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Abstract

Registration of point clouds is required in the processif¢ame biological data sets. The tradeoff between
computation time and accuracy of the registration is thenrohallenge in this task.

We present a novel method for registering point clouds in @&wd three dimensional space based on Group
Averaging on the Euclidean transformation group. It is aggpbn a set of neighboring points whose size directly
controls computing time and accuracy.

The method is evaluated regarding dependencies of the dorgpiime and the registration accuracy versus
the point density assuming their random distribution. Resare verified in three biological applications on 2D
and 3D images.



1 Introduction

Registering point clouds is a task often encountered in eerprision. The point clouds can e.g. represent
interest points, detected markers or laser scan data. Tisregion is crucial for e.g. comparing or fusing the
data. Fast and precise algorithms are necessary to petigmask. Depending on the transformation at hand and
the structure of the data, different algorithms are usedg[3]). If the points are distributed randomly in space,
state-of-the-art methods perform poorly. This is why ing8jew method based on local descriptors was described
to perform the task of registering fluorescent point mark@itse drawback of this method is the relatively high
computation time and the strong dependency on the k-nerghte have introduced a local point descriptor
based on Group Integration (GI) over the Euclidean groupjifidr describing the similarity between two protein
structures. This descriptor can be applied not only forgimstructures but in many tasks of computer vision.

The idea of the descriptor is to describe at each point thed mstellation of its neighboring points by taking
into account the local density of the points. We will deserthe local density of a point by defining a 'point
gradient’. These gradients along with the distances betweamts are invariant considering the Euclidean group.
We will not consider the 'point gradients’ and distancestBelves, but there distribution in a histogram following
the idea of shape histograms [7].

Our method is particularly efficient, if the density of themts is high in some regions of the image and using
the k-nearest neighbors (for small k) is not sufficient toctiée the local neighborhood.

In this work we would like to evaluate how the density of thénp® influences the performance of the Gl
algorithm and in which cases the Gl algorithm can be usedhtregistration of point sets.

2 Related Methods

There are two kinds of methods for comparing point cloudse fitst kind of methods operates on the whole
point set and tries to find correspondences by optimizinglistance function between the source and the moving
data([6], [3]). These methods work particularly well if theint cloud has a specific shape and the optimization
function has a global minimum. The optimal transformatisrcomputed without explicitly determining the
correspondences. This method fails if the two point sefsifi size and only their global distribution is matched.

The second kind of methods is based on first computing thé fieatures for each point. Then the correspon-
dence between the points is determined using these feakinedly, the transformation of the points is computed
using the correspondences and applied to the whole poinThetmost prominent of this methods is RANSAC
([2]), however it can get very slow for a large point sé& (> 3000 points). Therefore it is necessary to reduce
the size of points in the point set before applying RANSAC nadl set of reliable correspondences can be pres-
elected using distances between local features. In theafimity section, we will present the theory for computing
local features by Group integration.

3 Group Averaging on Point Sets

Inthe following Gl is used to obtain an invariant descriptad a point cloud imag& with respect to the Euclidean
group.

3.1 Point Gradients

A discrete point seP := {p,, € R¥|n = 1,..., M’} is mapped t®R by defining an ’intensity functionX : R* —
R indicating the presence of the point. We choose to repréisemoint set” as the sum of overlapping Gaussian
distributions. The functioX at pointp € P is defined as:

X(p) = Y () )

The gradient ofX is then:

VX(p) = Z(pifp)expf( 2 )2 (2)
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Figure 1: The influence ofo on the 'point gradient’. The points are marked in red, the gradient is marked in
blue. The shape of the Gaussian is indicated in light blue.

To get an intuition for the meaning of the density gradierg,skhow in Fig. 1 the effects of the gradient by
choosing two different values far. From Fig. 1 we can see thatcontrols the influence of points far away
from the pointp on the gradien¥V X (p). A small value of sigma has the effect, that only the pointhdirect
neighborhood op influence the direction of the gradient. A large valuesoénhances the influence of points
further away fromp. The gradient is always directed in the opposite directicthe point cloud of influence.

3.2 Group Averaging Algorithm

An elementg of the Euclidean groug acts onX by g X (p) — X (Rp + t), wherek € {2,3}, p,t € R* and
R € R¥** is a orthogonal matrix. A group integration feature is otral by integrating a kernel functighover
the group of Euclidean motiofi (see [1]):

I(X) = / f(gX)dg. ©)
&
In [9] the following kernel function was introduced:
fann (X) = hn(VX(0)) hn (VX (d)) (4)

Whered is the width parameter and n” describe normalized orientation vectors for each poine flimction
h is defined by:

T
hin(0) = 0161 ('||”') , (5)

whered; is the Delta-Distribution giving contribution if its argent is nearby 1 and otherwise zefg, describes

a specific configuration between two vecters.. The integral in Eq. 3 thus sums over all possible Euclidean
transformations of two points with distanédaving gradient vectors parallel with »’. The integral is evaluated
once for each parameter sétn, n’. This specific configuration is captured for three dimenaiamctors using
three angles(, 3, € [—1, 1]) and one distance vectdr € R (Fig. 2). For 2D vectors two angleg(3) and

the distance vectah € R* are sufficient.

The resulting algorithm (Alg. 1) computes a histogram ofatises and orientations of point pairs in the point
setP weighted by the magnitude of their gradients. The numbersdbgram bins for each parametéis chosen
according to the application.

We describe the local neighborhodd = {p; € P|0 < ||p — pi| < r} of all pointsp € P by group
averaging(step 9, Alg. 1). For instance Gl is performediasiyperspheres with constant radiysositioned at
centergp. Corresponding points; € P, andps € P, have similar histograms.



Figure 2:The configuration of two points. The configuration between two points in 3D is captured byelame-
gles ¢, 3, v) and the distancA between the points. The angl€not shown) is the angle between the orientation
vectorsn andn’.

Algorithm 1: Gl Algorithm
1: Initialize It = 0 for all I1.
2: fori=1to M do
3 forj=1toM do

4 Compute:

_ VX)) T pi-p;
5 &= VX Pl Tei—pil’
. _ _VX(pj) Pi—Pj
6 B = 1vXte T ToipsTl’

_ VX)) T VX(p;) e
7T VXl ||VX(pj)H'A*HPz Pl

8: Letll = {«, 3,7, A}

o: Updateln — It + [[VX (ps)| - VX (p))l|-
10. end for

11: end for

3.3 Extensions to Group Averaging

As demonstrated in [9], the framework of Group Averaging lbarxtended by Spherical Harmonics or D-Wigner
Matrices in order to obtain a better description of the fesgu

Furthermore, scaling invariance can be introduced by rsgdhie standard deviation of two point clouds to
the same value and then applying the Gl-algorithm. Affinegfarmation might be achieved by considering the
proportional area information of the quadrangles spangeatidpoint cloud.

A tolerance to noise can be achieved by using fuzzy binnimgttie histogram computation in the Gl-
Algorithm.

4 Benchmark for Group Averaging

In the following we would like to explore the stability of th@l features on a 2D data set. Our experimental
setup is an image spadeof size200 x 250 pixel and a set of randomly normally distributed points aksiP|.
The point set is rotated by the angle= 5 around the center of the image and translated by [20, —10].
The transformation between the two point sets is computditdiyfinding correspondences using the Gl features
and then computing the transformation using the fifs& 20 correspondences with the most similar Gl feature
vectors. True correspondences are determined with the RE&NSgorithm. The histogram bin size #bin,, =

4, #bing = 4 and#binay = 10. The implementation was performed in Matlab R2009a on d B¢ee 2 Duo
processor with 3GHz and 8GB RAM.

4.1 Increasing the Point Density

For the computation of the Gl features in the first experimesmt chooser = 10 and the neighborhood size
r = 10 and perform the Gl algorithm on 100 randomly generated [s®t¥ of size P|. By increasing the point



|P| 40 300 600 1000 2000 4000
sec| 0.03 057 266 5.24 10.65 19.10

Table 1: Time consumption of the Gl algorithm for increagimint set sizéP|.

set size| P|, we are increasing the point density in From Fig. 3 we can see that for the given parameter set,
the performance is best foP| = 300. For|P| > 300, the mean square error (MSE) and its standard deviation
increase. The time consumption increases almost lingariglation to the point set sizé| (Tab. 1).
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Figure 3: The influence of the point set siZg on the MSE for 100 random runs.

4.2 Influence of the Gaussian Modelling Parameter Sigma

For the second experiment (Fig. 4), we will take a set of ndigndéstributed points of siz¢P| = 500 and consider
the neighborhood = 10 and modify the standard deviation of the Gaussian modefilingtiono. The MSE has
its minimum atc = 10 and increases slowly far > 10. Foro < 10 the MSE is very large (fos = 1 the
MSE > 1000). The optimal sigma depends on the neighborhoodssizé s is chosen too small the registration
will fail.
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Figure 4: The influence of the Gaussian modeling paranaeterthe MSE for 100 random runs.



4.3 Influence of the Neighborhood Size

Finally, we will keepo = 10 and|P| = 500 constant and modify the size of the neighborheoBrom Fig. 5, the
optimal neighborhood size for this parameter setds 10. The computation time increases with the neighborhood
size (Tab. 2).

r 5 10 15 20 30 40
sec| 0.45 182 272 280 288 290

Table 2:Time consumption of the Gl algorithm for increasing neighbahood sizer.
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Figure 5: The influence of the the size of the neighborhood the MSE for 100 random runs.

5 Properties of the GI Algorithm

From the experiments above we conclude that a careful clobite neighborhood size and the parameter sigma
is crucial for the success of the algorithm.

The introduction of the gradient is crucial if we want to caanpthe local constellations of the points. By using
only the distance between the points, we will get an incoteplescriptor. In Fig. 6 the three neighbors have the
same distance to the reference point, however there is ni@Ean transform which can register the two points.
Thus after defining the correspondence, the transformbgbmeen the two points must be computed explicitly in
order to verify the correspondence. This verification ssapot necessary after computing the descriptor by group
averaging. The point gradients can resolve the ambiguitgduced by the k-nearest neighbors (Fig. 7).

Further we would like to emphasize, that the Gl-Algorithns ihao interesting properties. The first property
is its stability to outliers: Since only local correspondes are considered, additional points (e.g. points from out
of the field of view) will not hinder the success of the algonit if there are enough local correspondences to be
retrieved.

The second property is its ability to describe the neighbodof a point in a qualitative way thus allowing
for missing neighbors (e.g. due to occlusions) which is mssible when using the k-nearest neighbor descriptor.
When using the Gl-algorithm, we do not need to define the nuwitreeighbors of one point, we can only consider
a volume around the point. A large number of neighbors ocalnesady in a small volume, if the density of the
point cloud is high.



Figure 6: Ambiguity of the K-nearest neighbor descriptor. The red points with respect to the black point and
the green points with respect to the black point have the danearest neighbor descriptor. They can however
not be transformed by Euclidean motion to the same refereane.

(a) Points on concentric circles around the center poin¢ ldae same distance.
Two constellations with same distance to the origin are show
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(b) The gradients are plotted for the points shown above. gradients differ
significantly, although the distances to the center poiategual.

Figure 7: Ambiguity solved with Gl descriptor. The points described here can be differentiated well wiéh th
Gl-descriptor.

6 Applications

In the following, we will present some successful applizas of the Gl-Algorithm to 2D and 3D data.

6.1 Tracking and Identification of 2D Point Patterns

Marine biologists are interested in tracking and compabingspotted ribbontail rays (Taeniuralymma) according
to there characteristic point pattern. They record viddab@rays and are interested in the evaluation of their
data (Fig. 9). The coordinates of the points in the pointguattvhere manually extracted and vary between 67
and 83 points.



(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4
(e) Frame 5 (f) Frame 6 (g) Frame 7 (h) Frame 8
(i) Frame 9 (j) Frame 10 (k) Frame 11 (I) Frame 12
- -
(m) Frame 13 (n) Frame 14

Figure 8: The Frames 1-14 from the bluespotted ribbontgil/ideo.

The Gl-Algorithm can be applied to either track one indiaditay in a video sequence or compare patterns
of two different rays if the images can be registered by anlife@n transform. The movement vector can be
computed by determining the correspondences in two frafigslQ, Fig.11). For the registration of two frames
(Fig.11) with c.a. 70 points the Gl-Algorithm requires Oet svith average bead registration error of 1.52 px (min.
0.17 px max 2.95 px) on 52 correspondences. The parameefg-hin,, #bing, #bina) = (4,4,10), 0 = 10
andr = 20.

For the comparison of two rays, one could compute the Gl fervihole point pattern for each ray, thus
obtaining one feature vector for each ray. The distancedrmthese feature vectors can then be used to determine
the similarity between the images of two rays, e.g. in ordedéntify the recorded ray.

In order to see the limitations of the method we have registéne sixth frame against all 14 frames. In Fig.
we can see the average registration error in pixel distandettee number of found correspondences for each
frame. If the registration failed the average error is niggatThe registration failed for frame 10 and frame 11.
For the data at hand (a video sequence of one ray) the Glitfgoworked fine for most frames. However, in
general the transformation of the ray in the image is bettscdbed by an affine transform.
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(a) Average Error after registration with the Gl-Algorithm
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(b) Number of Correspondencesatfter registration with thélgorithm.

Figure 9: The Frames 1-14 from the bluespotted ribbontgilvideo are registered to Frame 6 with the GI-
Algoirthm. The average error and the number of corresporeteafter registration are presented.



6.2 Registration of 3D image stacks

Three-dimensional zebrafish images are recorded from ffisreint views using the Single Plane lllumination
Microscopy (SPIM) ([5]). Fluorescent point markers (cdllzeads) are embedded in a surrounding medium for
the purpose of registration (see Fig. 12). The position eftbads is extracted by first smoothing the image, then
extracting the local maxima and finally excluding points be bbject with the help of morphological operators.
The images are recorded with a red and a green channel, wbans m the red channel mark the tissue of
the zebrafish. The pixel size is$.{4um x 1.14um x 3um) per view resulting in a final output image with
959 x 960 x 250pX.

The number of beads extracted in each view are presentedin3Tarhey differ between 78 beads and 111
beads.

view 0° 60° 120> 180> 240° 300
# beads| 78 92 87 82 111 99

Table 3:The number of detected beads in each view of the SPIM recordm

The SPIM obtains different views by rotating the probe arbthe y-axis (with respect to the recorded stack)
for a specified angle (in this case®§0A pre-registration of the data can be achieved by rotalhgrobes back
by the inverse angle (Fig. 13). However, as the field of viewnanually adjusted, we need to calculate the
translation between the images. There is also a slightioothetween the images, since the rotation aperture is
never perfectly calibrated. Thus, the Gl-algorithm needise applied in order to obtain a better registration of
the images.

After extracting the positions of the beads we obtain two 8ihpsets ; and ;) and apply the Gl-algorithm
for computing the multidimensional histogram for each p@inP;. The point descriptors fron®, and P, are
compared using the sum of absolute differences. Corregpmed are assigned according to minimal distatices
between the histograms. For the computation of the retjmtrparameters, only correspondences with ¢ are
considered. The Registration parametRrg are computed using RANSAC [2] and absolute orientation [4].

The coarse registration is performed with the Gl-Algorittfiig. 14(b)) with precision 1.49 px (min. 0.73
px max 2.02 px) on 200 correspondences. The paramete(giia,, , #bing, #bin,, #bina) = (2,2,2,10),

o = 40 andr = 60. For the registration of two SPIM images with 100 beads thé\@brithm requires 11 sec.

In Fig. 14 the registered six different SPIM views are présénDue to the recording limitations, only the
image portion enclosed by the smaller part of the white eirzdn be used for further processing (e.g. image
fusion).

The results of the pre-registration are compared to thdtsasitained after applying the Gl-Algorithm in Fig.
15. We can see the improvement especially on the right sitteedmage. There the beads which are contained in
all views have a characteristic star shape, since for eviery the orientation of the point spread function rotates
when rotating the image. In the bottom left corner the regi&tn is not very good. This might be due to the fact,
that the gel surrounding the probe moves elastically whefopaing the registration. Better results could also be
obtained by applying the Gl-Algorithm in an iterative manria this example we have only registered each view
separately to the zero view.

6.3 Registration of Interest Points

Two individual three day old zebrafish (e05 and e07) are dEmbwith a confocal microscope. In order to obtain
a high cellular resolution, each zebrafish is recorded ite4,tivhich are stitched together to form one image. The
output image has the siZ89 x 339 x 210px with isotropic voxel size o2um

After interest point detection using Gradient Vector Flagulting in 5010 interest points for zebrafish e05
and 8050 interest points for zebrafish e07, the extractedest points are registered using the Gl-Algorithm.
Since the zebrafish is symmetrical, the local features etedaat each point are not sufficient for determining
correspondences. For example the features at the edgefidttteye will be very similar at the left and the right
eye. Hence, global information about the points is incluggdssigning them to one side of the axis of symmetry.
This restricts the search for correspondences to only aleedsithe axis of symmetry.

The results of the registration f@g£bin,, #bing, #bin,, #bina) = (2,2,2,5), r = 20 ando = 10 are
presented in Fig. 16. The precision 1.47 px (min. 0.35 px méxpX) on 391 correspondences is achieved.



The computation time is 250 seconds for 7000 interest pp@témage. For = 10 the computation time is 36
seconds, but the result is not satisfying.

7 Conclusions

A new method for the registration of point clouds is preséinehis work. It is based on Group Averaging applied
on a set of neighboring points. The number of points and flesiible choice make this method more efficient
and reliable, even in cases when the standard methods.ilben the point density is high. The GI method is
evaluated using different random distributions of poimtd & verified through three biological applications.

The computation time and the precision of the registratiogctly increase with the neighborhood size. How-
ever, it is shown that an upper bound for the neighborhoasl eidsts, when the precision begins to decrease.
Therefore it is possible to find an optimal neighborhood gim®/iding shorter computation times while keep-
ing the registration error small. An optimal size of the idigrhood- could be determined using point density
statistics.
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(a) Frame 1 with labeled Points (b) Frame 6 with labeled Points

(c) Frame 6 with Points from Frame 1 before (left) and afteyhf) Registration

(d) Correspondences from Frame 1 and Frame 6 found with th@alrithm are circled in the same color.
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(e) Overlay from Frame 1 and Frame 6 before (left) and aftgh{y applying the GI-Algorithm.

Figure 10: Registration of Frame 1 and Frame 6 of the bluéspoibbontail rays with the Gl-Algorithm.
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(a) Frame 6 with labeled Points (b) Frame 12 with labeled Points

(c) Frame 6 with Points from Frame 12 before (left) and afiighf) Registration

(d) Correspondences from Frame 6 and Frame 12 found with tdg®rithm are circled in the same color.

4

(e) Overlay from Frame 6 and Frame 12 before (left) and afight) applying the Gl-Algorithm.

Figure 11: Registration of Frame 6 and Frame 12 of the blutspabbontail rays with the Gl-Algorithm.
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(e) angle 240 (f) angle 300

Figure 12:Original data. Six different views of the zebrafish recorded with SPIM aresented before registra-
tion. The maximum intensity projection of the stacks is tigpd in the xz-view.
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(a) angle 0 (b) angle 60

(e) angle 240 (f) angle 300

Figure 13:Pre-registration step. Six different views of the zebrafish recorded with SPIM aresgnted after
rotation around the angle provided with the image around/thris. The maximum intensity projection of the
stacks is displayed in the xz-view.
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(b) angle 60

e

angle240

(e) angle 240 (f) angle 300

Figure 14:Fine registration with the Gl-Algorithm. Six different views of the zebrafish recorded with SPIM
are registered using the position of the beads with the @bAlhm. The maximum intensity projection of the
stacks is displayed in the xz-view.
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(a) Result of selecting the maximal value of all six pre-ségfied views (only
rotation)

(b) Result of selecting the maximal value of all six registewiews (Gl-
Algorithm on pre-registered)

Figure 15: Overlay of the six angles after pre-registratmnand after applying the GI-Algorithm once to the
pre-registered images (b).
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(a) Zebrafish e05, 5010 interest points @} Zebrafish e07, 8050 interest points de-
tected tected

(c) Overlay Zebrafish e05 and e07 before (left) and afteh{yigegistration

(d) Overlay of the interest points from e05 and e07 befor¢) @ad after (right) registra-
tion

Figure 16: On the top the original images before (left) atdrakgistration (right) are displayed as an overlay. On
the bottom the detected interest points are overlayed. filee dimensional images are displayed as a maximum
intensity projections.
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