b). There, the sequence of the Gaussian PDFs are
represented by a connected sequence of dots, each one with
two additional lines attached. Dots and lines illustrate mean
and covariance of the underlying Gaussians. For details, it
is referred to the figure caption.

The allograph reference modelsRlk are automatically
generated by the CSDTW training from data with class la-
bels in two steps. Steponeemploys an unsupervised,ag-
glomerative hierarchical clusteringalgorithm that aims to
reveal clusters, each of them corresponding to a sub-class.
The diversity of the hierarchical clustering can be controlled
by the use of two threshold parameters. Steptwo employs
theViterbi training in order to estimate the statistical param-
eters of Eq. (4) for each cluster.

The CSDTW classification of an unknown test patternt
is solved by computing

l̂ = argmin
l∈{1,...,L}

min
k∈{1,...,Kl}

{D∗(t,Rlk)}, (5)

whereD∗ is a specifically adopted distance, based on the
maximum-likelihood (ML) principle, Markov assumptions
and dynamic programming.

In order to account for a holistic treatment, clustering
and statistical modeling are embedded in a single feature
space and use a closely related dissimilarity measure (cf. the
original publication[9] for details).

3. Statistics of directional data

Directional data may be visualized as points on the surface
of a hypersphere, in two dimensions on the circumference
of a circle.Fig. 2 illustrates an example. InFig. 2(a), data
points of a directional variableϑ ∈ (−�, �] are shown as
white dots on the unit circle.

One problem, which arises when directional data is used
in combination with “conventional”, i.e., linear statistics, is
illustrated in the following.

3.1. Linear statistics and directional data

Consider a linear variablex and a transformationts(x) =
x̃ = x − �. The transformationts represents a shift of the
coordinate system origin. Valuable properties of the statistics
with linear data, in particular ofmeanandvariance, can be
expressed by the equations

�x̃ = �x − �, (6)

�2
x̃ = �2

x . (7)

Eq. (6) implies that the relative position of the mean
remains invariant under a shift of the coordinate system
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Fig. 2. Data points of a circular variable are shown as white dots on
the unit circle. This figure illustrates that linear definitions of mean and
variance violate the invariance of location and variance for directional data
under a shift of zero directioñϑ = (ϑ − �) mod 2�: (a) For the example
observations�={0.1�, 0.2�, 0.6�}, unbiased ML estimates for mean and
standard deviation can be calculated to�̂ϑ = 0.3� (corresponding to the
black dot) and�̂ϑ ≈ 0.26� (corresponding to the length of the arc). (b)
The observations are shifted tõ� = {0.6�, 0.7�, −0.9�}, corresponding
to �=−0.5�. In the figure this corresponds to a rotation of the coordinate
axes about 0.5� clockwise. Estimates for mean and standard deviation of
the data points in the new coordinates can be calculated to�̂

ϑ̃
≈ 0.13�

and �̂
ϑ̃

≈ 0.90�. Obviously, �̂
ϑ̃

�= (�̂ϑ − �)mod 2� and �̂2
ϑ̃

�= �̂2
ϑ, thus

neither the location nor the variance are invariant with respect to a shift
of the origin.

origin. Eq. (7) refers to the invariance of the variance. In
other words, the validity of Eqs. (6) and (7) guarantees a sta-
tistical behavior which is essentially independent of chosen
coordinate system.

Now consider a circular variableϑ. For ϑ, an addition
“a+b” becomes “(a+b)mod 2�”. Here and in the remaining
part, we assume a period of 2� and adopt the convention of
angles represented in the interval(−�, �]. Note that under
this assumption the mod operator also maps to(−�, �]. Let
the variables�c

ϑ andV c
ϑ denote the circular counterparts of

mean and variance. Reasonable definitions for�c
ϑ and V c

ϑ
should have a similar behavior as Eqs. (6) and (7) under
a shift of the zero direction which is expressed byϑ̃ =
(ϑ − �)mod 2�. In this respect, equivalent invariances for a
circular variable are

�c
ϑ̃

= (�c
ϑ − �)mod 2�, (8)

V c
ϑ̃

= V c
ϑ . (9)

However, it can easily be verified that with the linear
definitions of mean and variance, given in Eqs. (2) and (3),
the desired invariance is violated, i.e.,

�ϑ̃ �= (�ϑ − �) mod 2� (10)

�2
ϑ̃

�= �2
ϑ (11)

in general. Fig. 2 gives an example for this misbe-
havior, employing a simple set of circular observations

� = {0.1�, 0.2�, 0.6�} (cf. Fig. 2(a)) and�̃ = {0.6�, 0.7�,

−0.9�} (cf. Fig. 2(b)), which corresponds to� = −0.5�.
For these observations, unbiased maximum likelihood (ML)
estimates for mean and variance can be computed to�̂ϑ =
0.3�, �̂ϑ ≈ 0.26�, �̂ϑ̃ ≈ 0.13� and �̂ϑ̃ ≈ 0.90�, which
are obviously not in agreement with Eqs. (8) and (9). In the
figure, values of mean and variance are illustrated by the
location of the black dot and the length of the accompanying
arc, respectively.

As a concluding remark, we note that for circular data the
linear definitions of mean and variance are highly dependent
on the zero direction, which is an inappropriate behavior and
demands for a suitable handling.

Physicists and statisticians have developed a methodol-
ogy for dealing with statistics of directional data. Original
publications lead back to the early 20th century[17–20].
Most recent comprehensive description can be found in the
book of Mardia[1]. We briefly summarize the basics in the
following.

3.2. Circular mean direction and circular variance

Assume a circular random variableϑ with a PDFp(ϑ).
In agreement with standard statistical properties, the PDF
should satisfyp(ϑ)�0 and

∫ �
−� p(ϑ) dϑ = 1. Mardia [1]

representsϑ as a complex number eJϑ (with J 2 = −1) and
employs the notation ofcircular mean direction�c

ϑ andcir-
cular varianceV c

ϑ . They are defined by

	ϑeJ�c
ϑ = E[eJϑ] (12)

with

V c
ϑ = 1 − 	ϑ. (13)

0
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Fig. 3. For the same observations� (a) and�̃ (b) as in Fig. 2. This
figure shows estimates of the circular mean direction�̂c

ϑ, the resultant
length 	̂ϑ and the circular variancêV c

ϑ . �̂c
ϑ corresponds to the phase of

the complex number associated to the black dot,	̂ϑ to the solid line and
V̂ c

ϑ = 1 − 	̂ϑ to the dotted line towardŝ�c
ϑ. The figures also express the

validity of Eqs. (8) and (9).
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The quantity	ϑ is called theresultant length. Figuratively
speaking,�c

ϑ is the expected phase and	ϑ the expected
length of eJϑ. V c

ϑ ∈ [0, 1] measures the amount ofdisper-
sion.

It can be shown[1] that, contrary to the linear definitions
of mean and variance,�c

ϑ andV c
ϑ fulfill the desired invari-

ance of Eqs. (8) and (9) and can be utilized as suitable coun-
terparts for the linear mean and variance.Fig. 3 graphically
motivates this invariance, and further gives a figurative inter-
pretation of�c

ϑ, V c
ϑ , and	ϑ estimates for the same samples

as used inFig. 2.

4. Wrapped Gaussian distribution

Based on�c
ϑ andV c

ϑ , Mardia describes twocircular nor-
mal distributionsthat should serve as appropriate substi-
tutes for the univariate linear normal distribution. One is the
wrapped Gaussian(or normal) distribution, and the other
the von Mises distribution. Both have particular benefits
and drawbacks compared to each other. Among others, the
wrapped Gaussian has theoretical advantages and the von
Mises distribution has practical benefits including the pa-
rameter estimation[1, Section 3.4.10]. However, it can be
shown that they can be made to approximate each other
closely. In this respect, a concrete assessment for one of the
alternatives is practically not too restrictive.

As previously explained, our aim is to set up amul-
tivariate Gaussian distribution of both linearand circular
variables. In this context it appears that due to its apparent
closeness to the linear Gaussian, the wrapped Gaussian (a
definition will follow shortly) is the more natural choice for
the present problem. Thus, in spite of the practical draw-
backs in the parameter estimation, the wrapped Gaussian
distribution, which will briefly be reviewed in the remaining
part of this section, has been chosen.

4.1. General wrapped distribution

Any given PDFp(x) of a linear variablex on the line
can be “wrapped” around the circumference of a circle
of unit radius. That is, the PDFpw(ϑ) of the wrapped
variable

ϑ = xw = x mod 2� ∈ (−�, �] (14)

is

pw(ϑ) =
∞∑

k=−∞
p(ϑ + 2�k). (15)

4.2. Wrapped Gaussian distribution

In particular, forp(x) being a univariate Gaussian dis-
tribution N�x ,�x (x) the wrapped univariate Gaussian

distribution is defined as

Nw
�c

ϑ,V c
ϑ
(ϑ)

=
∞∑

k=−∞

(
2��2

x exp

(
(ϑ − �x + 2�k)2

�2
x

))−1/2

. (16)

It can be shown[1] that for the circular mean direction�c
ϑ

and the circular varianceV c
ϑ the equations

�c
ϑ = �x mod 2� and (17)

�2
x = −2 log(1 − V c

ϑ) (18)

hold. Further,Nw
�c

ϑ,V c
ϑ
(ϑ) is unimodal (i.e., has a single local

maximum) and symmetric about�c
ϑ. With the relations of

Eqs. (17) and (18) in mind we can use the notations of
Nw

�c
ϑ,V c

ϑ
andNw

�x ,�x
interchangeably in the rest of the paper.

Fig. 4(a) shows an example of the wrapped Gaussian dis-
tribution with parameters�x=�/2 and�x=1.50. The dashed
lines show three contributing Gaussian terms, correspond-
ing to k = −1, k = 0 andk = 1 of Eq. (16), the solid line
shows their superposition.

4.3. An approximation to the wrapped Gaussian
distribution

The wrapped Gaussian and von Mises distributions have
been successfully applied to a variety of problems[1]. These
problems can be assigned to one of the following categories:

(1) The PDF is one-dimensional and the random variable
corresponds to a direction in two dimensions.

(2) The PDF is two-dimensional and the random variables
correspond to a direction in three dimensions.

However, contrary to these problems, in many pattern recog-
nition applications we are faced with the situation that a
multivariate (> 2) PDF is to be modeled where only one
(or a few) dimension(s) correspond to circular and the rest
to linear variables. A suitable transfer of the mentioned di-
rectional distributions (the wrapped Gaussian or the von
Mises distribution) to these “semi-directional” situations is
not straightforward. In order to cope with this difficulty the
remaining deliberations will be confined to an approxima-
tion of the wrapped Gaussian distribution: it is assumed that
the wrapped Gaussian can be approximated by only one, but
the most meaningful wrap of it. It will turn out in Section
5 that with this confinement a semi-directional PDF can be
modeled directly.

In this respect, the following considerations shall be re-
stricted to situations in which mainly one wrap of Eq. (16)
contributes to the computation of valuesNw

�c
ϑ,V c

ϑ
(ϑ). As

can be verified fromFig. 4(a) this is the case, if the over-
lap of neighboring Gaussian wraps is negligible. In this
case, it is permissible to approximateNw

�c
ϑ,V c

ϑ
(ϑ) by mostly
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Fig. 4. (a): An example of the wrapped Gaussian distributionNw
�x ,�x

(ϑ) with parameters�x = �/2 and�x = √−2 log(1 − V c
ϑ ) = 1.50 (solid line).

The dashed lines show three contributing terms in Eq. (16), corresponding tok = −1, k = 0 andk = 1. (b)–(d): Wrapped GaussianNw
�x ,�x

(ϑ) (solid
line) together with their approximationNaw

�x ,�x
(ϑ) (dotted line) with parameters�x = �/2 and�x ∈ {1.50, 1.25, 1.00}. It can be seen that for�x = 1.0

approximation errors are small.

contributing wrap forϑ ∈ (−�, �]. This approximation can
be summarized by the formulation

Naw
�c

ϑ,V c
ϑ
(ϑ) =

(
2��2

x exp

(
((ϑ − �x) mod 2�)2

�2
x

))−1/2

,

(19)

where the upper index “aw” shall indicate the term “approx-
imated wrapped”. Again, the notationsNaw

�c
ϑ,V c

ϑ
andNaw

�x ,�x

shall be used interchangeably, with Eqs. (17) and (18) giv-
ing the transformations between the respectiveparameters.

Figs. 4(b)–(d) compareNw
�x ,�x

(ϑ) and Naw
�x ,�x

(ϑ) for
the particular parameter settings�x = �/2 and �x ∈
{1.50, 1.25, 1.00}. For �x = 1.50 and�x = 1.25 the reader
can verify approximation errors, centered at the anti-mode
of Nw

�x ,�x
(ϑ). However, for�x =1.00 only small deviations

of the two functions can be found.

Thus, it will be assumed in the remainder of this contribu-
tion that for�x�1 errors were small, if we useNaw

�x ,�x
(ϑ)

instead ofNw
�x ,�x

(ϑ) to model the PDF of a circular vari-
able. A quantitative statement with respect to the approxi-
mation error can be specified in terms of the integrated error

Eint(�x) =
∫ �

−�
|Naw

�x ,�x
(ϑ) − Nw

�x ,�x
(ϑ)|dϑ, (20)

which corresponds to the area between the solid and the
upper dotted lines inFig. 4(a). If only directly adjacent wraps
have a considerable overlap (which is the case for small
variances), the mentioned area is approximately equivalent
to the area below the lower dotted lines. Further, as the
intersection of two adjacent wraps is at the position(�x −
�)mod 2�=(�x+�)mod 2�, Eint(�x) corresponds to the area
of N�x ,�x (x) that falls outside the interval(�x −�, �x +�].
Due to the symmetry ofN, the integrated error for�x = 1
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can be computed to

Eint(�x = 1) = 2
∫ −�

−∞
N0,1(x) dx

= erfc

(
�√
2

)
≈ 0.001721 (21)

with

erfc(x) = 2√
�

∫ ∞

x

exp(−t2) dt , (22)

the complementary error function.

4.4. Parameter estimates

In statistical pattern recognition the estimation of
the parameters�c

ϑ and V c
ϑ for Naw

�c
ϑ,V c

ϑ
(ϑ) from a set

�={ϑ(1), . . . ,ϑ(M)} of circular observations is of practical
importance.

A maximum likelihood estimatê�c
ϑ can rather straightfor-

wardly be computed. Mardia[1] derives the formula

�̂c
ϑ = arg

(
1

M

M∑
m=1

eJϑ(m)

)
. (23)

An estimate forV c
ϑ can be obtained similarly by

V̂ c
ϑ = 1 −

∥∥∥∥∥ 1

M

M∑
m=1

eJϑ(m)

∥∥∥∥∥ . (24)

However, when the assumption�x�1 holds, another approx-
imative solution is valid. Then, as argued above,Nw

�x ,�x
(ϑ)

becomes close toNaw
�x ,�x

(ϑ). Under this assumption, one
can think ofNaw

�x ,�x
being a single Gaussian centered at�̂c

ϑ
(corresponding to only one wrap) and only a small accu-
racy is sacrificed with a linear like estimate forV c

ϑ via �x

by means of

�̂2
x ≈ 1

M − 1

M∑
m=1

((ϑ(m) − �̂c
ϑ) mod 2�)2. (25)

Note that Eq. (25) employs the circular mean direction es-
timate �̂c

ϑ instead of the linear mean estimate�̂ϑ. As it has
been shown in Section 3.1, the latter is inappropriate for di-
rectional data.

In the present case, the advantage of Eq. (25) over Eq.
(24) is that it can be straightforwardly extended when covari-
ances of directional and linear data are to be computed (cf.
Section 5.5).

5. Multivariate semi-wrapped Gaussian distribution

In the following, the formulation of a combination of
wrapped and non-wrapped Gaussian distributions for multi-
variate situations will be introduced. The resulting distribu-
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Fig. 5. An example for a bivariate wrapped PDFNw
�x,�x

is shown by the
small patch above the (comparably small) interval(−�,�] × (−�,�]. In
correspondence withFig. 4 (a), the figure additionally gives a plot of nine
summands of Eq. (26), corresponding tok1 = −1, 0, 1 andk2 = −1, 0, 1
in Eq. (26). The parameter settings in this figure are�x = (2.5, −2.0)T

and�x = [ 6
0.7

0.7
6 ].

tion will be formulated asmultivariate semi-wrapped Gaus-
sian distribution. To start with, themultivariate wrapped
distributionand themultivariate semi-wrapped distribution
shall be defined first.

5.1. Multivariate wrapped distribution

The concept of a univariate wrapped distribution can be
extended to the multivariate context by an extension of the
simple sum in Eq. (15) to a number ofF sums that cover all
dimensions in the feature space:

pw(x)

=
∞∑

k1=−∞
· · ·

∞∑
kF =−∞

p(x + 2�k1e1 + · · · + 2�kFeF ).

(26)

In this equation,ek = (0, . . . , 0, 1, 0, . . . , 0)T is thekth Eu-
clidean basis vector (with an entry of 1 at thekth element
and 0 elsewhere).Fig. 5 illustrates an example of a bivari-
ate wrapped Gaussian PDF. There, in correspondence to
Fig. 4(a), the reader can see nine Gaussian summands (cor-
responding tok1=−1, 0, 1 andk2=−1, 0, 1) as well as their
sum (the small patch, restricted to the interval(−�, �] ×
(−�, �]). Fig. 6(a) shows another bivariate wrapped Gaus-
sian as a color plot.

5.2. Multivariate semi-wrapped distribution

As it has been indicated previously, in some applications
only a subset of variables in a feature vector originates from
directional data, the remaining variables may be of linear
type. For these situations, a suitable modeling should em-
ploy a distribution that is wrapped in the directional and
non-wrapped in the linear dimensions. A multivariate distri-
bution with this property shall be namedmultivariate semi-
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Fig. 6. Pseudo-color plots of (a) a wrappedNw
�x,�x

(x) and (b) a semi-wrappedNsw
�x,�x

(x, 1) multivariate Gaussian PDF with the parameters�x=(2.5,

−2.0)T and�x = [ 1
0.7

0.7
0.8 ]. Bright colors denote high values. In both cases the abscissa corresponds to a circular variable. The ordinate corresponds to

a circular variable in (a), however to a linear in (b). Note that for the chosen values(�x)i,i �1, i = 1, 2 the assumption of a “small variance” for the
circular quantity is valid and an approximation ofNsw

�x,�x
(x, 1) by Nasw

�x,�x
(x, 1) is justified.

wrapped distribution. For a simpler notation, it is assumed
that the directional variable refers to only one dimension.
Let fw denote the dimension index of it. Then, the multi-
variate semi-wrapped distributionpsw of anF-dimensional
random vectorx can be defined as

psw(x, fw) =
∞∑

k=−∞
p(x + 2�kefw). (27)

For the sake of completeness, the wrapping indexfw is
included as a function argument inpsw.

5.3. Multivariate semi-wrapped Gaussian distribution

Forp being the Gaussian PDF, that is,p(x)=N�x,�x(x),
Eq. (27) becomes themultivariate semi-wrapped Gaussian
PDF

Nsw
�x,�x(x, fw) =

∞∑
k=−∞

(|2��x| exp((x − �x + 2�kefw)T

× �−1
x (x − �x + 2�kefw)))−1/2. (28)

Fig. 6(b) shows a plot of a bivariate semi-wrapped Gaussian
PDFNsw

�x,�x
(x, 1). The abscissa corresponds to the circular

variableϑ, the ordinate to a linear variablex. The reader can
verify the wrap on the abscissa.

5.4. An approximation to the multivariate semi-wrapped
Gaussian distribution

A practical handling ofNsw
�x,�x

is rather involved. In par-
ticular, the computation of the infinite sum and the estima-
tion of its parameters is a complex task. In order to cope
with these problems and in agreement with the approxima-
tion derived in Section 4.3, a transition from a multivariate

semi-wrapped Gaussian distribution to an approximation of
it shall be approached.

Again, the assumption for the approximation is a small
variance in the circular variable in the sense that neighboring
Gaussian terms of Eq. (28) have only a small overlap. For the
multivariate situation this is the case, when

√
(�x)fw,fw�1.

Under these conditions,Nsw
�x,�x

(x) can be approximated
by only one wrap—in correspondence to Eq. (19):

Nasw
�x,�x(x, fw) = (|2��x| exp(((x − �x)modfw 2�)T

× �−1
x ((x − �x)modfw 2�)))−1/2. (29)

The function modfw performs the modulo operation solely
on the dimensionfw.

5.5. Parameter estimates

Parameter estimation refers to the estimation of�x and
�x from a setX = {x(1), . . . , x(M)} of observationsx(m).
The elements of�x can be estimated independently, using
the linear ML mean estimates for the non-wrapped, and Eq.
(23) for the wrapped dimension. In this respect, an estimate
of �x is obtained from

(�̂x)f =


1

M

∑M
m=1 x

(m)
f if f �= fw,

arg

(
1

M

∑M
m=1 eJx

(m)
f

)
else.

. (30)

For a covariance estimate we recall the assumption of small
variances in the directional variable(s) and present an ap-
proximate solution. Since the entity of linear and directional
variables is modeled by asingleGaussian wrap in the men-
tioned approximation, the semi-wrapped covariance estimate
can be derived from a combination of linear ML covariance
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estimate and Eq. (25), that is,

�̂x ≈ 1

M − 1

M∑
m=1

x(m)′x(m)′T (31)

with

x
(m)′
f =

{
x

(m)
f − (�̂x)f if f �= fw,

(x
(m)
f − (�̂x)f ) mod 2� else.

(32)

In the context of the online HWR application, Eqs. (30)
and (31) define the counterparts for the linear ML estimates
that are employed during training. Eq. (29) is used in order to
evaluate the probability densitypasw(t, fw) of an observed
feature vectort during classification.

6. Experiments

This section describes experiments using the multivariate
semi-wrapped Gaussian PDF, applied to online HWR in the
context of the learning framework CSDTW.

6.1. Data

The experiments are based on Sections 1a, b and c (dig-
its, upper and lower case characters, respectively) of the
UNIPEN [12] Train-R01/V07 online handwriting database.
For these sections, the number of classes are 10, 26, and
26, respectively, the overall data set size is approximately
16 000, 28 000 and 61 000 characters, respectively, and the
sample set size of each class varies from approximately 600
to 6000 samples. Examples from the UNIPEN Section 1c
are illustrated inFig. 7. It should be noted that UNIPEN
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Fig. 7. Classification results of some exemplary UNIPEN handwriting samples: The first row shows samples, which are correctly classified with the
proposed(x̃i , ỹi , �i )

T modeling, but incorrectly with the(x̃i , ỹi , cos�i , sin �i )
T modeling. The last row gives examples for samples misclassified by

both representations.

consists of very difficult data due to the variety of writers
and noisy or mislabeled data. We used the database without
cleaning in order to be as comparable as possible to other
classification reports.

6.2. Results

All of the results presented in the following were deter-
mined with a fivefold hold-out method, that is, the entire
data set has been partitioned into disjoint training and test
subsets (of a ratio 2: 1) independently in five experiments.
The divisions were completely random, thus one writer was
allowed to be present in both of the sets. For a quantization
of the statistical significance we include the standard devia-
tion of the tests in the results presented below.

In order to assess the impact of the directional feature rep-
resentation proposed, we have studied three different feature
selections.

(1) The first shall help judging about the discriminative
power of the tangent slope angle at all. One might ar-
gue that the tangent slope angle� is just a redundant
representation of̃x andỹ and is thus useless, since it is
directly computed from the other two featuresx̃ andỹ.
We want to disprove these considerations by our exper-
iments. To this end, we include a selection comprising
only the normalized horizontal and vertical coordinates
ti = (x̃i , ỹi )

T in our experiments.
(2) A second selection follows the commonly taken ap-

proach [6–8] and uses the indirect vector modeling,
ti = (x̃i , ỹi , cos�i , sin�i )

T.
(3) The third approach setsti =(x̃i , ỹi , �i )

T and applies the
described methodology, summarized by Eqs. (29), (30)
and (31).
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Table 1
Experiments on the UNIPEN Sections 1a/b/c (as indicated in the first
column). The second column denotes the choice of the features. The third
column shows the mean error rateẼ of five different dataset partitionings,
together with the respective standard deviation�E of the benchmark set,
the fourth column the change of error rate relative to the feature set
(x̃i , ỹi , �i )

T. The results show that in all sections the proposed feature
selection including a direct representation of the directional feature�i

gives best recognition results

UNIPEN Feature representation Mean error Relative
ti rate Ẽ ± �E change ofẼ

1a (x̃i , ỹi )
T 4.2 ± 0.2% +45%

(digits) (x̃i , ỹi , cos�i , sin�i )
T 3.6 ± 0.3% +24%

(x̃i , ỹi , �i )
T 2.9 ± 0.2%

1b (x̃i , ỹi )
T 9.8 ± 0.7% +36%

(upper case) (x̃i , ỹi , cos�i , sin�i )
T 7.5 ± 0.3% +4%

(x̃i , ỹi , �i )
T 7.2 ± 0.1%

1c (x̃i , ỹi )
T 13.1 ± 0.2% +40%

(lower case) (x̃i , ỹi , cos�i , sin�i )
T 10.1 ± 0.05% +9%

(x̃i , ỹi , �i )
T 9.3 ± 0.05%

It is worth noting, that all other recognition parameters were
kept constant over the three feature extractions. The classi-
fier complexity in terms of the overall number of allograph
models were about 150, 270 and 600 for the digits, lower
and upper case characters, respectively.

Table 1summarizes mean classification error ratesẼ of
the three scenarios, each of which is the average from five
different dataset partitionings (of the ratio 2: 1, as explained
previously). It further gives the standard deviation�E of
the respective fivefold benchmark and the change of error
relative to the feature set(x̃i , ỹi , �i )

T.
We can draw the following inferences from the results in

Table 1.
1. Although the feature� is computed from the other two

featuresx̃ and ỹ, it is shown that the incorporation of�
significantly improves the recognition accuracy. The relative
change of error rate varies from 36% to 45%.

2. A direct representation of� instead of a detour over
(cos�i , sin�i ) results in a higher accuracy (with our clas-
sifier). The proposed solution achieved lower error rates in
all three UNIPEN sections. The relative change of error rate
varies from 4% to 24%.

Further, the computational complexity and the memory
requirements of the second feature selection are systemat-
ically higher, as evaluating Eq. (29) and the storage of�x
and�x is of orderO(F 2).

In Fig. 7, we show example classifications. Here, the first
row illustrates characters, which are incorrectly classified
with the (x̃i , ỹi , cos�i , sin�i )

T feature set, and correctly
with (x̃i , ỹi , �i )

T. The second row shows examples misclas-
sified by both feature selections. The ground truth label is
shown below. While the characters from the first row can
indeed easily and correctly be classified by a human expert,
the second row contains rather ambiguous examples, which
are also a challenge for the human expert (without the inclu-
sion of knowledge about reference lines, punctuation, etc).

For a comparison of the achieved results in a broader
context within the handwriting recognition community refer
to previous publications[9,11].

7. Conclusions

In this contribution we have proposed a solution for a
unified statistical modeling of linear and circular data with
a Gaussian-like PDF. In order to reduce the analytic com-
plexity, the approach has been confined to the constraint of
small variances in the circular variables.

We have started with a brief review of directional data, its
statistics, and the wrapped Gaussian distribution. Followed
by this, the original contributions of the paper have been in-
troduced:A scenario has been formulated in that the wrapped
Gaussian distribution can be substituted by an approxima-
tion. Approximative solutions to the problem of parameter
estimation were given. Further, extensions of the wrapped
Gaussian distribution to multivariate and semi-wrapped sit-
uations were presented. As with the univariate case, we have
given a complete framework for an approximative practical
handling, including solutions for the tasks of parameter es-
timation and function evaluation.

We have shown that the proposed framework improves
the recognition accuracy in our application of online hand-
writing recognition significantly. Compared to previous ap-
proaches of incorporating directional data into a statistical
feature space modeling, errors were relatively reduced by
4–24%. Further benefits of the proposed solution are savings
in computation time and memory.

The suggested solution is transferable to many existing
handwriting recognition systems. It can be plugged into any
system that uses a feature representation of the tangent slope
angle (or other circular features) in combination with a para-
metric PDF modeling based on the Gaussian function class.
It can be expected that in these systems the recognition accu-
racy can generically be increased and the time and memory
complexity be decreased with the proposed modeling.

Further, the presented framework can be applied in other
pattern recognition problems and areas such as biological
and chemical engineering, robotics, etc.

We think that the proposed solution is a first, but not the
final step to a unified handling of a semi-wrapped feature
space in pattern recognition. For further research, in partic-
ular a non-approximative modeling of semi-directional sit-
uations based on the wrapped or the von Mises distribution
is a worthwhile challenge.

8. Summary

The selection of valuable features is a crucial step in pat-
tern recognition. In this paper we deal with the issue that
part of features originates fromdirectional data. Contrary
to linear data, which are distributed on the real line, di-
rectional data are, in general, distributed on a surface of a
hypersphere, in two dimensions on the circumference of a
circle. Hence, directional data are inherently cyclic. Both
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for linear and directional data a theory for the statistical
modeling exists. Here, researchers often use Gaussians or
wrapped Gaussians, respectively, in order to model probabil-
ity densities. However, none of the theories gives a solution
to problems, whereboth linear and directional data are to be
modeled together in asingle, multivariate probability den-
sity function. In this paper, we propose a general approach
for an integrated statistical modeling of linear and circular
data: the multivariate semi-wrapped Gaussian distribution.
In order to reduce the analytic complexity we confine the
considerations to the constraint of a small variance in the
circular variable(s).

We apply the multivariate semi-wrapped Gaussian distri-
bution to our application of the writer independent online
handwriting recognition systemfrog on hand. Here, we are
faced with the problem of directional data through the use
of a valuable feature, the so-calledtangent slope angle. We
show experimental results and compare them with two alter-
native, commonly employed approaches. In the experiments
we show, that our proposed modeling gives significant im-
provements in recognition accuracy and in computational
speed compared to the alternative representations.

The suggested solution can be applied to any handwriting
recognition system that uses a feature representation of the
tangent slope angle (or other circular features) in combina-
tion with a parametric PDF modeling based on the Gaussian
function class. It is further transferable to other applications
that use directional data, such as biological and chemical
engineering, robotics, etc.
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