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Abstract

Registration of point clouds is required in the processing of large biological data sets. The tradeoff between
computation time and accuracy of the registration is the main challenge in this task.

We present a novel method for registering point clouds in twoand three dimensional space based on Group
Averaging on the Euclidean transformation group. It is applied on a set of neighboring points whose size directly
controls computing time and accuracy.

The method is evaluated regarding dependencies of the computing time and the registration accuracy versus
the point density assuming their random distribution. Results are verified in three biological applications on 2D
and 3D images.



1 Introduction

Registering point clouds is a task often encountered in computer vision. The point clouds can e.g. represent
interest points, detected markers or laser scan data. The registration is crucial for e.g. comparing or fusing the
data. Fast and precise algorithms are necessary to perform this task. Depending on the transformation at hand and
the structure of the data, different algorithms are used ([2, 6, 3]). If the points are distributed randomly in space,
state-of-the-art methods perform poorly. This is why in [8]a new method based on local descriptors was described
to perform the task of registering fluorescent point markers. The drawback of this method is the relatively high
computation time and the strong dependency on the k-neighbors. We have introduced a local point descriptor
based on Group Integration (GI) over the Euclidean group in [9] for describing the similarity between two protein
structures. This descriptor can be applied not only for protein structures but in many tasks of computer vision.

The idea of the descriptor is to describe at each point the local constellation of its neighboring points by taking
into account the local density of the points. We will describe the local density of a point by defining a ’point
gradient’. These gradients along with the distances between points are invariant considering the Euclidean group.
We will not consider the ’point gradients’ and distances themselves, but there distribution in a histogram following
the idea of shape histograms [7].

Our method is particularly efficient, if the density of the points is high in some regions of the image and using
the k-nearest neighbors (for small k) is not sufficient to describe the local neighborhood.

In this work we would like to evaluate how the density of the points influences the performance of the GI
algorithm and in which cases the GI algorithm can be used for the registration of point sets.

2 Related Methods

There are two kinds of methods for comparing point clouds. The first kind of methods operates on the whole
point set and tries to find correspondences by optimizing thedistance function between the source and the moving
data([6], [3]). These methods work particularly well if thepoint cloud has a specific shape and the optimization
function has a global minimum. The optimal transformation is computed without explicitly determining the
correspondences. This method fails if the two point sets differ in size and only their global distribution is matched.

The second kind of methods is based on first computing the local features for each point. Then the correspon-
dence between the points is determined using these features. Finally, the transformation of the points is computed
using the correspondences and applied to the whole point set. The most prominent of this methods is RANSAC
([2]), however it can get very slow for a large point set (Pi > 3000 points). Therefore it is necessary to reduce
the size of points in the point set before applying RANSAC. A small set of reliable correspondences can be pres-
elected using distances between local features. In the following section, we will present the theory for computing
local features by Group integration.

3 Group Averaging on Point Sets

In the following GI is used to obtain an invariant description of a point cloud imageX with respect to the Euclidean
group.

3.1 Point Gradients

A discrete point setP := {pn ∈ R
k|n = 1, ..., M} is mapped toR by defining an ’intensity function’X : R

k →
R indicating the presence of the point. We choose to representthe point setP as the sum of overlapping Gaussian
distributions. The functionX at pointp ∈ P is defined as:
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(a) σ = 10 (b) σ = 40

Figure 1:The influence ofσ on the ’point gradient’. The points are marked in red, the gradient is marked in
blue. The shape of the Gaussian is indicated in light blue.

To get an intuition for the meaning of the density gradient, we show in Fig. 1 the effects of the gradient by
choosing two different values forσ. From Fig. 1 we can see thatσ controls the influence of points far away
from the pointp on the gradient∇X(p). A small value of sigma has the effect, that only the points inthe direct
neighborhood ofp influence the direction of the gradient. A large value ofσ enhances the influence of points
further away fromp. The gradient is always directed in the opposite direction of the point cloud of influence.

3.2 Group Averaging Algorithm

An elementg of the Euclidean groupE acts onX by gX(p) 7→ X(Rp + t), wherek ∈ {2, 3}, p, t ∈ R
k and

R ∈ R
k×k is a orthogonal matrix. A group integration feature is obtained by integrating a kernel functionf over

the group of Euclidean motionE (see [1]):

If (X) =

∫

E

f(gX)dg. (3)

In [9] the following kernel function was introduced:

fd,n,n′(X) = hn(∇X(0)) hn′(∇X(d)) (4)

Whered is the width parameter andn, n′ describe normalized orientation vectors for each point. The function
h is defined by:

hn(v) = |v|δ1

(

|vT n|

|v|

)

, (5)

whereδ1 is the Delta-Distribution giving contribution if its argument is nearby 1 and otherwise zero.hn describes
a specific configuration between two vectorsv, n. The integral in Eq. 3 thus sums over all possible Euclidean
transformations of two points with distanced having gradient vectors parallel withn, n′. The integral is evaluated
once for each parameter setd, n, n′. This specific configuration is captured for three dimensional vectors using
three angles (α, β, γ ∈ [−1, 1]) and one distance vector∆ ∈ R

+ (Fig. 2). For 2D vectors two angles (α, β) and
the distance vector∆ ∈ R

+ are sufficient.
The resulting algorithm (Alg. 1) computes a histogram of distances and orientations of point pairs in the point

setP weighted by the magnitude of their gradients. The number of histogram bins for each parameterΠ is chosen
according to the application.

We describe the local neighborhoodN = {pi ∈ P |0 < ‖p − pi‖ < r} of all pointsp ∈ P by group
averaging(step 9, Alg. 1). For instance GI is performed inside hyperspheres with constant radiusr positioned at
centersp. Corresponding pointsp1 ∈ P1 andp2 ∈ P2 have similar histograms.
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Figure 2:The configuration of two points. The configuration between two points in 3D is captured by three an-
gles (α, β, γ) and the distance∆ between the points. The angleγ (not shown) is the angle between the orientation
vectorsn andn′.

Algorithm 1: GI Algorithm
1: Initialize IΠ = 0 for all Π.
2: for i = 1 to M do
3: for j = 1 to M do
4: Compute:

5: α = ∇X(pi)
‖∇X(pi)‖

T
pi−pj

‖pi−pj‖
,

6: β =
∇X(pj)

‖∇X(pj)‖

T
pi−pj

‖pi−pj‖
,

7: γ = ∇X(pi)
‖∇X(pi)‖

T ∇X(pj)
‖∇X(pj)‖

, ∆ = ‖pi − pj‖

8: Let Π = {α, β, γ,∆}
9: UpdateIΠ → IΠ + ‖∇X(pi)‖ · ‖∇X(pj)‖.

10: end for
11: end for

3.3 Extensions to Group Averaging

As demonstrated in [9], the framework of Group Averaging canbe extended by Spherical Harmonics or D-Wigner
Matrices in order to obtain a better description of the features.

Furthermore, scaling invariance can be introduced by scaling the standard deviation of two point clouds to
the same value and then applying the GI-algorithm. Affine transformation might be achieved by considering the
proportional area information of the quadrangles spanned by the point cloud.

A tolerance to noise can be achieved by using fuzzy binning for the histogram computation in the GI-
Algorithm.

4 Benchmark for Group Averaging

In the following we would like to explore the stability of theGI features on a 2D data set. Our experimental
setup is an image spaceI of size200 × 250 pixel and a set of randomly normally distributed points of size |P |.
The point set is rotated by the angleφ = 5 around the center of the image and translated byt = [20,−10].
The transformation between the two point sets is computed byfirst finding correspondences using the GI features
and then computing the transformation using the firstK = 20 correspondences with the most similar GI feature
vectors. True correspondences are determined with the RANSAC algorithm. The histogram bin size is#binα =
4, #binβ = 4 and#bin∆ = 10. The implementation was performed in Matlab R2009a on a Intel Core 2 Duo
processor with 3GHz and 8GB RAM.

4.1 Increasing the Point Density

For the computation of the GI features in the first experiment, we chooseσ = 10 and the neighborhood size
r = 10 and perform the GI algorithm on 100 randomly generated pointsets of size|P |. By increasing the point
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|P | 40 300 600 1000 2000 4000
sec 0.03 0.57 2.66 5.24 10.65 19.10

Table 1: Time consumption of the GI algorithm for increasingpoint set size|P |.

set size|P |, we are increasing the point density inI. From Fig. 3 we can see that for the given parameter set,
the performance is best for|P | = 300. For |P | > 300, the mean square error (MSE) and its standard deviation
increase. The time consumption increases almost linearly in relation to the point set size|P | (Tab. 1).
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Figure 3: The influence of the point set size|P | on the MSE for 100 random runs.

4.2 Influence of the Gaussian Modelling Parameter Sigma

For the second experiment (Fig. 4), we will take a set of normally distributed points of size|P | = 500 and consider
the neighborhoodr = 10 and modify the standard deviation of the Gaussian modellingfunctionσ. The MSE has
its minimum atσ = 10 and increases slowly forσ > 10. For σ < 10 the MSE is very large (forσ = 1 the
MSE > 1000). The optimal sigma depends on the neighborhood sizer. If σ is chosen too small the registration
will fail.
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Figure 4: The influence of the Gaussian modeling parameterσ on the MSE for 100 random runs.
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4.3 Influence of the Neighborhood Size

Finally, we will keepσ = 10 and|P | = 500 constant and modify the size of the neighborhoodr. From Fig. 5, the
optimal neighborhood size for this parameter set isr = 10. The computation time increases with the neighborhood
size (Tab. 2).

r 5 10 15 20 30 40
sec 0.45 1.82 2.72 2.80 2.88 2.90

Table 2:Time consumption of the GI algorithm for increasing neighborhood sizer.
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Figure 5: The influence of the the size of the neighborhoodr on the MSE for 100 random runs.

5 Properties of the GI Algorithm

From the experiments above we conclude that a careful choiceof the neighborhood size and the parameter sigma
is crucial for the success of the algorithm.

The introduction of the gradient is crucial if we want to compare the local constellations of the points. By using
only the distance between the points, we will get an incomplete descriptor. In Fig. 6 the three neighbors have the
same distance to the reference point, however there is no Euclidean transform which can register the two points.
Thus after defining the correspondence, the transformationbetween the two points must be computed explicitly in
order to verify the correspondence. This verification step is not necessary after computing the descriptor by group
averaging. The point gradients can resolve the ambiguity introduced by the k-nearest neighbors (Fig. 7).

Further we would like to emphasize, that the GI-Algorithm has two interesting properties. The first property
is its stability to outliers: Since only local correspondences are considered, additional points (e.g. points from out
of the field of view) will not hinder the success of the algorithm if there are enough local correspondences to be
retrieved.

The second property is its ability to describe the neighborhood of a point in a qualitative way thus allowing
for missing neighbors (e.g. due to occlusions) which is not possible when using the k-nearest neighbor descriptor.
When using the GI-algorithm, we do not need to define the number of neighbors of one point, we can only consider
a volume around the point. A large number of neighbors occursalready in a small volume, if the density of the
point cloud is high.

5



Figure 6:Ambiguity of the K-nearest neighbor descriptor. The red points with respect to the black point and
the green points with respect to the black point have the samek-nearest neighbor descriptor. They can however
not be transformed by Euclidean motion to the same referenceframe.

(a) Points on concentric circles around the center point have the same distance.
Two constellations with same distance to the origin are shown.

(b) The gradients are plotted for the points shown above. Thegradients differ
significantly, although the distances to the center point are equal.

Figure 7:Ambiguity solved with GI descriptor. The points described here can be differentiated well with the
GI-descriptor.

6 Applications

In the following, we will present some successful applications of the GI-Algorithm to 2D and 3D data.

6.1 Tracking and Identification of 2D Point Patterns

Marine biologists are interested in tracking and comparingbluespotted ribbontail rays (Taeniura lymma) according
to there characteristic point pattern. They record videos of the rays and are interested in the evaluation of their
data (Fig. 9). The coordinates of the points in the point pattern where manually extracted and vary between 67
and 83 points.
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(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4

(e) Frame 5 (f) Frame 6 (g) Frame 7 (h) Frame 8

(i) Frame 9 (j) Frame 10 (k) Frame 11 (l) Frame 12

(m) Frame 13 (n) Frame 14

Figure 8: The Frames 1-14 from the bluespotted ribbontail ray video.

The GI-Algorithm can be applied to either track one individual ray in a video sequence or compare patterns
of two different rays if the images can be registered by an Euclidean transform. The movement vector can be
computed by determining the correspondences in two frames (Fig.10, Fig.11). For the registration of two frames
(Fig.11) with c.a. 70 points the GI-Algorithm requires 0.7 sec with average bead registration error of 1.52 px (min.
0.17 px max 2.95 px) on 52 correspondences. The parameters are (#binα, #binβ , #bin∆) = (4, 4, 10), σ = 10
andr = 20.

For the comparison of two rays, one could compute the GI for the whole point pattern for each ray, thus
obtaining one feature vector for each ray. The distance between these feature vectors can then be used to determine
the similarity between the images of two rays, e.g. in order to identify the recorded ray.

In order to see the limitations of the method we have registered the sixth frame against all 14 frames. In Fig.
we can see the average registration error in pixel distance and the number of found correspondences for each
frame. If the registration failed the average error is negative. The registration failed for frame 10 and frame 11.
For the data at hand (a video sequence of one ray) the GI-algorithm worked fine for most frames. However, in
general the transformation of the ray in the image is better described by an affine transform.
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(a) Average Error after registration with the GI-Algorithm.
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(b) Number of Correspondencesafter registration with the GI-Algorithm.

Figure 9: The Frames 1-14 from the bluespotted ribbontail ray video are registered to Frame 6 with the GI-
Algoirthm. The average error and the number of correspondences after registration are presented.
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6.2 Registration of 3D image stacks

Three-dimensional zebrafish images are recorded from six different views using the Single Plane Illumination
Microscopy (SPIM) ([5]). Fluorescent point markers (called beads) are embedded in a surrounding medium for
the purpose of registration (see Fig. 12). The position of the beads is extracted by first smoothing the image, then
extracting the local maxima and finally excluding points on the object with the help of morphological operators.
The images are recorded with a red and a green channel, where points in the red channel mark the tissue of
the zebrafish. The pixel size is (1.14µm × 1.14µm × 3µm) per view resulting in a final output image with
959 × 960 × 250px.

The number of beads extracted in each view are presented in Tab. 3. They differ between 78 beads and 111
beads.

view 0◦ 60◦ 120◦ 180◦ 240◦ 300◦

# beads 78 92 87 82 111 99

Table 3:The number of detected beads in each view of the SPIM recording.

The SPIM obtains different views by rotating the probe around the y-axis (with respect to the recorded stack)
for a specified angle (in this case 60◦). A pre-registration of the data can be achieved by rotatingall probes back
by the inverse angle (Fig. 13). However, as the field of view ismanually adjusted, we need to calculate the
translation between the images. There is also a slight rotation between the images, since the rotation aperture is
never perfectly calibrated. Thus, the GI-algorithm needs to be applied in order to obtain a better registration of
the images.

After extracting the positions of the beads we obtain two 3D point sets (P1 andP2) and apply the GI-algorithm
for computing the multidimensional histogram for each point in Pi. The point descriptors fromP1 andP2 are
compared using the sum of absolute differences. Correspondences are assigned according to minimal distancesd

between the histograms. For the computation of the registration parameters, only correspondences withd < ǫ are
considered. The Registration parametersR, t are computed using RANSAC [2] and absolute orientation [4].

The coarse registration is performed with the GI-Algorithm(Fig. 14(b)) with precision 1.49 px (min. 0.73
px max 2.02 px) on 200 correspondences. The parameters are(#binα, #binβ , #binγ , #bin∆) = (2, 2, 2, 10),
σ = 40 andr = 60. For the registration of two SPIM images with 100 beads the GI-Algorithm requires 11 sec.

In Fig. 14 the registered six different SPIM views are presented. Due to the recording limitations, only the
image portion enclosed by the smaller part of the white circle can be used for further processing (e.g. image
fusion).

The results of the pre-registration are compared to the results obtained after applying the GI-Algorithm in Fig.
15. We can see the improvement especially on the right side ofthe image. There the beads which are contained in
all views have a characteristic star shape, since for every view the orientation of the point spread function rotates
when rotating the image. In the bottom left corner the registration is not very good. This might be due to the fact,
that the gel surrounding the probe moves elastically when performing the registration. Better results could also be
obtained by applying the GI-Algorithm in an iterative manner. In this example we have only registered each view
separately to the zero view.

6.3 Registration of Interest Points

Two individual three day old zebrafish (e05 and e07) are recorded with a confocal microscope. In order to obtain
a high cellular resolution, each zebrafish is recorded in 4 tiles, which are stitched together to form one image. The
output image has the size339 × 339 × 210px with isotropic voxel size of2µm

After interest point detection using Gradient Vector Flow resulting in 5010 interest points for zebrafish e05
and 8050 interest points for zebrafish e07, the extracted interest points are registered using the GI-Algorithm.
Since the zebrafish is symmetrical, the local features extracted at each point are not sufficient for determining
correspondences. For example the features at the edge of thefish eye will be very similar at the left and the right
eye. Hence, global information about the points is includedby assigning them to one side of the axis of symmetry.
This restricts the search for correspondences to only one side of the axis of symmetry.

The results of the registration for(#binα, #binβ , #binγ , #bin∆) = (2, 2, 2, 5), r = 20 andσ = 10 are
presented in Fig. 16. The precision 1.47 px (min. 0.35 px max 2.0 px) on 391 correspondences is achieved.
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The computation time is 250 seconds for 7000 interest pointsper image. Forr = 10 the computation time is 36
seconds, but the result is not satisfying.

7 Conclusions

A new method for the registration of point clouds is presented in this work. It is based on Group Averaging applied
on a set of neighboring points. The number of points and theirflexible choice make this method more efficient
and reliable, even in cases when the standard methods fail, e.g. when the point density is high. The GI method is
evaluated using different random distributions of points and is verified through three biological applications.

The computation time and the precision of the registration directly increase with the neighborhood size. How-
ever, it is shown that an upper bound for the neighborhood size exists, when the precision begins to decrease.
Therefore it is possible to find an optimal neighborhood sizeproviding shorter computation times while keep-
ing the registration error small. An optimal size of the neighborhoodr could be determined using point density
statistics.
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(a) Frame 1 with labeled Points (b) Frame 6 with labeled Points

(c) Frame 6 with Points from Frame 1 before (left) and after (right) Registration
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(d) Correspondences from Frame 1 and Frame 6 found with the GI-Algorithm are circled in the same color.

(e) Overlay from Frame 1 and Frame 6 before (left) and after (right) applying the GI-Algorithm.

Figure 10: Registration of Frame 1 and Frame 6 of the bluespotted ribbontail rays with the GI-Algorithm.
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(a) Frame 6 with labeled Points (b) Frame 12 with labeled Points

(c) Frame 6 with Points from Frame 12 before (left) and after (right) Registration
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(d) Correspondences from Frame 6 and Frame 12 found with the GI-Algorithm are circled in the same color.

(e) Overlay from Frame 6 and Frame 12 before (left) and after (right) applying the GI-Algorithm.

Figure 11: Registration of Frame 6 and Frame 12 of the bluespotted ribbontail rays with the GI-Algorithm.
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(a) angle 0 (b) angle 60

(c) angle 120 (d) angle 180

(e) angle 240 (f) angle 300

Figure 12:Original data. Six different views of the zebrafish recorded with SPIM are presented before registra-
tion. The maximum intensity projection of the stacks is displayed in the xz-view.
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(a) angle 0 (b) angle 60

(c) angle 120 (d) angle 180

(e) angle 240 (f) angle 300

Figure 13:Pre-registration step. Six different views of the zebrafish recorded with SPIM are presented after
rotation around the angle provided with the image around they-axis. The maximum intensity projection of the
stacks is displayed in the xz-view.
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(a) angle 0 (b) angle 60

(c) angle 120 (d) angle 180

(e) angle 240 (f) angle 300

Figure 14:Fine registration with the GI-Algorithm. Six different views of the zebrafish recorded with SPIM
are registered using the position of the beads with the GI-Algorithm. The maximum intensity projection of the
stacks is displayed in the xz-view.
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(a) Result of selecting the maximal value of all six pre-registered views (only
rotation)

(b) Result of selecting the maximal value of all six registered views (GI-
Algorithm on pre-registered)

Figure 15: Overlay of the six angles after pre-registration(a) and after applying the GI-Algorithm once to the
pre-registered images (b).

16



(a) Zebrafish e05, 5010 interest points de-
tected

(b) Zebrafish e07, 8050 interest points de-
tected

(c) Overlay Zebrafish e05 and e07 before (left) and after (right) registration

(d) Overlay of the interest points from e05 and e07 before (left) and after (right) registra-
tion

Figure 16: On the top the original images before (left) and after registration (right) are displayed as an overlay. On
the bottom the detected interest points are overlayed. The three dimensional images are displayed as a maximum
intensity projections.
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