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Abstract

In this paper, polar and spherical Fourier Analysis are defined as the

decomposition of a function in terms of eigenfunctions of the Laplacian

with the eigenfunctions being separable in the corresponding coordinates.

Each eigenfunction represents a basic pattern with the wavenumber in-

dicating the scale. The proposed transforms provide an effective radial

decomposition in addition to the well-known angular decomposition. The

derivation of the basis functions is compactly presented with an emphasis

on the analogy to the normal Fourier transform. The relation between

the polar or spherical Fourier transform and normal Fourier transform is

explored. Possible applications of the proposed transforms are discussed.

1 Introduction

Fourier transform is very important in image processing and pattern recognition
both as a theory and as a tool. Usually it is formulated in Cartesian coordinates,
where a separable basis function in 3D space without normalization is

eik·r = eikxxeikyyeikzz (1)

where (x, y, z) are coordinates of the position r and kx, ky, kz are components
of the wave vector k along the corresponding axis. The basis function (1)
represents a plane wave. Fourier analysis is therefore the decomposition of a
function into plane waves. As the basis function is separable in x, y and z, The
decomposition can be understood as being made up of three decompositions (for
3D).

The Laplacian is an important operator in mathematics and physics. Its
eigenvalue problem gives the time-independent wave equation. In Cartesian
coordinates the operator is written as

∇
2 = ∇2

x + ∇2
y + ∇2

z =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

for 3D space. (1) is an eigenfunction of the Laplacian and is separable in Carte-
sian coordinates.

When defined on the whole space, functions given in (1) are mutually or-
thogonal for different k; wave vectors take continuous values and it is said that
one has a continuous spectrum. Over finite regions, the mutual orthogonality
generally does not hold. To get an orthogonal basis, k can only take values from
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a discrete set and the spectrum becomes discrete. The continuous Fourier trans-
form reduced to Fourier series expansion (with continuous spatial coordinates )
or to the discrete Fourier transform (with discrete spatial coordinates).

For objects with certain rotational symmetry, it is more effective for them to be
investigated in polar (2D) or spherical (3D) coordinates. It would be of great
advantage if the image can be decomposed into wave-like basic patterns that
have simple radial and angular structures, so that the decomposition is made
up of radial and angular decompositions. Ideally this decomposition should be
an extension of the normal Fourier analysis and can therefore be called Fourier
analysis in the corresponding coordinates. To fulfill these requirements, the
basis functions should take the separation-of-variable form:

R(r)Φ(ϕ) (2)

for 2D and
R(r)Θ(ϑ)Φ(ϕ) = R(r)Ω(ϑ, ϕ) (3)

for 3D where (r, ϕ) and (r, ϑ, ϕ) are the polar and spherical coordinates respec-
tively. They should also be the eigenfunctions of the Laplacian so that they
represent wave-like patterns and that the associated transform is closely related
to the normal Fourier transform. The concrete form of the angular and radial
parts of the basis functions will be investigated and elaborated in the coming
sections but will be briefly introduced below in order to show previous work
related to them.

For polar coordinates, as will be shown in the next section, the angular part
of a basis function is simply

Φ(ϕ) =
1√
2π

eimϕ (4)

where m is an integer, which is a natural result of the single-value requirement:
Φ(ϕ) = Φ(ϕ + 2π), a special kind of boundary condition. The associated trans-
form in angular coordinate is nothing else but the normal 1D Fourier transform.
For spherical coordinates, the angular part of a basis function is a spherical har-
monic

Ω(ϑ, ϕ) = Ylm(ϑ, ϕ) =

√
2l + 1

4π

(l − m)!

(l + m)!
Plm(cos ϑ)eimϕ (5)

where Plm is an associated Legendre polynomial and l and m are integers, l ≥ 0
and |m| ≤ l. It also satisfies the single-value requirement. The corresponding
transform is called Spherical Harmonic (SH) transform and has been widely
used in representation and registration of 3D shapes [8–10].

The angular parts of the transforms in 2D and 3D are therefore very familiar.
Not so well-known are the transforms in the radial direction. The radial basis
function is a Bessel function Jm(kr) for polar coordinates and a spherical Bessel
function jl(kr) for spherical coordinates. In both cases, The parameter k can
take either continuous or discrete values, depending on whether the region is
infinite or finite. For functions defined on (0,∞), the transform with Jm(kr) as
integral kernel and r as weight is known as the Hankel transform. For functions
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defined on a finite interval, with zero-value boundary condition for the basis
functions, one gets the Fourier-Bessel series [1]. Although the theory on Fourier-
Bessel series has long been available, it mainly has applications in physics-related
areas [18, 19]. [12] and a few references therein are the only we can find that
employ Fourier-Bessel series expansion for 2D image analysis. Methods based
on Zernike moments are on the other hand much more popular in applications
where we believe the Fourier-Bessel expansion also fits. The Zernike polynomials
are a set of orthogonal polynomials defined on a unit disk, which have the same
angular part as (4).

The SH transform works on the spherical surface. When it is used for 3D
volume data, the SH features (extracted from SH coefficients) can be calculated
on concentric spherical surfaces of different radii and be collected to describe
an object, as suggested in [9]. This approach treats each spherical surface as
independent to one another and has a good localization nature. it fails to de-
scribe the relation of angular properties of different radius as a whole, therefore
cannot represent the radial structures effectively. The consideration of how to
describe the radial variation of the SH coefficients actually motivated the whole
work presented here.

In this paper, the operations that transform a function into the coefficients of
the basis functions given in (2) and (3) and described above will simply be called
polar and spherical Fourier transform respectively. It should be noted though
that in the literature, the former often refers to the normal Fourier transform
with wave vectors k expressed in polar coordinates (k, ϕk) [16] and the latter
often refers to the SH transform [17].

Due to the extreme importance of the Laplacian in physics, the expansion
of functions with respect to its eigenfunctions is naturally not new there. For
example, in [20] and [21], the eigenfunctions of the Laplacian are used for expan-
sion of sought wave functions. The idea that these eigenfunctions can be used
as basis functions for analyzing 2D or 3D images is unfamiliar to the pattern
recognition society. There also lacks a simple and systematic presentation of the
expansion from the point of view of signal analysis. Therefore, although parts
of the derivation are scattered in books like [1], we rederive the basis functions
to emphasize the analogy to the normal Fourier transform. Employment of
the Sturm-Liouville theory makes this analogy clearer and the derivation more
compact.

The proposed polar and spherical Fourier transforms are connected with the
normal Fourier transform by the Laplacian. We investigate the relations between
them so that one can understand the proposed transforms more completely and
deeply. It is found that the relations also provide computational convenience.
An advantage of the proposed transforms is that when a function is rotated
around the origin, the change of its transform coefficients can be relatively
simply expressed in terms of the rotation parameters. This property can, on
the one hand, be used to estimate rotation parameters, on the other hand, be
used to extract rotation-invariant descriptors. We will show how to do them.

Section 2 deals with the polar Fourier transform. Besides presentation of
the theory, issues about calculation of the coefficients are discussed. A short
comparison between polar Fourier basis functions and Zernike functions is made
at the end. Parallel to section 2, the theory for the spherical Fourier transform
is given in section 3. In section 4 we investigate the possible applications of the
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polar and spherical Fourier transforms. At the end, conclusion and outlook are
given.

2 Polar Fourier transform

2.1 Basis Functions

2.1.1 Helmholtz Equation and Angular Basis Functions

As a direct extension from the Cartesian case, we begin with the eigenfunctions
of the Laplacian, whose expression in polar coordinates is given by:

∇
2 = ∇2

r +
1

r2
∇2

ϕ (6)

where

∇2
r =

1

r

∂

∂r

(
r

∂

∂r

)
(7)

and

∇2
ϕ =

∂2

∂ϕ2
. (8)

are the radial and angular parts. The eigenvalue problem can be written as

∇2
rΨ(r, ϕ) +

1

r2
∇2

ϕΨ(r, ϕ) + k2Ψ(r, ϕ) = 0 , (9)

which is the Helmholtz differential equation in polar coordinates. We require
that k2 ≥ 0 as with negative k2, the radial functions are exponentially growing
or decaying, which are not interesting for our purpose. It will be shown later that
such a requirement does not prevent the eigenfunctions from forming a basis.
For simplicity, it is further required that k ≥ 0. Substituting the separation-of-
variable form Ψ(r, ϕ) = R(r)Φ(ϕ) into (9), one gets

∂2

∂ϕ2
Φ + m2Φ = 0 (10)

1

r

∂

∂r

(
r

∂

∂r

)
R +

(
k2 − m2

r2

)
R = 0 . (11)

The solution to (10) is simply

Φm(ϕ) =
1√
2π

eimϕ (12)

with m being an integer.

2.1.2 Radial Basis Functions

The general solution to (11) is

R(r) = AJm(kr) + BYm(kr) (13)
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where Jm and Ym are the m-th order Bessel functions and Neumann functions
respectively [1]; A and B are constant multipliers. A nonsingular requirement
of R at the origin leaves

R(r) = Jm(kr) (14)

as Ym is singular at the origin. Bessel functions satisfy the orthogonality relation

∫ ∞

0

Jm(k1r)Jm(k2r)rdr =
1

k1
δ(k1 − k2) (15)

just like the complex exponential functions satisfy

∫ ∞

−∞

eik1x
[
eik2x

]∗
dx = 2π δ(k1 − k2) . (16)

Actually Jm(kr) forms a basis for functions defined on (0,∞) and satisfied
certain continuous and integrable conditions (Later this kind of description is
understood when we talk about functions to be transformed or to be expanded).

For the Fourier transform, an infinite space corresponds to a continuous
spectrum and a finite space corresponds to a discrete spectrum, where proper
boundary conditions select the spectrum. The same is also true for the radial
basis functions in polar coordinates. Over the finite interval [0, a], the orthogonal
relation like in (15) generally does not hold any more, instead,

∫ a

0

Jm(k1r)Jm(k2r)rdr

=
a

k2
1 − k2

2

[k2Jm(k1a)J ′
m(k2a) − k1Jm(k2a)J ′

m(k1a)] . (17)

By imposing boundary conditions according to the Sturm-Liouville (S-L) theory
[2, 5], a set of k values can be determined that make Jm(kr) again mutually
orthogonal. We first rewrite (11) as

−(rR′)′ +
m2

r
R = k2rR. (18)

With 



p(r) = r

q(r) = m2

r

w(r) = r
λ = k2

, (19)

the equation (18) takes the S-L form:

− (p(r)R′)
′
+ q(r)R = λw(r)R (20)

where r ∈ [0, a]. Eq.(20) together with the following boundary conditions forms
a S-L system. {

R(0) cos α − p(0)R′(0) sin α = 0
R(a) cos β − p(a)R′(a) sin β = 0

(21)

where α, β ∈ [0, π). The allowed values of λ are called the eigenvalues of the
system. According to the theory, for such a S-L system,
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1. The eigenvalues are nonnegative real numbers and can be numbered to
form an increasing sequence λ1 < λ2 < · · · < λn < · · · ;

2. The corresponding eigenfunctions can be uniquely determined up to a
costant multiplier;

3. The eigenfunctions are mutually orthogonal with respect to the weight
function w(r) = r;

4. The n-th eigenfunction has exactly n − 1 zeros on the interval (0, a);

5. The complete set of eigenfunctions forms a complete orthogonal set of
functions defined on the interval [0, a].

Since R(r) = Jm(kr) is a general non-singular solution to (20), the values
k can take (therefore the eigenvalues λ = k2) are determined by the boundary
conditions (21). With α = π/2, the first equation in (21) has actually no effect
on the selection of k but Ym can be excluded from the general solution (13) if
we have not done so. The only effective boundary condition left is the second
equation in (21). Substituting R(r) = Jm(kr) into it, one gets

Jm(ka) cos β − kaJ ′
m(ka) sin β = 0 (22)

with x = ka, (22) becomes

Jm(x) cos β − xJ ′
m(x) sin β = 0 (23)

Suppose (xm1 < xm2 < · · · < xmn < · · · ) are nonnegative solutions to (23) with
Jm(xmnr/a) being nonzero functions, then k can take the values from

{xm1

a
,
xm2

a
, · · · ,

xmn

a
, · · ·

}
.

Define
knm =

xmn

a
(24)

(The indices n and m now exchange their order for the sake of convention), the
n-th eigenvalue is then λn = k2

nm and the n-th eigenfunction is Jm(knmr). The
orthogonality of the eigenfunctions can be written as

∫ a

0

Jm(knmr)Jm(kn′mr)rdr = N (m)
n δnn′ . (25)

By taking the limit of (17) as k2 → k1 and taking into account that Jm(kr) is
the solution to (11), one can get

N (m)
n =

a2

2

[
J ′

m
2
(xmn) +

(
1 − m2

x2
mn

)
J2

m(xmn)

]
. (26)

The normalized radial function can therefore be defined as

Rnm(r) =
1√

N
(m)
n

Jm(knmr) . (27)
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{Rnm|n = 1, 2, · · · } forms an orthonormal basis on the interval [0, a]. A function
f(r) defined on this interval can be expanded as

f(r) =
∞∑

n=1

[∫ a

0

f(ρ)Rnm(ρ)ρdρ

]
Rnm(r) . (28)

So far β in (23) has not been specified. Two cases are interesting:
Zero-value boundary condition: with sinβ = 0, (23) reduces to

Jm(x) = 0 . (29)

(note that x = ka). xmn should be the positive zeros of Jm(x). Under this
condition,

N (m)
n =

a2

2
J2

m+1(xmn) (30)

and the right-hand side of (28) is usually known as m-th order Fourier-Bessel
series of f(r).
Derivative boundary condition: with cos β = 0, (23) becomes

J ′
m(x) = 0 . (31)

xmn should be the zeros of J ′
m(x). One special case needs to be considered here:

x = 0 is one solution to J ′
0(x) = 0 and J0(0 · r/a) = 1 has exactly 0 zero on

(0, a). According to the S-L theory, x = 0 should be recognized as x01. Under
this boundary condition,

N (m)
n =

a2

2

(
1 − m2

x2
mn

)
J2

m(xmn) (32)

with the special case N
(0)
1 = a2/2.

It is clear now that different boundary conditions lead to different spectra
of the system. The choice should depend on the problems under investigation.
To give an impression how the radial functions look like, we show the first few
of them for m = 2 with the zero and the derivative boundary conditions in Fig.
1 (a) and (b). It is intuitive to choose the zero boundary condition when the
images tend to be zero at r = a and the derivative condition when the image
tend to be constant in radial direction near r = a. Often it is necessary to do
some experiments to find the better choice.

Rnm(r) has n − 1 zeros on (0, a). Its wave-like property can be made more
clear by considering the asymptotic behavior of the Bessel functions [1]. One
has

Rnm(r) ∼ 1√
r

cos
(
knmr − mπ

2
− π

4

)
(33)

for knmr ≫ |m2 − 1
4 |. Therefore, with large knmr, Rnm(r) approaches a cosine

function with its amplitude decreasing as fast as 1/
√

r. There is a phase shift of
−(mπ/2 + π/4), which is corresponded to by a “delay” of the function to take
the wave-like form near the origin. See Fig. 6 (a) for a typical form of Rnm(r)
with relatively large n and m.
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Figure 1: The first few radial basis functions for 2D with m = 2 and a = 1: (a)
Rnm with zero boundary condition; (b) Rnm with derivative boundary condition

and (c) normalized radial Zernike function Z̃nm. The number beside each curve
is the value of n.
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2.1.3 Basis Functions

The basis function for the polar Fourier transform is composed of the radial and
the angular parts. Consequently, for the transform defined on the whole space,
the basis function is given by

Ψk,m(r, ϕ) =
√

kJm(kr)Φm(ϕ) (34)

with k taking continuous nonnegative values and Φm defined by (12). For the
transform defined on the finite region r ≤ a, the basis function is given by

Ψnm(r, ϕ) = Rnm(r)Φm(ϕ) (35)

with Rnm defined by (27). The orthogonality relation is given by:

∫ a

0

∫ 2π

0

Ψ∗
nm(r, ϕ)Ψn′m′(r, ϕ)rdrdϕ = δnn′δmm′ . (36)

A basis function satisfies the following equation as well as the corresponding
boundary conditions

∇2Ψnm + k2
nmΨnm = 0 . (37)

{Ψnm} with (n = 1, 2, · · · ) and (m = · · · ,−2,−1, 0, 1, 2, · · · ) form an orthonor-
mal basis on the region r ≤ a.

For Ψnm(r, ϕ), m is the number of periods in the angular direction, and
n − 1 corresponds to the number of zero crossings in the radial direction. As
for the meaning of knm, those who are familiar with quantum mechanics can
recognize from (37) that k2

nm is the energy level (except for a constant factor) of
the system and its corresponding wave function is Ψnm. Some of the functions
with lowest energy levels are shown in Figure 2. One can find that the higher
the energy level, the finer the structures. Therefore for image analysis, the value
of k is an indication of the scale of the basic patterns, which is consistent with
the normal Fourier transform.

2.2 Expansion

A 2D function f(r, ϕ) defined on the whole space can be expanded with respect
to Ψk,m as defined in (34):

f(r, ϕ) =

∫ ∞

0

∞∑

m=−∞

Pk,mΨk,m(r, ϕ) kdk (38)

where

Pk,m =

∫ ∞

0

∫ 2π

0

f(r, ϕ)Ψ∗
k,m(r, ϕ)rdrdϕ (39)

are the polar Fourier coefficients (P stands for Polar). The infinite transform as
given in (38) and (39) is mainly of theoretical interest. In practice, one should
use the transform defined on a finite region. A function f(r, ϕ) defined on r ≤ a
can be expanded with respect to {Ψnm} (It is understood with this symbol that
n and m are integers and n is positive) as

f(r, ϕ) =
∞∑

n=1

∞∑

m=−∞

PnmΨnm(r, ϕ) (40)
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(1,0) (1,1) (1,2)

(2,0) (1,3) (2,1)

(1,4) (2,2) (3,0)

(1,5) (2,3) (1,6)

Figure 2: Basic patterns represented by Ψnm with zero boundary condition.
Shown are the real part of the functions. (n,m) pairs are given under each
pattern. The patterns are listed in the increasing order of the value of knm.
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Figure 3: Isolines of knm

where the coefficients

Pnm =

∫ a

0

∫ 2π

0

f(r, ϕ)Ψ∗
nm(r, ϕ)rdrdϕ . (41)

There are two indices for the expansion. How should the terms be ordered and
therefore be truncated for a finite-term expansion? A natural way is according
to the energy levels. In the language of image analysis, according to the scales
of the basic patterns. Larger-scale patterns should be taken into account first.
This is often the best choice if no other information about the data is available.
Figure 3 shows the isolines of knm.

A digital image is usually given on an equally-spaced grid in Cartesian coor-
dinates. To evaluate the coefficients as in (41), it is advisable to map the image I
into polar coordinates, where the transform becomes separable and the angular
part can be done fast with FFT. The grid density of the mapped image Ipolar

should be high enough to accommodate the finest patterns in the expansion.
Let the largest values for m and knm be mmax and kmax. Denote the radial and
angular size of Ipolar as Mr and Mϕ. The sampling theorem requires

Mϕ ≥ 2mmax . (42)

Mϕ should also be chosen to facilitate fast calculations.
Considering the asymptotic behavior of Rnm(r) in (33), knm takes the posi-

tion of the wavenumber. One can expect that Mr should be at least

2 · a

2π/kmax
=

akmax

π
.

However, the right-hand side of (33) is only the asymptotic bahavior and is not
a real trigonometric function. Furthermore, the weight function is r instead of
1 for the radial integral. It is necessary to do some numerical experiments to
determine the number of sampling points Mr in order to ensure that (25) holds
within a certain relative error.

Mapping of the image is a process of interpolating and sampling. It must
be handled carefully to avoid aliasing. The finest structure supported in both
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radial and angular directions should match the finest structure in Cartesian
coordinates. Approximately, that means, for a disk of radius a (in the unit of a
pixel) in the original image, there should be

√
2a steps in r and 2

√
2πa steps in

ϕ. The
√

2 inside the expressions comes from the fact than the highest frequency
for the original image is

√
2/2 instead of 1/2. Often

√
2 can be dropped if one

is sure that there is no so fine structure in the original image, which is usually
obeyed for image taking. If Mr and Mϕ are smaller than these numbers, in
other words, the resolution in Ipolar is coarser than in the original image I,
one can either first smooth I then perform the mapping, or alternatively, first
map I to polar coordinates with proper resolutions followed by smoothing and
downscaling in r or ϕ. Which approach to take depends on the aspect ratio of
Ipolar.

2.3 Relation to the Normal Fourier Transform in 2D

2.3.1 Infinite Transform

To find the relation between the polar and the normal Fourier transforms, one
needs to know the relation of their bases. The basis function for normal Fourier
transform represents a plane wave:

1

2π
eik·r =

1

2π
eikr cos(ϕ−ϕk) . (43)

where k is the wave vector and (k, ϕk) and (r, ϕ) are the polar coordinates of k

and r respectively. The basis function is defined on the whole space and can be
expanded according to the Jacobi-Anger Identity [6] as

1

2π
eik·r =

1

2π
eikr cos(ϕ−ϕk)

=

∞∑

m=−∞

im
1

2π
Jm(kr)eim(ϕ−ϕk)

=

∞∑

m=−∞

im√
2πk

e−imϕkΨk,m(r, ϕ) (44)

where Ψk,m is defined in (34) and is known as cylindrical wave function. (44)
means that a plane wave can be decomposed into cylindrical waves of exactly
the same wavenumber. Conversely,

Ψk,m(r, ϕ) =

∫ 2π

0

(−i)m

√
2πk

eimϕk

(
1

2π
eikr cos(ϕ−ϕk)

)
dϕk . (45)

That is, plane waves of the same wavenumber, with their phases properly shifted
according to the direction of the wavevectors, can be superposed to get a cylin-
drical wave. Alternatively, one says that the (normal) Fourier transform of Ψk,m

is

F(Ψk,m)(k′, ϕk) = δ(k − k′)
(−i)m

√
2πk

eimϕk . (46)

which is nonzero only on a circle of radius k.
Suppose a function f(r, ϕ) is defined on the whole space and its normal

Fourier transform is Ck,ϕk
(C stands for Cartesian. k and ϕk are written as
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(a) (b)

Figure 4: Illustration of the relation of the polar Fourier coefficients and the
normal Fourier coefficients Ck,ϕk

. (a) When the space is infinite, Pk,m is the
Fourier coefficient of Ck,ϕk

with ϕk as the variable. (b) When the space is finite,
Pnm is the weighted sum of the Fourier coefficients on different circles. With
zero boundary condition, the weight function is proportional to (60).

subscripts for consistence of notations here although they take continuous val-
ues), it can be expressed as

f(r, ϕ) =

∫ ∞

0

∫ 2π

0

Ck,ϕk
·
(

1

2π
eikr cos(ϕ−ϕk)

)
kdkdϕk . (47)

Substituting (44) into (47),

f(r, ϕ) =

∫ ∞

0

∞∑

m=−∞

[
im√

k

1√
2π

∫ 2π

0

Ck,ϕk
e−imϕkdϕk

]
Ψk,m(r, ϕ)kdk . (48)

One can recognize immediately that the expression inside the square brackets
is just the polar Fourier transform of f(r, ϕ). If it is denoted as Pk,m, one has

Pk,m =
im√

k

1√
2π

∫ 2π

0

Ck,ϕk
e−imϕkdϕk . (49)

The relation is very simple. Except for the factor (im/
√

k), Pk,m is just the
Fourier coefficient of Ck,ϕk

by considering ϕk as variable. See Figure 4 (a) for
an illustration.

(49) can be rewritten as

Pk,m =
im

k
√

k

1√
2π

∫ ∞

0

∫ 2π

0

δ(k′ − k)e−imϕk′ Ck′,ϕk′ k
′dk′dϕk′ (50)

for convenience of later discussion.

2.3.2 Transform on Finite Regions

The relation between the polar Fourier transform and the normal Fourier trans-
form is very simple when they are defined on the whole space. Strictly speaking,
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it is ambiguous to talk about their relationship when defined on a finite region
as the basis functions are defined on regions of different shapes. For convenience
of discussion, we consider such a situation here: The normal Fourier transform
is defined on a rectangle that is centered at the origin and encloses the disk
where the polar Fourier transform is defined. Let the area of the rectangle be
A.

We first try to get the expansion of a plane wave in {Ψnm} on the disk. As
shown in (44), a plane wave can be expanded in Ψk,m, which in turn can be
expanded easily in {Ψnm} on the disk with the help of (28):

eik·r =
∑

m

imJm(kr)eim(ϕ−ϕk)

=
∑

m

im
∑

n

[∫ a

0

Rnm(ρ)Jm(kρ)ρdρ

]
Rnm(r)eim(ϕ−ϕk)

=
∑

n,m

im
√

2π

[∫ a

0

Rnm(ρ)Jm(kρ)ρdρ

]
e−imϕkΨnm(r, ϕ) . (51)

for r ≤ a. The expression inside the square brackets is the coefficient of Jm(kr)
in Rnm(r). It can be explicitly expressed by making use of (17). If knm are
selected with the zero boundary condition,

∫ a

0

Rnm(ρ)Jm(kρ)ρdρ = (−1)n
√

2knm

Jm(ka)

k2 − k2
nm

(52)

and we have

eik·r =
∑

n,m

(−1)nim2
√

πknm

Jm(ka)

k2 − k2
nm

e−imϕkΨnm(r, ϕ) . (53)

This equation holds for any k, including those appearing in the normal Fourier
transform defined on the rectangle, which we denote as k0.

A function f(r, ϕ) defined on the disk can be extended to the rectangle by
padding1. Let the normal Fourier coefficients for the padded function be Ck0

.
On the disk,

f(r, ϕ) =
∑

k0

Ck0

1√
A

eik0·r . (54)

f(r, ϕ) can as well be expanded in {Ψnm},

f(r, ϕ) =
∑

nm

PnmΨnm(r, ϕ) . (55)

With the expansion (53), it is easy to get that

Pnm =
∑

k0

p(k0;n,m)Ck0
(56)

p(k0;n,m) = (−1)nim
2
√

π√
A

knm

Jm(k0a)

k2
0 − k2

nm

e−imϕk0 (57)

1It can be proved that the padding scheme does not affect the relations as given in (56)
and (61).

14



0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

k
0

(a) (b)

Figure 5: (a)
∣∣∣k0Jm(k0a)

k2

0
−k2

nm

∣∣∣ as a function of k0 and (b) the real part of p(k0;n,m)

as defined in (57) for n = 8, m = 5 and a = 32, where knm = 0.994.

for the zero boundary condition. We write the main parts of Pk,m and Pnm

from (50) and (56) for comparison:

Pk,m ∼
∫

dk′ δ(k′ − k) e−imϕk′ Ck′,ϕk′ , (58)

Pnm ∼
∑

k0

Jm(k0a)

k2
0 − k2

nm

e−imϕk0 Ck0
. (59)

When the space becomes finite, the integral over the wave vector is replaced by
a summation and the sharp function of the wavenumber δ(k′−k) is replaced by
a more spreading one (see Fig. 4 (b) for an illustration):

Jm(k0a)

k2
0 − k2

nm

. (60)

which has its maximum absolute value at k0 = knm. According to the asymp-
totic behavior of Bessel functions, it arrives to its first zeros approximately at
|k0 − knm| = π/a and will oscillatingly decrease on both sides. Fig. 5 (a) shows
the absolute value of (60) multiplied by k0, which comes from the fact that
the number of pixels at radius k is approximately proportional to k. Fig. 5
(b) shows the real part of p(k0;n,m). One can compare it with the schematic
illustration in Fig. 4 (b).

For completeness, if {Ψnm} is determined with the derivative boundary con-
dition, one has

Pnm = (−1)nim
2
√

π√
A

aknm√
k2

nma2 − m2

∑

k0

kJ ′
m(ka)

k2 − k2
nm

e−imφkCk0
. (61)

(56) and (61) can be used to calculate the polar Fourier coefficients Pnm

from the normal Fourier coefficients Ck0
, which can be obtained by FFT. This
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approach implies sinc interpolation in the spatial domain and is best suited
when the underlying original signal is band-limited.

2.4 Comparison with Zernike Polynomials

Basis functions defined with (35) are surely not the only existing orthogonal
basis. Actually as {Rnm|n = 1, 2, · · · } for any m forms a basis, one can randomly
combine Rnm′ with Φm(ϕ) and still get an orthogonal basis for functions defined
on the disk. But the choice of (35) is the most natural one. It has a clear
physical meaning, with the value of k indicating the scale. Apart from the Bessel
functions being radial functions, there exists, of course, also an infinity of sets
of basis functions on a disk. One of the most famous are Zernike polynomials.
Since Teh et al. [11] made a comparison study on different moment methods,
which shows that Zernike moments outperform other moment-based methods
in terms of overall performance, there are a lot of applications using Zernike
moments, e.g. [13–15]. Zernike functions are defined on a unit disk, and, when
expressed in polar coordinates, have the following form [3]

Vnm(r, ϕ) = Znm(r)eimϕ (62)

where m is any integer, n ≥ 0 is an integer and is the order of the polynomial,
n ≥ |m|, n − |m| is even. The angular part is the same as that of (35). The
radial Zernike function Znm is a polynomial in r:

Znm(r) =

n−|m|
2∑

s=0

(−1)s (n − s)!

s!
(

n+|m|
2 − s

)
!
(

n−|m|
2 − s

)
!
rn−2s . (63)

It has (n − |m|)/2 zeros between 0 and 1. The orthogonality relation of the
radial functions is given by

∫ 1

0

Znm(r)Zn′m(r)rdr =
1

2n + 2
δnn′ . (64)

For purpose of comparison, we define the normalized radial function as

Z̃nm =
√

2n + 2Znm . (65)

The first few normalized radial functions for m = 2 are shown in Fig. 1
(c). The typical form of Z̃nm with relatively large m and n is shown in Fig.

6 together with Rnm for comparison. From this figure, one can find that Z̃nm

has also a wave-like form. Like Rnm, it has also a “delay” near the origin
for the “wave” to begin; Unlike Rnm, the amplitude of the “wave” does not
decrease monotonically, instead the “wavelength” decreases with r. As {Rnm}
and {Z̃nm} are both complete bases, they can be expressed by each other with
the help of the following relationship [3]:

∫ 1

0

Znm(r)Jm(xr)rdr = (−1)
n−m

2

Jn+1(x)

x
(66)

where m ≥ 0 are integers.
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Figure 6: (a) R(11)8 as defined in (27) with derivative boundary condition and

(b) Z̃(28)8 as defined in (65). Both have 10 zeros on (0, 1).
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3 Spherical Fourier Tranform

3.1 Basis Functions and Expansion

We will follow the same approach as for polar coordinates, and much of the
discussion there also applies here. The expression of the Laplacian in spherical
coordinates is given by

∇2 = ∇2
r +

1

r2
∇2

Ω (67)

where the radial part is

∇2
r =

1

r2

∂

∂r

(
r2 ∂

∂r

)
(68)

and the angular part is

∇2
Ω =

1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂ϕ2
. (69)

The Helmholtz equation is then given by

∇2
rΨ(r, ϑ, ϕ) +

1

r2
∇2

ΩΨ(r, ϑ, ϕ) + k2Ψ(r, ϑ, ϕ) = 0 . (70)

For a solution of the form Ψ(r, ϑ, ϕ) = R(r)Ω(ϑ, ϕ), one has

Ω(ϑ, ϕ) = Ylm(ϑ, ϕ) (71)

where Ylm is a spherical harmonic as defined in (5). It satisfies

∇2
ΩYlm + l(l + 1)Ylm = 0 . (72)

The corresponding radial part satisfies

1

r2

∂

∂r

(
r2 ∂

∂r

)
R +

(
k2 − l(l + 1)

r2

)
R = 0 . (73)

Its non-singular solution is
R(r) = jl(kr) (74)

where jl is the so-called spherical Bessel function of order l and is related to the
ordinary Bessel Function by

jl(x) =

√
π

2x
Jl+ 1

2

(x) . (75)

The spherical Bessel functions satisfy the orthogonality relation

∫ ∞

0

jl(k1r)jl(k2r)r
2dr =

π

2k2
1

δ(k1 − k2) . (76)

Putting the radial part (76) and angular part (71) together, one get the normal-
ized basis function for spherical Fourier transform defined on the whole space

Ψk,l,m(r, ϑ, ϕ) =

√
2

π
kjl(kr)Ylm(ϑ, ϕ) (77)
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When the integral is only over a finite region [0, a], the orthogonality relation
generally will not hold, instead

∫ a

0

jl(k1r)jl(k2r)r
2dr =

a2

k2
1 − k2

2

[k2jl(k1a)j′l(k2a) − k1jl(k2a)j′l(k1a)] . (78)

One needs boundary conditions to select a set of orthogonal basis functions. For
r = a the S-L boundary condition is

R(a) cos β − a2R′(a) sin β = 0 (79)

with β ∈ [0, 2π). With R(r) = jl(kr), the above boundary condition becomes

jl(ka) cos β − (ka)j′l(ka)a sin β = 0 . (80)

Set x = ka and absorb the extra a into the choice of β, the boundary condition
becomes

jl(x) cos β − j′l(x) sin β = 0 . (81)

If xl1 < xl2 < · · · < xln < · · · are the nonnegative solutions to (81) with
jl(xlnr/a) nonzero, one can define

knl =
xln

a
.

The n-th eigenfunction is then jl(knlr). The orthogonal relation of the eigen-
functions is ∫ a

0

jl(knlr)jl(kn′lr)r
2dr = N (l)

n δnn′ . (82)

It can be shown that

N (l)
n =

a3

2

{
j′l

2
(xln) +

1

xln

jl(xln)j′l(xln) +

[
1 − l(l + 1)

x2
ln

]
j2
l (xln)

}
. (83)

With the zero-value boundary condition, (xl1, xl2, · · · , xln, · · · ) are the pos-
itive zeros of jl(x) and

N (l)
n =

a3

2
j2
l+1(xln) . (84)

With the derivative boundary condition, (xl1, xl2, · · · , xln, · · · ) are the pos-
itive zeros of j′l(x) except for x01 = 0. And

N (l)
n =

a3

2

[
1 − l(l + 1)

x2
ln

]
j2
l (xln) (85)

with the special case

N
(0)
1 =

a3

3
. (86)

The normalized radial basis functions can be defined as

Rnl(r) =
1√
N

(l)
n

jl(knlr) . (87)
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Together with the angular part, the whole basis function for a solid sphere of
radius a can be defined as

Ψnlm(r, ϑ, ϕ) = Rnl(r)Ylm(ϑ, ϕ) . (88)

A function f(r, ϑ, ϕ) defined on a r ≤ a can be expanded in terms of
Ψnlm(r, ϑ, ϕ):

f(r, ϑ, ϕ) =

∞∑

n=1

∞∑

l=0

l∑

m=−l

SnlmΨnlm(r, ϑ, ϕ) (89)

where

Snlm =

∫ a

0

∫ π

0

∫ 2π

0

f(r, ϑ, ϕ)Ψ∗
nlm(r, ϑ, ϕ)r2 sin ϑdrdϑdϕ (90)

are the spherical Fourier coefficients (S stands for Spherical). For real-valued
functions,

Snlm = S∗
nl(−m) . (91)

The discussion about mapping an image from Cartesian coordinates to polar
coordinates in last section also applies here. The only difference is that for a
solid sphere of radius a (in the unit of a voxel size), the “safe” size in spherical
coordinates should be

√
3a,

√
3πa and 2

√
3πa for r, ϑ and ϕ respectively.

3.2 Relation to the Normal Fourier Transform in 3D

A plane wave in 3D can be expanded in spherical waves Ψk,l,m(r, ϑ, ϕ) as [7]

(
1√
2π

)3

eik·r =

√
2

π

∞∑

l=0

l∑

m=−l

iljl(kr)Ylm(ϑ, ϕ)Y ∗
lm(ϑk, ϕk)

=
1

k

∞∑

l=0

l∑

m=−l

ilY ∗
lm(ϑk, ϕk)Ψk,l,m(r, ϑ, ϕ) (92)

where (k, ϑk, ϕk) are the spherical coordinates of the wave vector k.
Any function f(r, ϑ, ϕ) defined on the whole space can be expanded in either

of the two bases:

f(r, ϑ, ϕ) =

∫ ∞

0

∫ π

0

∫ 2π

0

Ck,ϑk,ϕk

(
1√
2π

)3

eik·r k sinϑk dk dϑk dϕk (93)

=

∞∑

l=0

l∑

m=−l

∫ ∞

0

Sk,l,mΨk,l,m(r, ϑ, ϕ) k dk . (94)

With the relation of the bases as given in (92), one can easily get the relation
of the coefficients:

Sk,l,m =
il

k

∫ π

0

∫ 2π

0

Ck,ϑk,ϕk
Y ∗

lm(ϑk, ϕk) sin ϑkdϑkdϕk . (95)

Except for a constant factor, Sk,l,m is the SH coefficient of Ck,ϑk,ϕk
with (ϑk, ϕk)

as variables.
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A function f(r, ϑ, ϕ) that is defined on a solid sphere of finite radius a can
be expanded either in normal Fourier series or in spherical Fourier series. Here
the normal Fourier series is defined on a rectangular box which contains the
solid sphere and has its center also at the origin. Suppose the volume of the
rectangular box is V .

f(r, ϑ, ϕ) =
∑

k0

Ck0

1√
V

eik·r (96)

=
∑

nlm

SnlmΨnlm(r, ϑ, ϕ) . (97)

The Fourier coefficients have the following relationship if knm are selected with
zero boundary condition:

Snlm =

[
(−1)nil4π

√
2a

V

]
∑

k0

knl jl(k0a)

k2
0 − k2

nm

Y ∗
lm(ϑk0

, ϕk0
) Ck0

. (98)

4 Applications of Polar and Spherical Fourier

Transforms

The polar and the spherical Fourier transforms can be regarded as variantions
of the Fourier transform. They can have applications in different problems. As
the basis function is made up of the radial and the angular part separately, it
is easy investigate how the transform coefficients change when the function is
rotated.

If a 2D rotation operator R(α) is defined by

R(α)f(r, ϕ) = f(r, ϕ − α), (99)

it works on a basis function of the polar Fourier transform as

R(α)Ψnm(r, ϕ) = R(α)Rnm(r)Φ(ϕ) (100)

= Rnm(r)e−imαΦ(ϕ) (101)

= e−imαΨnm(r, ϕ) . (102)

When it operates on a function f(r, ϕ) with polar Fourier coefficients Pnm, the
change of the function can be regarded as the change of the coefficients Pnm.

R(α)f(r, ϕ) = R(α)

∞∑

n=1

∞∑

m=−∞

PnmΨnm(r, ϕ) (103)

=

∞∑

n=1

∞∑

m=−∞

PnmR(α)Ψnm(r, ϕ) (104)

=

∞∑

n=1

∞∑

m=−∞

Pnme−imαΨnm(r, ϕ) (105)

With the rotation of R(α), the coefficient

Pnm =⇒ Pnme−imα.
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The phase changes carry the information of rotation, therefore can be used to
estimate the rotation. This property can be employed for registration of images.

Under rotation, only the phase of Pnm is changed, its magnitude remains
the same and is therefore a rotational invariant of the function. It will be
called a Polar Fourier Descriptor (PFD). The transform coefficients provide
a complete representation of the original function. Theoretically, a complete
set of rotational invariant descriptors can be obtained by properly normalizing
the coefficients according to the degree of rotational symmetry (similar to the
technique in [22]). However, although phase information is very important, there
still lacks a systematic and robust way of incorporating this information into
the descriptors. By discarding the phases, PFDs are no longer mathematically
complete. Nevertheless they still make up a robust set of rotation invariant
descriptors.

Rotation in 3D is more complicated than in 2D as there are two angular
coordinates now. It is well known that Ylm with m = −l,−l + 1, · · · , l span a
subspace that is invariant with respect to the rotation group. When the operator
R(α, β, γ) (α, β and γ are the Euler angles that represent the rotation) apply
to Ylm, one has

R(α, β, γ)Ylm(θ, φ) =

l∑

m′=−l

D
(l)
m′m(α, β, γ)Ylm′(θ, φ). (106)

where D
(l)
m′m(α, β, γ) are the Wigner-D functions. Its exact expression, together

with the corresponding definition of the Euler angles, can be found in [4] and
will not be given here. As all the variance of the basis function Ψnlm under
rotation is captured by its angular part, one can simply replace Ylm with Ψnlm

in (106) and the equation still holds.

R(α, β, γ)Ψnlm(r, θ, φ) =
l∑

m′=−l

D
(l)
m′m(α, β, γ)Ψnlm′(r, θ, φ) . (107)

When a function f(r, θ, ϕ) with spherical Fourier coefficients Snlm is under ro-
tation R(α, β, γ),

R(α, β, γ)f(r, θ, ϕ) (108)

=R(α, β, γ)

∞∑

n=1

∞∑

l=0

l∑

m=−l

SnlmΨnlm(r, θ, φ) (109)

=

∞∑

n=1

∞∑

l=0

l∑

m=−l

Snlm

l∑

m′=−l

D
(l)
m′m(α, β, γ)Ψnlm′(r, θ, φ) (110)

=
∞∑

n=1

∞∑

l=0

l∑

m=−l

[
l∑

m′=−l

D
(l)
mm′(α, β, γ)Snlm′

]
Ψnlm(r, θ, φ) (111)

D
(l)
m′m(α, β, γ) with m,m′ = −l,−l + 1, · · · , l form a (2l + 1) × (2l + 1) matrix

D(l)(α, β, γ) =
(
D

(l)
m′m(α, β, γ)

)
,
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called the Wigner-D matrix. Define S(nl) as the column vector made up of Snlm

with m = −l,−l + 1, · · · , l. With the rotation R(α, β, γ),

S(nl) =⇒ D(l)(α, β, γ)S(nl) .

The rotation parameters are coded into the change of the spherical Fourier
coefficients, and the latter, can be used to estimate the former in turn.

The rotation operator unitary, and its representative matrix D(l)(α, β, γ) is
then also unitary. It means the magnitude of the vector S(nl) remains unchanged
under rotation. Therefore

‖S(nl)‖ =

√∑l

m=−l
|Snlm|2 =

√∑l

m=−l
SnlmS∗

nlm (112)

is a rotation-invariant property of the object. We call it a Spherical Fourier
Descriptor (SFD). A SFD is indexted by two numbers: n and l.

5 Conclusion and Outlook

We propose to use the eigenfunctions of the Laplacian that are separable in
polar and spherical coordinates as basis functions for Image analysis. This idea
puts the proposed polar and spherical Fourier transform and the normal Fourier
transform into the same framework and ensures close resemblance and relation
between them.

The changes of the transform coefficients under rotation can be simply ex-
pressed as functions of the rotation parameters. This property can be used
to estimate rotation angles, which is essential in image registration. We have
also shown how rotation-invariant descriptors can be defined on the transform
coefficients.

We have discussed how to calculate the coefficients by mapping the data
from Cartesian coordinated into polar or spherical coordinates. The angular
transforms can be done efficiently with fast programs [23,24], The radial trans-
form has to be calculated for every coefficient independently. This is surely
not an efficient way. Whether fast algorithms exist for radial transforms is a
question to be answered.
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