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ABSTRACT

We present a computationally efficient method for analyzingH&E stained digital pathology slides with the objective of
discriminating diagnostically relevant vs. irrelevant regions. Such technology is useful for several applications:(1) It can
speed up computer aided diagnosis (CAD) for histopathologybased cancer detection and grading by an order of magnitude
through a triage-like preprocessing and pruning. (2) It canimprove the response time for an interactive digital pathology
workstation (which is usually dealing with several GByte digital pathology slides), e.g., through controlling adaptive
compression or prioritization algorithms. (3) It can support the detection and grading workflow for expert pathologists in a
semi-automated diagnosis, hereby increasing throughput and accuracy. At the core of the presented method is the statistical
characterization of tissue components that are indicativefor the pathologist’s decision about malignancy vs. benignity,
such as, nuclei, tubules, cytoplasm, etc. In order to allow for effective yet computationally efficient processing, we propose
visual descriptors that capture the distribution of color intensities observed for nuclei and cytoplasm. Discrimination
between statistics of relevant vs. irrelevant regions is learned from annotated data, and inference is performed via linear
classification. We validate the proposed method both qualitatively and quantitatively. Experiments show a cross validation
error rate of 1.4%. We further show that the proposed method can prune≈90% of the area of pathological slides while
maintaining 100% of all relevant information, which allowsfor a speedup of a factor of 10 for CAD systems.

Keywords: Breast histopathology, high-speed CAD histology, breast cancer, cancer detection from digital pathology,
triaging & pruning

1. DESCRIPTION OF PURPOSE

This work deals with virtual slides from H&E (hematoxylin & eosin) stained digital histopathology, such as illustrated
in Figure 1. Such slides are usually several GByte in size andtheir analysis by pathologists and computer algorithms is
often limited by the technologies currently available for digital pathology workstations.1 We present a method that aims
at facilitating and accelerating the analysis of virtual slides by automatically identifying diagnostically relevant regions in
such slides, and at the same time discarding most of the irrelevant ones. Such functionality can be beneficial in a number
of applications, e.g.:

1. It can speed up computer aided diagnosis (CAD) for histopathology based cancer detection and grading2–7 by an
order of magnitude through a triage-like preprocessing.

2. It can improve the response time for an interactive digital pathology workstation dealing with several GByte large
virtual slides, e.g., through controlling adaptive compression or prioritization algorithms.1,8,9

3. It can support the detection and grading workflow for expert pathologists in a semi-automated diagnosis, thereby
increasing throughput and accuracy.

Our algorithm design addresses two main requirements. First, since the algorithm will be used in a triage-like preprocessing
context, we aim at almost 100% detection accuracy, while false alarm rate should be low, but not necessarily zero. Second,
since our algorithm is usually applied at the entire large virtual slide, e.g., for pruning, computational speed shouldbe high,
with further potential improvement using hardware speedup, e.g., cluster or GPU processing.

∗work performed while at Siemens Corporate Research



Figure 1: Example of a≈ 4 GByte virtual slide for a breast biopsy specimen with two close-up views of a diagnostically
relevant (left) and irrelevant (right) regions. The difference between the two samples can be clearly seen by the numberof
indicative elements of nuclei, tubules, cytoplasm, etc.

2. METHODS

The virtual slides in our study were acquired for breast biopsy specimens using a DMetrix scanner in the Arizona Telemedicine
Program. Slide images were sampled at 0.47µm/pixel. For a typical slide with 1 to 4 cm2 of tissue, a single 40X objective
scan yields 1 to 5 GB of uncompressed RGB image data. Figure 1 shows an example of a virtual slide of about 40000 x
30000 pixels resolution.

Two close-up views show examples of different tissue regions that were classified by an expert pathologist asrelevant
or irrelevant to the diagnosis of breast cancer.

Diagnostically relevant regions are distinguished by a large amount of epithelial nuclei and tubule formation, whereas
irrelevant regions are dominated by cytoplasm tissue. In H&E stained images, these tissue components are stained dark
purple (nuclei) and pink (cytoplasm and the extracellular connective tissue).

Pathologists typically start by visually scanning a virtual slide to identify the most diagnostically relevant tissue. Our
proposed automated detection follows this procedure by subdividing the slide into square image patches of 256 x 256 pixels
(corresponding to 120 x 120µm). Similar to human pathologist processing, it aims at modeling the distribution of nuclei
and cytoplasm. Specifically, it employs a combination of color preprocessing, the extraction of feature descriptors, and
classification based on machine learning, as is illustratedin Figure 2. In the following we will provide details for the steps
involved.

2.1 Color representation

In H&E stained specimens, nuclei appear purple and cytoplasm appears pink. The proposed approach is aiming at charac-
terizing distributions of these components. In order to accentuate the difference between these colors, we rely on a (linear)
color transform into two channels, called H and E, each of them amplifying the hematoxylin (eosin) stain and at the same
time suppressing the eosin (hematoxylin) stain. This approach is similar to the approach reported by Cosatto et al.2 In a
nutshell, it computes dominant purple and non-purple pixelvalues from the data and subsequently computes the main axes
for the transform orthogonal to those. Figure 3 shows the axes of dominant pixel values (in black) and the transformation



Figure 2: Summary of the proposed approach: An image region is transformed into H and E color channels, percentile
feature descriptors are extracted, and classified with a linear SVM classifier.

Figure 3: Color transform. The dominant purple and non-purple pixels (illustrated by the two black vectors) are estimated
from the data. The linear transformations H and E are computed orthogonal to M and C.

axes (the “lower" axes) for a typical sample set of pixels. For illustration, every point in CMY space has been colored with
its particular color.

2.2 Descriptor and Classifier

Similar to the process of a human pathologist who considers the distribution of nuclei and cytoplasm within a region, our
automated processing is based on the distribution of nucleipixels and cytoplasm pixels. We have chosen the level of pixels
rather than higher abstraction levels, such as shape information, to achieve greater computational speed. In Section 3we
will show that this approximation will already provide sufficient accuracy for the task.

The proposed descriptor is based on the distribution of observed intensities in the pair of H and E channels. Our method
chooses a sparse representation of 11 uniformly distributed percentile ranks (at 0%, 10%, 20%,. . ., 100%). In practice,



Figure 4: Percentile descriptor

the rank values can be obtained via sorting or by cumulative histogramming, as illustrated in Figure 4. The figure plots the
normalized cumulative histogram as a function of intensity(here for the E channel). The descriptor takes values from the
abscissa at locations where the cumulative histogram cuts the respective percentile levels.

We also experimented with a different, more common representation that is based on normalized histogram bin counts.
The percentile based representation, however, has the benefit that it is adaptive to the range in the feature space, hence, does
not require a selection of bin size and range. Notably, with the percentile based representation we empirically observed a
relative 50% lower error rate compared to the normalized histogram bin count.

The pair (corresponding to H&E) of 11 percentile values is then combined into a 22 dimensional feature vector, and a
linear SVM (using libsvm10) is trained for the classification task.

3. RESULTS

We examine our method with two types of experiments: first, ona set of 589 cropped patches that has been labeled by
pathologists as relevant (256 count) or irrelevant (333 count), respectively; second, on full virtual slides of 1-5 GBytes,
where pathologists have selectively marked areas of relevance and irrelevance.

3.1 Results on image patches

The classification on the cropped patches was evaluated using 50 fold cross validation. Figure 5 (a) shows an ROC curve
for this experiment, showing that almost 100% detection rate can be obtained with only 7-8% false positive rate (blue line).
The latter is particularly notable, because a CAD based malignancy detection would not see any significant degrade in
performance, when combined with the proposed method as a pruning, but would benefit significantly from the speedup.
The obtained error rate from the point of the ROC chosen by theSVM is 1.4%.

Figure 5 (a) also compares the obtained performance with different color representations, i.e., grayscale and individual
H and E channel, respectively. It shows that the joint H-E color representation gives an advantage over those representa-
tions.

Figure 6 summarizes the failure cases from the experiments with the H&E experiments. From visual verification and
comparison to to the whole set of images we observed that the misclassifications correspond mostly to outliers or borderline
cases.
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(a) ROC for different color representations
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(b) ROC for different compression levels
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(c) ROC for different sub sampling. “Subsampling 16" means sub-
sampling on a 16×16 grid.

Figure 5: ROC for different pre-processing and feature extraction.
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Figure 6: Failure cases (8/589 = 1.4%): to the left those falsely classified as irrelevant, to the right as relevant.

3.2 Results on compressed image patches

As image compression plays a major role in digital pathologywith large virtual slides, we were further interested in the
effect of compression on the presented classification methods. We have evaluated the classification described above with
(i) uncompressed images and (ii) images that were JPEG2000-compressed with a factor of 128. Figure 5 (b) illustrates
the results. The ROC shows that no significant classificationperformance is lost from the compression. This robustness
to even high compression levels can be explained by the fact that classification mostly depends on the color distribution,
which is not very adversely effected by compression.

This result motivated another empirical study in order to quantify the effect of subsampling on the performance. The
benefit of such procedure is the reduced computational cost,which — since image operations are solely pixel based —
depend directly from the subsampling. From Figure 5 (c) we see that no or only little performance loss can be observed up
to subsampling by 8×8 or even 16×16, leading to a 64–256 times speedup.

3.3 Results on virtual slides

We also examined our method on full virtual slides by scanning individual 256×256 pixel patches in a moving window
(with zero overlap). Figure 7 shows a fully marked virtual slide where the green regions represent areas that our method
classified as diagnostically relevant. The blue and red boxes are non-exhaustively labeled regions that a pathologist anno-
tated as relevant and irrelevant, respectively, meaning that non-annotated regions can belong to either class. We find that
in this particular case 100% of the regions annotated as relevant appropriate detections were correctly made, while also all
irrelevant regions have been correctly identified. Anotherinteresting note is that∼ 90% of the tissue in the slide has been



Figure 7: Experiment on a virtual slide.

deemed irrelevant by the automated processing. This indicates a possible system speedup of a CAD system of more than
one order of magnitude. Similar observations have been found on 93 additional virtual slides.

3.4 Computational speed

Computational speed is currently 0.1 ms for a 256×256 patch (i.e.,≈ 120µm×120µm) on a standard laptop after sub-
sampling by 16×16. For a 4 GByte virtual slide, such as the one in Figure 1, processing scales to≈ 2 seconds. In the
context of a triaging (or pruning) for CAD systems, this is orders of magnitude faster than popular texton based approaches
for histopathology analysis3 or higher level analysis, hence, it would not increase the overall processing notably.

4. CONCLUSION

We have presented an approach for automated image based triaging in digital pathology. The innovation of this work is a
computationally efficient algorithm that identifies regions of diagnostic relevance in histopathology virtual slideswith high
accuracy. This algorithm can serve as a fast triaging or pruning step in a CAD based cancer detection or digital pathology
workstations, thereby improving computation and system response time by an order of magnitude. Computational effi-
ciency is achieved by local pixel-based analysis and a sparse color distribution descriptor. Experiments indicate very high
accuracy (only 1.4 % error) and up to 10 times speedup potential for the intended application scenarios.
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