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ABSTRACT

We present a computationally efficient method for analyti#&f= stained digital pathology slides with the objective of
discriminating diagnostically relevant vs. irrelevangians. Such technology is useful for several applicatighpit can
speed up computer aided diagnosis (CAD) for histopathdbagged cancer detection and grading by an order of magnitude
through a triage-like preprocessing and pruning. (2) Iticaprove the response time for an interactive digital paibgl
workstation (which is usually dealing with several GBytgithil pathology slides), e.g., through controlling adegpti
compression or prioritization algorithms. (3) It can sugploe detection and grading workflow for expert patholagista
semi-automated diagnosis, hereby increasing througimglaecuracy. At the core of the presented method is thetstatis
characterization of tissue components that are indicétivéhe pathologist's decision about malignancy vs. beitygn
such as, nuclei, tubules, cytoplasm, etc. In order to almveffective yet computationally efficient processing, wegose
visual descriptors that capture the distribution of colmensities observed for nuclei and cytoplasm. Discrinmat
between statistics of relevant vs. irrelevant regionsasried from annotated data, and inference is performedneati
classification. We validate the proposed method both auiizdtly and quantitatively. Experiments show a cross \aiah
error rate of 1.4%. We further show that the proposed metlandpcune~90% of the area of pathological slides while
maintaining 100% of all relevant information, which allofes a speedup of a factor of 10 for CAD systems.

Keywords: Breast histopathology, high-speed CAD histology, breasicer, cancer detection from digital pathology,
triaging & pruning

1. DESCRIPTION OF PURPOSE

This work deals with virtual slides from H&E (hematoxylin &sin) stained digital histopathology, such as illustrated
in Figure 1. Such slides are usually several GByte in sizethei analysis by pathologists and computer algorithms is
often limited by the technologies currently available fagithl pathology workstation.We present a method that aims
at facilitating and accelerating the analysis of virtuade$ by automatically identifying diagnostically relevaegions in
such slides, and at the same time discarding most of thewast ones. Such functionality can be beneficial in a number
of applications, e.g.:

1. It can speed up computer aided diagnosis (CAD) for histapagy based cancer detection and graéifgy an
order of magnitude through a triage-like preprocessing.

2. It can improve the response time for an interactive digigghology workstation dealing with several GByte large
virtual slides, e.qg., through controlling adaptive congsien or prioritization algorithms8:°

3. It can support the detection and grading workflow for ekpathologists in a semi-automated diagnosis, thereby
increasing throughput and accuracy.

Our algorithm design addresses two main requirementg, Binge the algorithm will be used in a triage-like prepssiag
context, we aim at almost 100% detection accuracy, whitefalarm rate should be low, but not necessarily zero. Second
since our algorithm is usually applied at the entire largtueai slide, e.g., for pruning, computational speed shbeltigh,

with further potential improvement using hardware speedup, cluster or GPU processing.
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Figure 1. Example of a 4 GByte virtual slide for a breast biopsy specimen with twaselup views of a diagnostically
relevant (left) and irrelevant (right) regions. The difface between the two samples can be clearly seen by the nofmber
indicative elements of nuclei, tubules, cytoplasm, etc.

2. METHODS

The virtual slides in our study were acquired for breast byogpecimens using a DMetrix scanner in the Arizona Teleonaeli
Program. Slide images were sampled at Qu&7pixel. For a typical slide with 1 to 4 chof tissue, a single 40X objective
scan yields 1 to 5 GB of uncompressed RGB image data. Figunevssan example of a virtual slide of about 40000 x
30000 pixels resolution.

Two close-up views show examples of different tissue regitbat were classified by an expert pathologistebavant
orirrelevant to the diagnosis of breast cancer.

Diagnostically relevant regions are distinguished by gdaamount of epithelial nuclei and tubule formation, wherea
irrelevant regions are dominated by cytoplasm tissue. IrEH€ained images, these tissue components are stained dark
purple (nuclei) and pink (cytoplasm and the extracellutamective tissue).

Pathologists typically start by visually scanning a vittsizgde to identify the most diagnostically relevant tiss@ur
proposed automated detection follows this procedure bgiigiging the slide into square image patches of 256 x 256lpixe
(corresponding to 120 x 120m). Similar to human pathologist processing, it aims at nindehe distribution of nuclei
and cytoplasm. Specifically, it employs a combination obcgreprocessing, the extraction of feature descriptord, a
classification based on machine learning, as is illustrat&igure 2. In the following we will provide details for théeps
involved.

2.1 Color representation

In H&E stained specimens, nuclei appear purple and cytopigspears pink. The proposed approach is aiming at charac-
terizing distributions of these components. In order teeatgate the difference between these colors, we rely oneafl)

color transform into two channels, called H and E, each afthenplifying the hematoxylin (eosin) stain and at the same
time suppressing the eosin (hematoxylin) stain. This aggtds similar to the approach reported by Cosatto étlala
nutshell, it computes dominant purple and non-purple piagles from the data and subsequently computes the main axes
for the transform orthogonal to those. Figure 3 shows the akedominant pixel values (in black) and the transformation
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Figure 3: Color transform. The dominant purple and non-fguppxels (illustrated by the two black vectors) are estiedat
from the data. The linear transformations H and E are congputéogonal to M and C.

axes (the “lower" axes) for a typical sample set of pixels.iFastration, every pointin CMY space has been coloredwit
its particular color.

2.2 Descriptor and Classifier

Similar to the process of a human pathologist who considerslistribution of nuclei and cytoplasm within a region, our
automated processing is based on the distribution of npidels and cytoplasm pixels. We have chosen the level olpixe
rather than higher abstraction levels, such as shape iattom to achieve greater computational speed. In Sectioa 3
will show that this approximation will already provide safént accuracy for the task.

The proposed descriptor is based on the distribution ofrebgéntensities in the pair of H and E channels. Our method
chooses a sparse representation of 11 uniformly distidbpégcentile ranks (at 0%, 10%, 20%,, 100%). In practice,
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Figure 4: Percentile descriptor

the rank values can be obtained via sorting or by cumulaistegramming, as illustrated in Figure 4. The figure plots th
normalized cumulative histogram as a function of intendigre for the E channel). The descriptor takes values fram th
abscissa at locations where the cumulative histogram atsespective percentile levels.

We also experimented with a different, more common reptasien that is based on normalized histogram bin counts.
The percentile based representation, however, has thétitbaeit is adaptive to the range in the feature space, helues
not require a selection of bin size and range. Notably, withgercentile based representation we empirically obdeave
relative 50% lower error rate compared to the normalizetbgisim bin count.

The pair (corresponding to H&E) of 11 percentile values entbombined into a 22 dimensional feature vector, and a
linear SVM (using libsvrt0) is trained for the classification task.

3. RESULTS

We examine our method with two types of experiments: firstamet of 589 cropped patches that has been labeled by
pathologists as relevant (256 count) or irrelevant (33tpuespectively; second, on full virtual slides of 1-5 G&s,
where pathologists have selectively marked areas of netevand irrelevance.

3.1 Results on image patches

The classification on the cropped patches was evaluated B8ifold cross validation. Figure 5 (a) shows an ROC curve
for this experiment, showing that almost 100% detectioa canh be obtained with only 7-8% false positive rate (blug)lin
The latter is particularly notable, because a CAD basedgmaticy detection would not see any significant degrade in
performance, when combined with the proposed method asrangrubut would benefit significantly from the speedup.
The obtained error rate from the point of the ROC chosen bygiid is 1.4%.

Figure 5 (a) also compares the obtained performance witlrdift color representations, i.e., grayscale and indalid
H and E channel, respectively. It shows that the joint H-BBrodpresentation gives an advantage over those representa
tions.

Figure 6 summarizes the failure cases from the experimeitisie H&E experiments. From visual verification and
comparison to to the whole set of images we observed thatigetassifications correspond mostly to outliers or boiderl
cases.
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Figure 6: Failure cases (8/589 = 1.4%): to the left thoseefalslassified as irrelevant, to the right as relevant.

3.2 Results on compressed image patches

As image compression plays a major role in digital patholaifh large virtual slides, we were further interested in the
effect of compression on the presented classification ndsthd/e have evaluated the classification described abobe wit
(i) uncompressed images and (ii) images that were JPEGROO@ressed with a factor of 128. Figure 5 (b) illustrates
the results. The ROC shows that no significant classificgigmfiormance is lost from the compression. This robustness
to even high compression levels can be explained by theHatttassification mostly depends on the color distribytion
which is not very adversely effected by compression.

This result motivated another empirical study in order tarify the effect of subsampling on the performance. The
benefit of such procedure is the reduced computational edsth — since image operations are solely pixel based —
depend directly from the subsampling. From Figure 5 (c) vectsat no or only little performance loss can be observed up
to subsampling by & 8 or even 16x 16, leading to a 64—-256 times speedup.

3.3 Results on virtual slides

We also examined our method on full virtual slides by scagmialividual 256x 256 pixel patches in a moving window
(with zero overlap). Figure 7 shows a fully marked virtuadlslwhere the green regions represent areas that our method
classified as diagnostically relevant. The blue and red $are non-exhaustively labeled regions that a pathologrst-a
tated as relevant and irrelevant, respectively, meaniagrtbn-annotated regions can belong to either class. WeHatd t

in this particular case 100% of the regions annotated agael@ppropriate detections were correctly made, while alls
irrelevant regions have been correctly identified. Anothearesting note is that 90% of the tissue in the slide has been
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Figure 7: Experiment on a virtual slide.

deemed irrelevant by the automated processing. This itedi@apossible system speedup of a CAD system of more than
one order of magnitude. Similar observations have beendfour®3 additional virtual slides.

3.4 Computational speed

Computational speed is currently 0.1 ms for a 25856 patch (i.e.z~ 120um x 120um) on a standard laptop after sub-
sampling by 16< 16. For a 4 GByte virtual slide, such as the one in Figure 1¢gssing scales te 2 seconds. In the
context of a triaging (or pruning) for CAD systems, this id@rs of magnitude faster than popular texton based appesach
for histopathology analysior higher level analysis, hence, it would not increase theail/processing notably.

4. CONCLUSION

We have presented an approach for automated image basgddria digital pathology. The innovation of this work is a
computationally efficient algorithm that identifies regsarf diagnostic relevance in histopathology virtual slideéth high
accuracy. This algorithm can serve as a fast triaging oripgustep in a CAD based cancer detection or digital pathology
workstations, thereby improving computation and systespaoase time by an order of magnitude. Computational effi-
ciency is achieved by local pixel-based analysis and a smanier distribution descriptor. Experiments indicatepeigh
accuracy (only 1.4 % error) and up to 10 times speedup patdatithe intended application scenarios.
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