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ABSTRACT

We propose a hew method of classifying the local structysegysuch as nodules, vessels, and junctions, in thoracic CT
scans. This classification is important in the context of poter aided detection (CAD) of lung nodules. The proposed
method can be used as a post-process component of any lungs@#A@&m. In such a scenario, the classification results
provide an effective means of removing false positives edlry vessels and junctions thus improving overall perforcea

As main advantage, the proposed solution transforms th@lexrproblem of classifying various 3D topological struets

into much simpler 2D data clustering problem, to which mageegic and flexible solutions are available in literature] a
which is better suited for visualization. Given a noduledidate, first, our solution robustly fits an anisotropic Gaais

to the data. The resulting Gaussian center and spread paranage used to affine-normalize the data domain so as
to warp the fitted anisotropic ellipsoid into a fixed-sizetiepic sphere. We propose an automatic method to extract a
3D spherical manifold, containing the appropriate bougdinrface of the target structure. Scale selection is paddr

by a data driven entropy minimization approach. The madifslanalyzed for high intensity clusters, corresponding to
protruding structures. Techniques involve EM clusteririinautomatic mode number estimation, directional stasand
hierarchical clustering with a modified Bhattacharyyaatise. The estimated number of high intensity clusters eyl
determines the type of pulmonary structures: nodule (g¢ched nodule (1), vessel (2), junction (>3). We show adeura
classification results for selected examples in thoracics€ans. This local procedure is more flexible and efficierm tha
current state of the art and will help to improve the accuiayeneral lung CAD systems.
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1. INTRODUCTION

Lung cancer is responsible for over 160,000 deaths in thieyeas in the United States alone. While not smoking is the
best prevention against lung cancer, early detection ikakieo improving patient prognosis. When the cancer is detect
early and surgery is performed, the 5-year survival rat@&ients with stage | non-small-cell lung cancer is 60% &80
However, patients who do not have surgery face a 5-yeansimate of only 10%4.

Imaging techniques such as computer tomography (CT) sdémsrmninvasive and sensitive approaches to early
detection. Computer-aided detection and diagnosis (CAM)rm nodules in thoracic CT scans decreases the posgibilit
of human error for a more efficient and standardized diagmpsbcess. In CT scans, lung nodules appear as dense masses
of various shapes and sizes. They may be isolated from @haidato other structures such as blood vessels or the pleura.

Recently a number of techniques have been proposed for atedrdetection and classification of nodules in thin-slice
CT including: region growing and automatic threshold daieation? template matching with Gaussian nodule models,
using 3D nodule selective and noise suppressing fittermdule matching, and deformable geometrical and intensity
templates.

One of the main shortcomings of these state of the art CADerystis the difficulty associated with differentiating
between nodules and other dense structures such as blamlsrd3ue to the circular-shape assumptions used in most of
the systems, curved vessels and their junctions are oftemrigctly detected as nodules, resulting in false pos{ff)
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(a) VOI and segmented nodule candidate (b) Affine-normalized VOI (c) Unwrapped, spherical parameteriza-
tion of the bounding manifold

Figure 1. Proposed method for pulmonary structure classification. Subfigus@gavs the original voxel of interest (VOI), with ellipsoid
fitted nodule structure, here a vessel. The ellipsoid fitting is obtained fromegumentation module. Subfigure (b) represents an affine-
normalization of the original VOI, in that the ellipsoid is warped to an isotroplese. Subfigure (c) represents a bounding manifold
of the segmented structure at distamggne, Unwrapped to a 2D image and parameterized by the spherical polalitatest and ¢.
Image grayscale values have been obtained via tri-linear interpolation.

cases. To reduce the number of such FPs, two types of sduimre been proposed previously: correlation-based filters
to enhance the area of interest with fuzzy shape analysisksel tree reconstructiband a method utilizing tracking of

the vessels medial axis given by Hessian-based andly$ise drawbacks of the former approach include its inflexiili
Simple structural templates used in the study will not hamdany complex vascular shapes and topologies. On the other
hand, the latter approach is computationally very expensivile being able to handle more irregular structures.

In this paper, we propose a novel method of classifying Istrakture types, such as nodules, attached nodules, sessel
and junctions, in thoracic CT scans. This solution is envisd to serve as a post-process filter within an overall lukD C
system so as to reduce FPs caused by the vessels and juncTibissstudy thus assumes that positive candidates are
provided by such a CAD system or from radiologist’s repartusing on the problem of FP reduction.

The proposed method first fits an anisotropic Gaussian mod#ata by using a previously published one-click seg-
mentation method. Using the fitted anisotropic Gaussian spread, the data doisiaffine-normalized so as to warp the
anisotropic ellipsoid into a fixed-size isotropic spherextNa 3D spherical manifold, containing the bounding swefatc
the target structure, is automatically extracted. We psepan entropy-based data-driven solution for this man#atcac-
tion. The extracted 3D manifold in Cartesian coordinatdkferim a 2D image in spherical coordinates. This 2D bounding
manifold image contains some high intensity clusters wimageber depends on the structure types. For a nodule, attache
nodule, vessel, or junction, there must be 0, 1, 2 or >3 nurabelusters, respectively. Thus we can apply a clustering
analysis to the manifold image and classify the structupe tgccording to the estimated cluster numbers. Importantly
this association of the cluster numbers and the structyrestyrolds true regardless of vast geometrical and topa@lbgic
variability of target structures. This endows the presgmethod with favorable flexibility against the variab#ii.

Moreover, the proposed approach in effect transforms tfiiewdt topological classification problem into a generic
2D clustering problem which can be solved much easily bygusiany well-studied solutions. We propose an EM-based
clustering solution by fitting a Gaussian mixture model tmpkes drawn from the bounding manifold image. It extends
a recently proposed Gaussian fitting method, includingraatic mode number selectidh, with the use of directional
statistics, in particular a multivariate wrapped Gaussiadeling!!

Beyond the scope of lung CAD, the presented classificatidhogecan be used to provide meaningful information of
vascular structures in various domains such as angiography

The rest of paper is organized as follows. In the followingti®s, we give a complete overview of the proposed
pulmonary structure recognition approach. Section 3tiliss and verifies the feasibility by experiments with #duie
CT scan data. Section 4 concludes this contribution.



2. PROPOSED METHOD FOR PULMONARY STRUCTURE CLASSIFICATION

The proposed classification solution is envisioned to saswepost-process filter within a lung CAD system so as to educ
FPs caused by the vessels and junctions. In this settirggagdumed that approximate locations of pulmonary strestur
are present, for instance, from an above mentioned a CARmsyst radiologists manual reading, or reports.

2.1. Local pulmonary structure segmentation

A previously developed one-click nodule segmentationritigm’ is used to locate and segment target structures including
nodules, attached nodules, vessels, and vessel junchiodsille candidate locations, providagbriori, serve as initializa-
tion to this semi-automatic segmentation solution.

This algorithm is based on robustly fitting an anisotropic&s#an-based intensity model to the data using Gaussian
scale-space mean shift analysis and Jensen-Shannonetizergased automatic bandwidth selection. This segnimmtat
solution provides a precise estimate of target center fraprécise CAD or manual initialization. The robustness o th
solution also allow it to segment non-nodule areas suchssel@and vessel junctions/branches of our interest. Ampgbea
of this segmentation result is shown in Figure 1 (a).

2.2. Structure classification

In the setting of a nodule detection application, incotyedetected and segmented vessel and vessel branch stsictur
represent a FP case. Main contribution of this paper is aifilzation method, which is targeted to reject all such non-
nodule structures, and, as a byproduct, to infer the cayerfdhe type of pulmonary structure under consideratioat it
nodule, attached nodule, vessel, or vessel junction.

As will be explained, it is based on cluster analysis of arrappate manifold, computed from the bounding area of
the target structure. The number of high intensity clustethis analysis will directly determine the pulmonary sture
class.

2.2.1. Bounding manifold construction

Structure classification in the original 3D image space isallg a theoretically involved and computationally comple
problem. To overcome these difficulties, we propose to pertbe classification in a less complex domain. Apart from the
computational benefits, such an approach has the advarftageave generic and flexible inventory of analysis techngque
and more illustrative visualization potentiality, whichespecially important in the context of a possible intéoactvith

the radiologist.

In particular, we consider an ellipsoidal manifold in 3D t® éxtracted from the target structure boundary. Ellipsoid
fitting is usually not a trivial problem, however, this taskalleviated by our choice of the local structure segmeoniati
which gives accurate estimates of center and ellipsoidgisiof the nodule in terms of the Gaussian parameters mean and
covariance.

In the following, we will explain the construction of the baiding manifold. Illustrative aids with an exemplary case
are provided in Figure 1.

Affine-normalization In order to simplify the mathematical representation, thgioal volume of interest (VOI), illus-
trated in Figure 1 (a), is affine-normalized. In other womsds,warp the VOI such that the segmented anisotropic ellipsoi
is transformed to a fixed-sized isotropic sphere, placedeaténter of the VOI. Figure 1 (b) shows the affine-normalized
VOI.

The parameters of the affine-normalization, that is, sgadiinections and factors, can be straightforwardly obt@ine
from an eigenvalue analysis of the structure covarianémettd by the segmentation module.
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Figure 2. Unwrapped ellipsoids of different radtiand the respective image intensity histogram entropy. These chardciealow a
data driven radius selection for the bounding manifold.

Spherical manifold construction A manifold is constructed from the affine-normalized 3D imaeometrically, it is
aimed to represent a spherical layer slightly beyond thgetastructure bounding surface, such that it contains inédion
about protruding objects passing through the surface.htipesis assumed ellipsoidal in the original VOI, in partzyl
proportional to the ellipsoid obtained from the anisotooBiaussian-based segmentation. Hence, in the affine-rinedal
representation it corresponds to an isotropic sphericapetas well, defined by center poifthoung, bbound) @nd radius
rhoune WWhereas the center point is identical with the one of the seged ellipsoid, the spherical raditgung Will be
determined in a data driven way, as will be explained shortly

Assuming a fixedrpoung the bounding manifold representation can be transformemh Cartesian(z, y, z) to the
spherical coordinate, ¢). Here, 0 refers to the azimuth, and to the polar angle. The result is an “unwrapped”
representation of the affine-normalized ellipsoid as a 2@BgenmatrixI (6, ¢). Figure 1 (c) illustrates the result for
our well-known example. Note that there, contrary to commonvention, the polar angle ranges over an interval of
Interval, = 27 (instead ofr), thatis,¢ € [—, 7], resulting in a double occurrence of the Cartesian voxdis. r€ason for
introducing this redundancy is that the clustering, whidhle introduced in Section 2.2.2, requires a periodic véreof
I (68, ¢) in both parameters over their respective intervals Intgramd Intervaj, thatis,I (6 + Interval, ¢ + Interval,) =
I (6, ). For the case of spherical coordinates, this is obvioustyuifilled, if Interval, = .

We now explain the determination of the appropriate radijds.¢« We advice a data driven approach, based on the
entropy of the intensity distributions. To motivate thigpepach, consider Figures 2 (a)—(f), each of which illussat
the unwrapped ellipsoid representation in tlle¢)-domain with different radiir. Figure 2 (g) shows the entrogy,.,
computed on image intensities, for radiic {1,...,32}. We treat the unwrapped manifold image as a 2D likelihood
function after normalizing the CT intensity value distiiioun appropriately. Then intensity entropy is computecdclity
with the normalized intensity values interpreted as prditglvalues. The goal of radius selection is to automatical
choose aradius such that high intensity clusters, due toygtiag structures, appear most distinctively in the cgpanding
manifold. Such manifold image, consisting of a few clusessshown in Figure 2 (d), should have lower entropy than
images with smaller and larger radii due to the followinguitite arguments. The smaller radii makes the correspandin
bounding ellipsoids go through inside target structuresliting in high entropy values with more flat likelihoodshswn
in Figures 2 (a)—(b). On the other hand, the larger radii afagses high entropy due to appearance of other “non-target
structures located nearby as shown in Figures 2 (e)—(f)reftwe the appropriate radiugoundorms a local minimum of
the entropy distributior®,..

In this respect, we choosg.ungto be located at the first appearance of a positive differquoeient%, that is,

Tpound = lein {r|Ery1 > E, }.



Figure 3. A problem of clustering with directional data. An appropriate clusteringrétgu in the directionald, ¢)-domain should
recover a single cluster. However, with a linear instead of directionaktimgg each of the three observable structures would form an
independent cluster.

2.2.2. Cluster analysis of the bounding manifold

Having transformed parts of the 3D pulmonary structure t@ardage, we can apply well-studied, efficient, and easily
visualizable 2D image analysis techniques. As can be seem figure 1 (c), the bounding manifold contains valuable
information for pulmonary structure classification. Intfathe number of high intensity clusters exposes the type of the
pulmonary structure, being equivalent to the number ofrpdibg objects passing through the defined boundary. Our
classification builds upon this observation, having thiofeing domain assumptions in mind:

¢ 0O clusters in the bounding manifold indicate a lack of coteg@djacent structure, hence, the segmented structure
corresponding to a solitary nodule,

e 1 cluster in the bounding manifold indicates a single cotioacto an attached structure, which in many cases
originates from a nodule attached to larger structures,thie lung wall, etc.

e 2 clusters indicates two connections, which is most ofteseoled for blood vessels, and

e >3 clusters indicate a vessel junction.

We propose to identify theumber of high intensity clustersthrough a clustering algorithm. The clustering strategysem
is based on the widely used principle of EM-based fitting ofi€ans. In addition to those of the standard EM Gaussian
clustering, our variant requires to obey the following intpat properties:

1. Our bounding manifold representation is parameterigatidspherical angular variablésnd¢, which correspond
to so-calleddirectional data.!> Hence, our clustering needs to reflect in particular theinaities in the(9, ¢)-
domain that appear at the edge of the 2D bounding manifoldémBor an illustration of this problem, consider the
simplified illustration of Figure 3 and the caption thereof.

2. The number of modes has to be determined automatically.

Directional data modeling For statistical modeling of directional data, there are mber of models that have been
proposed previously. One is then Mises-Fisher distribution.'? In fact, EM-based clustering of von Mises-Fisher
distributions has been proposed very recehtly.However, parameter estimation for the von Mises-Fisheribigion
involves solving an implicit equation of a ratio of Besseahdtions, for which no analytic solution exists, in general.

For this study, we utilize an alternative modeling, whiclowabk a less restrictive parameter estimation than the von
Mises-Fisher modeling. It is thewltivariate wrapped Gaussian distribution,!* which is an extension of the wrapped
Gaussian distributiof?



We briefly introduce the concept. For further details it fereed to literaturé!- 12 A Gaussian distribution (z) of a
variablex on the line can be “wrapped” around the circumference ofdeif unit radius. That is, the wrapped Gaussian
distribution A\, (19) of the wrapped variable

V=xy=xmod2r € (—m, 7]

is
No (@)= > N(0+2rk).
k=—oc0
A multivariate wrapped Gaussian distribution of a vectaiatale 9 = (91,...,9)" can be defined similarly as
No(@)= > -+ > N@®+2rkie; + -+ 2rkrer), (1)
k:lzfoo kpzfoo

wheree, = (0,...,0,1,0,... ,O)T is the k-th Euclidean basis vector (with an entry bfat the k-th element and)
elsewhere). Figure 3 shows an example of a two dimensiontivariate wrapped Gaussian.

It has been showh that, given an appropriately small variance in the direetloariables, accurate mean and covari-
ance estimategy and3, for Equation 1 can be obtained from a sampleX$et {19(1), . ,ﬁ(M)} using

1 X (m)
(f1g); = arg <M > el ) 2

m=1

and
M

N 1 T
o (m)1 q(m)r
Bo = g > 99 (3)
m=1
with )
9! — (195(7” _ (ﬂﬂ)j) mod 27,

J? = —1 the imaginary unit, andsrg” the phase of a complex number. For simplicity, a perioglioft 2 and range of
Yy € (—m, ] has implicitly been assumed for all dimensigh 9.

In the context of the EM clustering algorithm, we can sim@glace the regular, linear Gaussian model with the above
sketched multivariate wrapped Gaussian model. In paaictquation (1) on the one hand and Equations (2) and (3) on
the other hand replace the original linear equivalents énEland the M step, respectively. Readers can verify a rekult o
the multivariate wrapped Gaussian EM clustering in Figdresw 3 and 4 as well as Figure 5, row 3 and 4.

EM clustering with integrated model selection In the context of EM-based clustering, several extensi@ve fbeen
proposed for automatic mode number selection in the pashaaf our solution on a recent publicatiSnwhich integrates
finite mixture of Gaussian estimation and model selectismgiminimum description length (MDL) criterion, into agle
algorithm.

Note that, in general, input to EM clustering algorithms saaple seK = {(01, ¢1) , ..., (0, &ar) } Of Observations,
whereas the present data is the 2D (image) mdt(& ¢). To overcome this incompatibility, we draw observatichs
directly from7 (6, ¢), where the number of occurrences of each sam@igd¢,,,) € (—m, 7] x (—=, ] is set proportional
to the corresponding image matrix valli€d,,, ¢, ).
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(@) VOI and segmented nodule (b) Affine-normalized VOI (c) Thresholded unwrappe@) Result of clustering and clus-
candidate bounding manifold ter postprocessing
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Figure 4. This figure shows illustrative examples of the proposed pulmonarytstaiclassification method for thoracic CT scans. Each
row corresponds to the segmentation and verification of one examplérsthievo rows with respect to a nodule object, the last two
rows with respect to nodules attached to the lung wall. (Cf. Figure 5 for siittilatrations with vessel and vessel junction examples.)
Column (a) illustrates the CT VOI in three orthogonal cross sections. &hitof our segmentation is illustrated by the ellipses. Column
(b) represents the affine-normalization of the original VOI, such thea8ih ellipsoid becomes warps to a sphere. Column (c) shows the
constructed bounding manifold, including an additional intensity threstmldimvrapped in théd, ¢)-domain. The figures in column

(d) show the results of the Gaussian mixture model fitting by the EM-bdgedtam. Dashed ellipses correspond to EM-based clustered
Gaussian components, the solid ellipses describe the clusters afterpoestging.
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Figure 5. This figure is an extension of Figure 4. For explanation, please referetodption thereof. Row 1 and 2 show vascular
structures, row 3 and 4 vessel junctions.



Cluster post-processing One problem with the Gaussian EM clustering can arise if dribeotrue protruding structure
shapes in the bounding manifold do not correspond to thgtiekil Gaussian shape. In such cases, it is expected that the
EM algorithm fits this structure with a set of Gaussian congms. Such an effect would clearly affect our classification
adversely, where thaumber of components plays an integral role. To deal with this peobl we propose to apply a
post-processing, which aims to merge appropriate comgsnen

In particular, this post-processing can be seen as a sedostgrcanalysis, which analyzes the set of all EM-fitted
Gaussian components and merges subsets to a single clustprte-a certain scale. A very flexible and widely used
technigque for such problems is agglomerative hierarchikadtering!* In hierarchical clustering, the cluster space is
expressed in terms of distances of its elements. In the prease elements are multivariate wrapped Gaussian funsctio
In conformity with previous proceeding in this paper, we maise of statistical descriptors for the geometric shapes. A
suitable (and analytically computable) statistical dismmeasure for Gaussian distributions is the Bhattachatigfance

1 (T 2\ 1, [, +3,
Dghatt (11, 21, o, X2) = = (g — p47) () (o — pp) + glng

8 2 VIZL 2]
However, Dgnhatt does not take into account the directional characterisfitee wrapped Gaussians. Hence we propose a
slightly modified variant ofDgnay, the “wrapped Bhattacharyya distance”
3+ 3,
2

1 In 7|21 + 2|
2 VB[ %]
Finally, the number of wrapped Gaussian component clystetise experiments referred to &g, determines the class

of the pulmonary structure? for a solitary nodule2 - 1 = 2 for an attached nodule,- 2 = 4 for a vessel, and- 2-3 =6
for vessel junction. The factor of 2 is due to the double iwdein the polar coordinate, as discussed in Section 2.2.1.

1 —1
Dha (11 S1. s 2) = - (15 — p1y) mod 2)7 ( ) (12 — ) mod 27) +

8

3. EXPERIMENTS

In this contribution, we present qualitative experimentgtiie proposed pulmonary structure classification. Figdrand 5
show illustrations of the classification for thoracic CT iyea, two examples for each of the classes “nodule”, “atthche

nodule”, “vessel”, “vessel junction”.

As presented in column (a), the 3D segmentation method @ststd in Section 2.1) can segment all solitary and
attached nodules (Figure 4) as well as the false positiveblessels and vessel junctions (Figure 5). Column (b)itiss
the respective VOIs after affine-normalization. Columngfedpws the bounding manifold, which is constructed from the
procedure described in Section 2.2.1. Note, however, thadditional intensity thresholding has been introducedis T
step is applied as a fast and simple means for eliminatingitd@nsity structures, which may confuse the Gaussian EM
clustering. In column (d) the bounding manifold image isigfarmed to a sampled data $&tas it has been described
in Section 2.2.1. Further, column (d) shows the result ofEMebased wrapped Gaussian clustering, that is, mean and
covariance of thé& components are illustrated by the dashed ellipses. Incodati note the continuities at the edges of the
(0, ¢)-domain in Figures 4, row 3 and 4, and Figure 5, row 3 and 4. ualization purposes, we have also included an
illustration of the hierarchical clustering post-prodgegs Clusters from this post-processing are representeiddy solid
ellipses, the center point and spread of which correspomdetan and covariance computed from means of all wrapped
Gaussians within one post-processed cluster. Note thaillilstration may lead to degenerated ellipses, for irstan
Figure 5, row 2, if the cluster cardinality is low. Inferrinlge structure class from the component numhbgrit can be
verified that the presented classification gives correctvangor all eight examples. Similar results were obtainethwi
other cases.

It is worthwhile to point out limitations of the algorithm,hich may lead to misclassifications in some situations.
Structures at the poles of the manifold 3D sphere (corregipgrio¢ = 0 and¢ = 7) become disproportionately large
in the #-dimension of the 2D image after the unwrapping. This situttan be compared with a phenomenon from
cartography where arctic and antarctic regions occupy eoafyby larger regions on a 2D world map than on the 3D
spherical world globe. In the examples illustrated abokies behavior can be observed in Figure 5, row 4, where the
high intensity structure at =~ 7 extends over the entire ranger, 7] in 6. As a consequence, caution is advised, when
drawing conclusions from scale relations in the unwrappadifald, in particular, for those pole regions. This is, atf,

a drawback of the wrapped Gaussian modeling, in partictlarinwrapping. At this point, it shall be noted that the abov
mentioned von Mises-Fisher modeling circumvents this ph@mnon, because no unwrapping is assumed.



4. CONCLUSION

We have proposed a novel method of classifying pulmonanctires, such as nodules, attached nodules, vessels and
vessel junctions. Such a classification can be advantalyempslied in a CAD system for nodule detection, in particula

for false positive removal. Further, VOI representationesen in the parts of the modeling have beneficial visuatinat
capabilities, in particular the unwrapped 2D bounding fwdiof Figure 1 (c). This is an important advantage in the
context of a user (radiologist) interaction.

Main elements of the presented classification include (ijoalute for anisotropic Gaussian fitting, (ii) a construction
of a 2D manifold at the boundary of the pulmonary structunel, @ii) a robust cluster analysis of this manifold. Partigi)
based on our previous work. For part (i), we have proposeata driven scale selection based on entropy minimization.
For the solution of part (i), we have brought together pdwestatistical analysis methods, such as EM-based ciugte
with automatic mode number selection, directional dataeting, and hierarchical clustering based on a variant of the
Bhattacharyya distance. Unlike other global methods saefessel tree reconstruction, this method allows for thaliped
flexible examination of pulmonary structures.

We have shown a qualitative study with thoracic CT imagesderdonstrated and illustrated favorable classification
results in this domain. The presented algorithm could ripetassify examples of nodules, attached nodules, vessel
vessel junctions.

Building on these promising results, we plan to perform ditative performance validation in order to show the
effectiveness of the proposed solution in more clinicatlievant settings. A main limitation of the proposed method
is the fact that scales are position dependent within(the)-domain. In this respect, future research should focus on
improving this deficiency. For instance, modeling with vorisés-Fisher distribution could circumvent this problem.
Complementary to the statistical clustering approach, \aatwo pursue the idea of mode number detection based on
connected component approaches. Similar to the proposaaped Gaussian modeling, such an approach needs to address
the directional characteristics in spheres. Another jpdsginprovement concerns the use of more topological kndgde
So far, classification is solely based on thenber of identified protruding structures. Certainly, additibirdormation
lies in their size and relative position. For further stiggli@e plan to incorporate this extra information.
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