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Abstract

We present a method for an automated quality control of textile seams,
which is aimed to establish a standardized quality measure and to
lower costs in manufacturing. The system consists of a suitable image
acquisition setup, an algorithm for locating the seam, a feature extraction
stage and a neural network of the self-organizing map type for feature
classification. A procedure to select an optimized feature set carrying the
information relevant for classification is described.
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1 Introduction

Reliable and accurate quality control is an important element in industrial tex-
tile manufacturing. For many textile products, a major quality control require-
ment is judging seam quality. Presently, this is still accomplished by human
experts, which is very time consuming and suffers from variability due to hu-
man subjectivity. Consequently, investigations about automated seam quality
classification and an implementation of an automated seam classificator are
highly desireable. Such a system would be useful not just to objectify qual-
ity control of textile articles but it can also provide a basis to perform online
adjustment of sewing machine parameters to achieve smoother seams.
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Figure 1: Basis structure of the classification system

Previous approaches to automated classification of textile seams were made
by Dorrity() and Clapp et al.®) . Using piezoelectric sensors, Dorrity(") mea-
sures the ratio of thread motion and a sewing machine cycle and compares it to an
optimal value. Clapp et al.) determine fabric density using beta-rays. From
density variation, a quality measure can be derived. However, an optical con-
trol method appears to be not only easier to realize from a technical point of
view, but also more appropriate, since humans also judge visually.

In this contribution we present a system that can judge seam quality from
greyvalue images. An overview of the approach is shown in figure 1: The first
stage is an image acquisition system, which can record the structure of the
seams and map it onto a greyvalue image (step “a” in the figure, section 3). As
a next step, an algorithm for locating the seam is applied (b, section 4). This
allows to normalize the position of the acquired image. Next, a set of appro-
priate features is extracted from the normalized seam images, which have to
code information about the quality of the respective seam (c, section 6). We
divide the images into two sets: the first (training set) is used to train the neu-
ral network to determine seam quality from the chosen input features, using
a supervised learning algorithm. The second (test set) is used to test the per-
formance and generalization ability of the trained network (d, section 5) by
computing the error for the test examples (e, section 5).

Before treating the automated classification system, section 2 provides a
brief overview of the present quality control procedure by textile experts.
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Figure 2: Reference seams for the seam inspection, at the left the grade 5 (best) and at the
right the grade 1 (worst). With help of this reference the textile expert accomplishes the seam
inspection.

2 Seam control by textile experts

2.1 Applications of quality control

Presently, seam quality control is performed visually by human experts. Two
main purposes of quality control can be distinguished:

1. The continuous control during manufacturing and the end control of
seams in garments:
A direct control of the manufactured products should prevent faulty ar-
ticles to be sent to sale. If necessary, they have to be resewn or sorted
out.

2. The control of seam specimens:

The expert does not inspect the finished article itself, but so-called seam
specimens, which are manufactured especially for the purpose of find-
ing optimal settings for the sewing machine parameters, such as yarn
suspension, stitch length, transport type and velocity, etc. In practice
the expert sews on a trial basis elongated seam specimens using differ-
ent settings for the machine parameters. Afterwards he or she inspects
the results and re-sets the parameters. Examples of seam specimens are
shown in figure 2.

An automated system could be realized for both types of control application.
Yet an automatic control of the seam specimens (issue 2) is easier to achieve,
because seam specimens are simpler fashioned than complex textile articles.
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Thus this paper will focus on seam specimens. Nevertheless the control of
ready-sewn garments (issue 1) is left as a future goal.

Within the manifold of fabric textiles (clothing textiles, home textiles, tech-
nical textiles) the investigations of this paper are focused on clothing textiles.

2.2 Smoothness as a measure of seam quality

The design of the presented automated quality control system is guided by
criterions that human experts use to inspect the seams.

In textile industry, experts use a common standard procedure for the exami-
nation of the seam specimens. This procedure considers five different, discrete
grades of quality—from grade 5 (best) to grade 1 (worst). The experts judge
seam quality by comparing the seam specimen with images of five reference
specimens, which define the five grades. The grade of the reference specimen,
which is most similar to that one to be judged, defines the grade to be given.
Figure 2 shows these reference specimens.

The most important criterion for comparison is the smoothness along the
seam. In bad sewn specimens the smoothness is disturbed by waves, whereby
two main types of waviness can be distinguished: one of high frequency adja-
cent to the seam center and another one further away with a lower frequency
(compare figure 2).

3 Image acquisition

3.1 Geometry of the image acquisition setup

An image acquisition setup that yields greyvalue images preserving the seam
features relevant for quality classification (mainly waviness) is crucial for a
reliable and accurate judgement. The definition of the image acquisition setup
comprises the placing of

e the specimen
e the camera and

e the illumination

Our setup is shown in figure 3. It is similar to a standard setup for specimen
judgment used in the textile industry.©) We will briefly motivate this choice.

Position of the specimen

Main alternatives for specimen positioning are horizontally lying or vertically
hanging, or a solution between these alternatives. Our investigations showed
that the appearance of the fabric is independent of its position (hanging or
lying). The waviness appears naturally in both cases. This result can be ex-
plained by the fact that the weight of the specimen is too small to deform the
relatively firm structure of the waves. However, the selection of the vertical
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position will be preferred, because this position has the benefit that the speci-
mens can be centered along a straight line more easily.

Position of the camera

The most significant camera position parameter is the viewing direction rela-
tive to the specimen. Possible settings are a frontal direction, a sidewise (record-
ing the length profile) direction and an oblique direction. Since a sidewise posi-
tioning would yield information just about the edge of the seam and an oblique
one would complicate the further image processing without gaining any ben-
efits, the frontal direction was preferred.

Placing the illumination

Illumination can be frontal or at a shallow angle. An advantage of the frontal
position is that the fabric would be lighted constantly over the whole area and
the image had a homogeneous brightness.

A shallow illumination can map the three-dimensional structure of the spec-
imen onto the two-dimensional image better because the shades of the seam
waves code an important piece of information about the frequencies and am-
plitudes of the waviness, which is the most valuable information about seam
quality.

We tested frontal and shallow illumination with different angles, judging
success on the basis of the classification results. Images were taken from a set
of seam specimens with five different illumination angles and afterwards a test
classification was made with each set of seam images. The chosen angles « (=
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| o | 8% ] 13° [ 20° ] 30° [ 90° |
| NMSE | 050 [ 0.33 | 0.25 | 0.31 [ 0.71 |

Table 1: The average of 1000 classification errors NMSE using different angles « for the illu-
mination position. For « = 20° the best results are achieved. The feature vectors were not
optimized for this preliminary investigation.

the angle between the illumination axis and the specimen plane)! were
a; = 8%, 13°, 20°, 30°, 90°.

As a preliminary study, the test classifications were realized using a rudi-
mentary set of features, which consisted of the amplitudes of the first 20
Fourier coefficients of one-dimensional image columns extracted at the hor-
izontal position offsets -30, -10, 10, 30 pixels lateral to the seam (for more
information about this feature definition see section 6). The neural nets
used for classification were eight Kohonen nets with various grid geometries
(bx1,10x1,25%x1,100x 1, 3x3,5x%x2,5x5,10 x 10, more information
about the Kohonen net in section 5). The quality of the classification was mea-
sured in terms of the averaged NMSE (normalized mean square error) of 1000
test classification runs with the feature vectors and net geometries mentioned
above.

The results of the test classifications are presented in table 1. 2

This table shows that the optimal illumination angle is « = 20°, which was
used for all further investigations.

3.2 Data acquisition

A set of 126 seam specimens of three different colours and materials was made
available from the IFN (INSTITUT FUR NAHTECHNIK, AACHEN). Each speci-
men has uniform colour. Images are acquired from an area of 4 x 20 cm with a
resolution of 80 x 512 pixels. 2

Since colour and brightness of the specimens vary over a wide range, the
camera iris has to be individually adjusted in order to achieve the best image
guality possible and to norm alike the brightness of the images. This is realized
by a gradient-based algorithm described by Kubisch,() which maximizes the
variance of greyvalues of the image.

4 Seam detection

A significant criterion for the seam quality is the waviness on the fabric along
the seam, as explained in section 2. The type of waviness depends on the dis-

1Thus the angle ac = 90° corresponds to the frotal illumination.

ZNote, that the feature vectors were not optimized for classification and only used to find a
good illumination angle. So the classification results are much worse than with the features
discussed later.

3The different ratio width/height for acquired area and resolution is explained by the spatial
distortion factor 3/4 of the “DataCube” acquisition system.
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tance from the seam center. Therefore the examination of the seams requires a
precise positioning of some “wave detectors” relative to the seam. For this rea-
son an automatic image positioning algorithm was implemented, which is able
to

1. detect the seam course and

2. transform (translate/rotate) the detected seam to the vertical center of
the image.

The seam detection (1) is implemented in two steps. First, a binary edge image
of the original is calculated with a 5x5-Laplace filter and a subsequent thresh-
old operation.

This edge image is used to estimate the seam coarse with help of the Hough
Transform. The Hough Transform (see e.g. Davies®®) and Bassmann(®)) is a com-
mon method for line detection. It transforms the binary edge image from the
spatial domain to a “line space”, which is defined by the two line parameters
“angle #” and *“distance p” of the Hessian line equation. The line space is an
accumulator space in which the number of points is counted that lie on each
line determined by 6 and p in the binary image. The line parameters (6, po)
that accumulate the most “votes” were taken to describe the location of the
seam (figure 4).

With the seam line parameters (6y, po) information about the rotation pa-
rameter (angle ) and the translation parameter (length [) is given and the
rotation/translation can be applied.

The described algorithm works very reliably. The seam coarse of any of the
125 seam images of the original data set as well as 10 additional, especially for
this purpose obliquely recorded seams were detected and positioned correctly.

5 The Neural Net

5.1 The Kohonen Map

For the classification stage, we employ a self-organizing feature map (SOFM,
Kohonen,() Ritter et al.(")). This type of network has been used quite success-
fully in a broad range of applications. In addition to robust and fast conver-
gence, the SOFM offers the possibility to visualize the training process in a way
that can provide additional insight about the structure of the training data (see
section 6). This is an important advantage over other adaptive classification
approaches, such as the popular MLP- or RBF-networks.

Usually, a SOFM is used to create a dimension-reducing mapping from some
data set in a high dimensional space V' to a low dimensional map manifold
A. This manifold consists of a net of discrete “neurons” or “nodes”, between
which some topology is defined (commonly a grid or a chain). The nodes of
the net are initialized with random values within the data space V' and will be
adapted to the actual data manifold by a learning rule given below in equation
(1). An example is given in figure 5.
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Figure 4: Scheme of seam detection: First from the original image (a) an edge image (b) is

computed. The edge image is transformed to the Hough space (e) and the parameters of that

straight line (6o, po), that comprises the highest number of edge points, can be determined (in

the picture the point with the darkest greyvalue). This line (6o, po) is interpreted as the seam
line. In (c) it is sketched into the edge image and in (d) into the original seam image.
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Figure 5: A Kohonen net A in the data space V: For particular points (for the weight vec-
tors o, € V) the corresponding neurons are sketched in; adjacent grid neurons are connected.
The adaptation process has developed a Kohonen map, that lays along the stimuli distribution
(which is not sketched in) and preserves neighborhood relations, i.e. adjacent neurons (cross-
ing points of two lines) correspond to adjacent positions in V. This figure is an example of a
Kohonen map used for solving the pole balancy problem. (from Ritter et al.))

In our case, we are additionally interested in obtaining for each input (= fea-
ture) vector Z its associated classification ¢(Z). Therefore, we teach the SOFM
with “augmented” feature vectors

7% = : EF xR

The zf ...z} are chosen features that describe data sample «, and ¢* €
[1...5] is the associated classification. F' denotes the f dimensional feature
space. For the training, we use the standard Kohonen SOFM-algorithm with
Euclidean distance measure:

o 7 2
d(@b) = [> (a; — b))
J
For the case of different variances 0]2 in the data distribution for each dimen-
sion j the Euclidean metric should be normed by the variances:

d(db)= |3 — (aj — bj)?,

which graphically corresponds to a scaling of the rectangular data distribution
to a square one.

If we denote the weight vector of a node at position 7 in the net by @7, an
adaptation step for a stimulus ¢ is defined by

A, = ehws(0® —07) Vi€ A, )
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\ Net parameter \ Value |

Grid geometry A 5x 1,10 x 1,25 x 1,100 x 1
3 x3,5x2,5x5,10x10

Adaptation step size ¢ 0.8 — 0.1
Activation radius ¢ 3 Az — 154,
Number of learn steps n 304, A,

Table 2: Settings for the net parameters: A Kohonen net was tried with each of the 8 grid sizes
A. The terms A, and A, indicate the row and column number of the grid A, respectively.

where s denotes the location of the “winner node” for which d (7, w7) be-
comes minimal, and hzz is the neighborhood function, which is commonly
chosen as a Gaussian function of the distance ©* — s between nodes at net posi-

tions 7 and &,
= _ 2 2
hiz = exp <— G 28) > )
(oA

The choice of this shape of function is motivated by the fact that neurons ad-
jacent to the winner neuron should adapt strongly and neurons farther away
from the winner neuron weakly. Graphically speaking this corresponds to un-
folding an “elastic rubber net” in the feature space, thereby leading to a topol-
ogy preserving final map.

5.2 Net Parameters

For the Kohonen map, a suitable topology has to be found. In section 6, we
investigate different network topologies of one or two dimensions and various
numbers of nodes. It turns out that a two-dimensional 10 x 10 net topology
yields the best results (cf. figure 9).

The chosen grid geometries and the settings for the adaptation step size
(equation (1)), the activation radius for the excitatory function o (equation (2)),
and the number of learn steps n are summarized in table 2.

6 Feature Extraction

6.1 One-dimensional Fourier coefficients

As outlined in section 2.2, the most significant criterion for quality judgement
by textile experts is the waviness along the seam.

A well known representation of waviness is the Fourier transform. As the
wave vector to be modeled is directed parallel to the seam, we compute the 80
one-dimensional Fourier transforms X of the 80 seam-parallel columns of the
greyvalue image. Since we are not interested in the location of the waves in
this approach, we discard the phase and work with the amplitude || X || of the
Fourier transform only.

10



6 Feature Extraction

A
=i i o] x
5
0
mlx:
R il
n,
i
a0 - -
(@ (b) Fourier spectrum

seam

Figure 6: Fourier spectrum || X|| of a specimen sample: for each column z of the greyvalue

image (a) the amplitude || X || of the Fourier transform is computed (column = = 0 corresponds

to the seam position in the center). (b) shows the Fourier transform as a function of wave

number & and the column z. One can see large values for || X (z, k)|| near k ~ 4 at the edge of

the image and for k£ ~ 25 right near the seam, corresponding to the dominant frequencies of the
specimen. Note that just the first 30 of all 257 wave numbers are shown.

Figure 6 shows a sample seam image (a) and its first 30 Fourier amplitudes
(b), which hence depend on the column z, identified by its offset lateral to the
seam course, and the wave number &, || X || = || X (z, k)]|. In the shown “Fourier
transformed seam” there are large values for || X || visible at k£ ~ 4 at the edge
of the image and for k& ~ 25 right near the seam course, corresponding to the
dominant frequencies found in the seam image.

6.2 Determination of suitable regions (z, k) in Fourier space

The “Fourier transformed seam” is still not suitable as a feature vector, since it
contains too much redundant information. As a next reduction step we want
to find regions (z, k) carrying the relevant information about the seam quality.
The Fourier coefficients || X (z, k)|| of such regions should show high correla-
tion to the quality grade c. A measure of the correlation between || X | and ¢
is given by the correlation coefficient p x ., which is defined as the normalized
covariance:

_ Cov (|IX]l,¢)
PlIXlle = :
o)X %
pix|e = =l indicates a maximal correlation or anticorrelation, resp., and

pix|le = 0 no correlation at all. Thus it is desirable for feature formation to
find regions (z, k) with high values of HpHX”c(x, /c)H

11
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] Feature Definition \
| Columnz || -34] -8 | 7 | 34 |

35| 35 |35|35

Grouped — | 79 | 79| —
k-intervals | — | 13-14 | 12 | —
(k.. .k} | — | 17 | 15 | —
— 21 22 | —

Table 3: The definition of the feature vector: Row 1 denotes the column offset = lateral to the

seam for the one-dimensional Fourier transform, rows 2-5 the various wave number intervals,

in which the Fourier coefficients are averaged, regarding correlated regions (zx, k) in figure 7.
The dimensionality of the feature vector is the number of entries in this table, thus 12.

The correlation coefficient for the given seams is illustrated in figure 7. Cor-
related regions (bright color = p = 0.7) can be found at £ ~ 4 and at regions
with higher frequencies near the seam course.

6.3 Definition of Features

Our feature set was defined on the basis of the averaged spectrum || X || of the
high correlated or anti-correlated regions in figure 7. In particular, the one-
dimensional Fourier transforms are computed for the almost symmetric offset
columns z = —34, —8, 7, 34 lateral to the seam, and several wave numbers of
the Fourier coefficients are grouped into one interval and averaged within it.
For the choice which Fourier coefficients to group together, we were guided
by the correlation coefficients depicted in figure 7. Table 3 shows which wave
numbers are considered in particular.

12
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Figure 8: Classification confusion matrix: Columns and rows represent the five grades of qual-
ity for the expert grade and the net response, resp. The value of the element (¢, j) denotes the
number of the classifications of a seam belonging to class j into class .

6.4 Classification Results

Classification is accomplished with the feature vector described in section 6.3
and Kohonen maps with various grid geometries described in section 5 by
presenting training seams to the net for training and different test seams for
classification. Training and test seams are described in section 3.2.

In the following the classification results are documented by three aspects:
the classification confusion matrix, the inspection of the NMSE (normalized
mean square error), and an investigation of the resulting Kohonen map.

Classification confusion matrix

A specific illustration of the classification results is given by a “summary” of
all individual classifications. This information is illustrated in a classification
confusion matrix in figure 8 for the 10 x 10-Kohonen map. The columns and
rows of this matrix represent the five discrete grades of quality for the expert
grade and the net response, resp. The value of element (i, j) denotes the num-
ber of the classifications of a class-j-seam into class . Hence the matrix should
have highest entries along the main diagonal (1,1), (2,2),...,(5,5).

The figure shows that for 79.09 % of all individual classifications the clas-
sification is correct. For 20.63 % of all classifications the error is just one
grade, only for 0.27 % an error of two grades occurs. This result has been
compared to the classification by a committee of three textile experts: the one-
class-deviation rate for their classification from the average classification of all
three experts is 20.1 %, errors of more grades usually do not occur. Thus from
this point of view the artificial system is comparable to human experts.

13
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Figure 9: NMSE for various grid geometries. A higher number of neurons yields a smaller

NMSE. The two-dimensional neuron grid classifies slightly better than a one-dimensional neu-

ron “chain” with the same number of neurons. The 10 x 10-grid yields the best classification
result (NMSE = 0.13).

Normalized mean square error

With the results of the previous section, the achieved NMSE (normalized mean
square error) of the best net is 0.21 for assigning integer quality grades 1...5.
This compares favourably with the NMSE of the group of three experts, which
is about the same value (0.20) on the basis of 126 specimens for this task.

For the purpose of this investigation, the expert team tried to produce eval-
uations on a finer scale than the standard five integer grades, using in addition
grades shifted by +0.3. These data were used to train the network, however,
the above NMSE-evaluation was based on the rounded values.

In addition, we can make a performance comparison between the network
and the expert judgements, using the finer scale that was used for training.
Figure 9 shows the resulting accuracy of several different network architec-
tures. As can be seen, with this evaluation scheme the NMSE decreases from
0.2 to 0.13 for the optimal grid topology (10 x 10).

This is similar for the human experts, however, in their case the decrease is
stronger: if evaluated on the basis of the finer grade scale, the NMSE decreases
from 0.2 to 0.05. This is significantly better than the average net performance.
Still, if we compare the best net architecture (NMSE = 0.13), the quotient of the
two error measures is only a factor of 2.6 (or 1.6 if the root mean square errors
are considered instead).

Investigation of the adapted Kohonen map

Because of the one- or two-dimensional structure of the Kohonen map the ac-
tivation of each neuron on the grid can easily be graphically illustrated. This
is done in figure 10 (a) for the 10 x 10-grid. The response of each neuron is
sketched at its position. The regions of the discrete classes 1-5 are additionally
distinguished by the separating lines. One can see that adjacent neurons are

14
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Figure 10: Visualization of a 10 x 10-Kohonen map: In (a) the corresponding grade of each
neuron is entered at the respective grid position. The lines separate the discrete classes 1-5. The
neighbourhood preserving topology can nicely be seen. In (b) the expert grades of test samples
are sketched at the positions, which correspond to the winner neuron of the respective classifi-
cation. Optimally they should be mapped to regions corresponding to their class, specified by
(a). Regard that for a better readability the position of the entries is moved up- and downwards,
if more than one sample stimulate the same neuron. In (c) the test samples are sketched again at
the position of their stimulated neurons. This time an additional information is displayed: the
rectangular, elliptical and “missing” surroundings denote the three different fabrics of the test
samples. This figure shows that samples of different fabric mostly stimulate different regions
on the map.

15
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responsible for similar quality grades, in accordance with the neighbourhood
preserving property of the SOFM.

In (b) the expert grades of test samples are sketched at the positions of the
“neuron” that they stimulate. Optimally, the expert grade of the stimulus seam
should have a similar response to the stimulated neuron. A comparison to (a)
shows that this property holds for most stimuli.

Figure (c) again shows the expert grades of the test samples, but this time
some additional information is displayed. The rectangular, elliptical and
“missing” borders denote the three different fabrics of the test samples. The
figure shows that each fabric occupies its own region on the map—especially
the “regions with missing borders” are clearly separated from the “rectangu-
lar/elliptical regions”. This fact indicates a limited generalization ability of
this Kohonen map to unknown fabrics.

Though this has to be overcome in future investigations, it has been shown
that the Kohonen map is suitable to code the information about the seam wavi-
ness.

7 Summary and Outlook

7.1 Summary

This contribution proposed a system for an automated, vision based quality
control for textile seams. The developed system consists of

1. asuitable acquisition setup,

2. a seam detection stage, which very reliably transforms obliquely ac-
guired seam images to a normalized position

3. afeature extraction stage, which is based on selected Fourier coefficients
of one-dimensional image columns and

4. aself-organizing feature map for classification.

The performance of the system has been evaluated by the classification of so-
called seam specimens, which are used in industrial textile manufacturing for
the setting of the sewing machine parameters.

The results have shown that even with few, but well-fashioned features good
classification results can be obtained. The classification rate amounts to 80 %
correct classifications, the rest differs from the correct grade only by one (on
a scale of five). We have shown that this result is not worse than the error of
human experts, which can be measured by the “disagreement” among a set of
different expert judgements.

Time needed for classification is about one second on a standard PC, which
is much less than textile experts need for classification (= 30 seconds).

16
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7.2 Qutlook

Our results show that the approach is a suitable basis for further investiga-
tions. Various improvements of the developed system and new challenges for
seam quality classification arise from this work:

Improvements for the current control system

e For the improvement of the feature extraction the relevant regions (z, k)
in the Fourier space can be selected and grouped automatically by adap-
tive algorithms.

e The phase information /X of the Fourier transform can additionally be
used for feature formation.

Further Applications of textile quality control

e For a universal classification system it is necessary to classify also fabrics
with a color or structure texture.

e The setting of sewing machine parameters could be automated. An ap-
proach for this issue can be implemented by a regulation process, which
iterates classifying seam quality and resetting the machine parameters
until an appropriate value for quality is obtained.

e The classification system can be extended from inspecting seam speci-
mens to the inspection of garment articles.

e Another useful application of vision based textile control is the control of
the correct alignment of patterns when sewing two fabrics with texture.
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