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Abstract. Automatic image annotation empowers the user to search an
image database using keywords, which is often a more practical option
than a query-by-example approach. In this work, we present a novel
image annotation scheme which is fast and effective and scales well to a
large number of keywords. We first provide a feature weighting scheme
suitable for image annotation, and then an annotation model based on
the one-class support vector machine. We show that the system works
well even with a small number of visual features. We perform experiments
using the Corel Image Collection and compare the results with a well-
established image annotation system.

1 Introduction

The amount of available multimedia data is continuously on the rise. With this
arises the need to be able to locate existing data effectively. Data which cannot
easily be found is as good as lost. Multimedia search differs from text search
in that the results are much more subjective, and exact matches are normally
not possible. For digital images, a lot of research has been done in the field
of “Content-Based Image Retrieval” (CBIR) in the past decade. A user typ-
ically searches a CBIR database using the query-by-example paradigm, and
the CBIR system bases its search on visual features extracted from the image.
A big obstacle for CBIR to gain mainstream acceptance has been the so-called
semantic-gap problem [1,5], though it can be somewhat reduced using relevance-
feedback techniques [2,3]. Another practical problem in CBIR is that the user
may not have a query image available.

A metadata search system on the other hand bases its search on image meta-
data, such as date and place of creation, image size, other image acquisition pa-
rameters, and on image keyword-annotation. Here, the database images are typ-
ically manually annotated with keywords, a task which is very time-consuming
and also subjective. For large databases, this is simply prohibitively expensive.
Automatic Image Annotation tries to bridge these two approaches, in that it
works on the content of the images, but gives the user a possibility to perform
a metadata search. Of course, semantic-gap remains a problem here too.

We describe briefly some prior work in the field of automatic annotation.
Barnard et al. [12] presented a scheme to link segmented image regions with
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words, the results depending heavily on the quality of the segmentation. Julia
Vogel [6] assigned semantically meaningful labels to local image regions formed
by dividing the image into a rectangular grid. Li and Wang [11] gave a statistical
modeling approach using a 2-D Multiresolution Hidden Markov Model for each
keyword and choosing the keywords with higher likelihood values. Cusano et al.
[13] use a multi-class SVM for annotation though their scheme can hardly be
judged due to their very small vocabulary consisting of seven keywords.

In this paper we describe our annotation methodology which consists of a fea-
ture extraction, feature weighting, model evaluation and a keyword assignment
routine. Note that we sometimes use the terms feature weighting and feature
selection interchangeably, as once the system has given a weight to each feature,
they can always be ranked to select the ones with the higher weights.

We describe briefly the outline of this paper. We first give a description of the
visual features used, then present our feature weighting algorithm. Later we give
a description of our model based on the one-class SVM, and present the results
of the experiments. We conclude with a discussion and an outlook for possible
improvements and future work.

2 Features

To demonstrate the effectiveness of the feature weighting and model evaluation
modules, we use a small set of simple visual features comprising of the following:

Colour Features: Colour features are widely used for image representation be-
cause of their simplicity and effectiveness. We use color moments calculated on
HSV images. For each of the three layers we compute the layer mean, layer vari-
ance and layer skewness respectively. This yields a 9-dimensional vector. Since
this does not incorporate any interlayer information, we calculate three new
layers SV, VH and HS non-linearly by point-wise multiplication of pairs from
original layers and calculate the same 3 moments also for the new layers. The
final 18-dimensional vector outperformed a 512-bin 3D Joint Colour Histogram
in CBIR tests that we performed.

Texture Features: Texture features can describe many visual properties that
are perceived by human beings, such as coarseness, contrast etc. [4]. We use the
Discrete Wavelet Transformation (DWT) for calculating texture features. The
original image is recursively subjected to the DWT using the Haar (db1) wavelet.
Each decomposition yields 4 subimages which are the low-pass filtered image and
the wavelets in three orientations: horizontal, vertical and diagonal. We perform
4 level of decompositions and for the orientation subimages we use the entropy
(−∑L

i=1 H(i) · log(H(i)), with H ∈ R
L being the normalized intensity histogram

of the subimage) as the feature, thus resulting in a 12-dimensional vector.

Edge Features: Shape features are particularly effective when image back-
ground is uncluttered and the object contour dominates. We use the edge-
orientation histogram [8] which we compute directly on gray-scale images by first
calculating the gradient at each point. For all points where the gradient magnitude
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exceeds a certain threshold, the gradient direction is correspondingly binned in the
histogram. We use an 18-bin histogram which yields bins of size 20 degrees each.

The final feature vector is a concatenation of the above three vectors and has
a dimensionality of 48.

3 Feature Weighting

A large number of feature selection or feature weighting methods have been pro-
posed in the machine learning literature. The interested reader can refer to [7] for
an overview of some of the popular alternatives. The main distinction is between
the so calledFilter methods, which compute a ranking for the featureswithout tak-
ing the inducer (classifier) into account, and the Wrapper methods, which search
in the set of subsets of features for the optimum subset for the specific inducer.

We propose a feature weighting method suitable for the image annotation
problem. Image annotation with keywords can be interpreted as a classification
problem but with two distinct characteristics: a) The number of classes (key-
words) can be very large, and b) An image object can belong to multiple classes
simultaneously (in other words, an image is usually annotated with multiple
keywords). Thus, traditional feature weighting methods for multi-class classifi-
cation are not only overloaded with the high number of classes, but would also
give incorrect weights because of the overlap between the classes.

Our final aim is to learn a model for each class (keyword) based on a few
training images. If we consider the training data for all the classes collectively, the
properties of the ensemble become evident: the classes overlap, data belonging to
the positive class (the class in question) is limited, but the data belonging to the
negative classes is huge and spread around the feature space. Thus a multi-class
classifier or a feature selection method based on it would not easily find decision
boundaries or relevant features. We show that it is indeed possible to weight the
features effectively for each class, taking into account the general distribution of
the features. Let us start with a short data terminology. Let the training samples
belonging to the positive class be given through

x1, . . .xl ∈ R
n

and the training examples in all the negative classes through

xl+1, . . .xl+m ∈ R
n

with m � l. Furthermore, we represent the i-th feature vector through the
notation

xi = [x(1)
i x

(2)
i . . . x

(n)
i ]

All features are first normalised to zero mean and unit variance. Then, we esti-
mate the distribution for each feature independently using the complete training
data. We use a gaussian mixture model with three components to estimate the
density,

p(x(k)) =
J∑

j=1

πjN(x(k)|Θj)
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Fig. 1. Feature Weights for four sample Corel categories. Each row plots the feature
weights and a few sample images from the category. The order of features in each graph
is as follows 1) 18 Colour features: Mean, Variance and Skewness of Hue layer, followed
by that of S, V, HS, SV and VH layers. 2) 12 Texture features: Entropy of H, V and
D first level decomposition, followed by 2nd and 3rd levels 3) 18 Edge Features: Bins
starting from 0◦ degrees in anti-clockwise direction with each bin having a span of 20◦.

where N is the normal distribution with parameters Θj = (μj , σj), and πj is the
weight of the j-th component, with

∑J
j=1 πj = 1. The density is estimated using

the expectation-maximization method.
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We define the average likelihood for feature k, averaged only over the images
of the positive class as

avgk =
∑l

i=1 p(x(k) = x
(k)
i )

l

The higher the average likelihood is, the more similar this feature is between
the positive and the negative classes and therefore less discriminative. Thus, we
define the weight for the k-th feature as

wk = 1/avgk

The weights are normalized so that
∑n

k=1 wk = 1. This has the effect that all
models deliver optimum performance (tested through crossvalidation) for about
the same model parameters. The features are then weighted with wk before fed
to the model computation routine (each model gets its own sets of weights).
We show now that the weighting scheme is effective and the weights can in fact
even be directly interpreted for our features. To do this, we plot in Fig. 1 the
calculated weights for the 48 features for 4 corel categories: churches, space1,
forests and flora. The training data consisted of 40 images each in the positive
class and the complete Corel collection of 60,000 images as the negative (Note
that it is immaterial here if the positive images are considered for determining
the gaussian mixture distribution or not, as we have a very large number of
samples available from the stochastic process). The sequence of the 48 features
is explained in the figure caption.

For the churches category, the maximum weight went to the edge features
corresponding to the directions 0◦ and 180◦, i.e., the discriminative vertical edges
present in churches and other buildings (most images in the category were taken
upright). For the space1 category, the most discriminative feature the system
found was the 7th feature, which is the mean of the brightness (V ) component
of the image (the images in the category are mostly dark). For the forests
category, texture features get more weight, as does the hue component of the
colour features. We however did find some categories where the weights were
somewhat counter-intuitive or difficult to interpret manually. An example is the
category flora in part d).

4 Model Computation

We assume that the presence or absence of a keyword in an image can be tested
independently of other keywords. Though it is not necessarily true, it is a reason-
able assumption to keep the complexity of the overall system in check. Otherwise,
the system would need access to the conditional probabilities of keywords given
the presence of other keywords.

We propose a slightly modified one-class Support Vector Machine (SVM) as
our model. One-Class SVM were introduced by Schölkopf et al. [9]. One-Class
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SVMs are binary functions which capture regions in the input space where the
probability density lies (i.e. its support). We train a one-class SVM for every
keyword with the aim to determine subspaces in the feature space where most
of the data for that keyword is present.

One-Class SVMs are the solution to the following optimization problem: Find
a hypersphere in R

n which contains most of the training data and is at the same
time as small as possible. This can be written in primal form as:

min
R∈R,ζ∈Rl,c∈F

R2 +
1
νl

∑

i

ζi

subject to
‖φ(xi) − c‖2 ≤ R2 + ζi, ζi ≥ 0, i = 1, ...l

φ(xi) is the i-th vector transformed to another (possibly higher-dimensional)
space using the mapping φ. c is the center and R the radius of the hypersphere
in the transformed space. With the kernel trick [10] it is possible to work in
the transformed space without ever calculating the map φ(xi) explicitly. This
can be achieved by defining a kernel function k(xi,xj) = 〈φ(xi), φ(xj)〉 as the
algorithm needs access only to scalar products between vectors, and not to the
actual vectors themselves.

The tradeoff between the radius of the hypersphere and the number of outliers
can be controlled by the single parameter ν ∈ (0, 1). Using Lagrange multipliers,
the above can be written in the dual form as:

min
α

∑

i,j

αiαjk(xi,xj) −
∑

i

αik(xi,xi)

subject to

0 ≤ αi ≤ 1
νl

,
∑

i

αi = 1

The optimal α’s can be computed with the help of QP optimization algo-
rithms. The decision function then is of the form

f(x) = sign(R2 −
∑

i,j

αiαjk(xi,xj) + 2
∑

i

αik(xi,x) − k(x,x))

This function returns positive for points inside this hypersphere and nega-
tive outside (note that although we use the term hypersphere the actual deci-
sion boundary in the original space can be varied by choosing different kernel
functions. We use a gaussian kernel k(x,y) = exp(−γ ‖x − y‖2), with γ and
ν determined emperically through cross-validation). Since we need a rank for
each keyword in order to annotate the image, we leave out the sign function, so
that the results can be sorted on the basis of their “positiveness”. Furthermore,
it was found that the results are biased towards keywords whose training im-
ages are very dissimilar to each other, i.e., the models for which R2 term is high.
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Compact models are penalised, and therefore we use the following function in-
stead for model evaluation:

g(x) =
R2 − ∑

i,j αiαjk(xi,xj) + 2
∑

i αik(xi,x) − k(x,x)
R2

which can be interpreted as the normalized distance from the model boundary
in the transformed space.

5 Experiments and Discussion

We perform our experiments similar to the ALIP system [11] to facilitate an
objective comparison. The Corel Database with 600 categories is used. Each
category is manually labelled1 with few descriptive keywords (typically 3 to 5).
Each category consists of 100 colour images of size 384 × 256, out of which we
select 40 images randomly as training images. Normally for image annotation we
would be training a model for every annotation keyword, and would annotate
a query image with the keywords whose models evaluate the query image most
favourably. For this experiment however, we learn a model for every Corel cate-
gory instead of each annotation keyword. Then, for the best k category matches
(we experiment with k = {5, 8, 11, 14}), the category keywords are combined and
the keywords least likely to have appeared by chance are taken for annotation,
as in [11]. This scheme favours infrequent words like waterfall and asian over
common ones like landscape and people.

To have an estimate of the discriminative performance of the system, we
perform a classification task with the 600 categories. The system attains an
accuracy of 11.3 % as compared to 11.88 % that of ALIP. However, as also
pointed out in [11], many of the categories overlap (e.g. Africa and Kenya)
and it is not clear how much can be read from this classification performance.
Furthermore, we found that although the best category match was incorrect in
the sense of the category ground truth, it was often meaningful with regard to
the query image. We provide some annotation examples in Table 1.

For a more controlled test, we take 10 distinct Corel Categories, namely
Africa, beach, buildings, buses, dinosaurs, elephants, flowers, horses,
mountains and food. The confusion matrix for this task is shown in Table 2.
Overall, the system attains classification accuracy of 67.8% as compared to 63.6%
attained in ALIP.

Computation Time: All experiments were performed on an Intel Pentium IV
2.80 GHz single-CPU machine running Debian Linux. Calculation of image fea-
tures takes about 1.2 seconds per image. Model computation with 40 training
vectors per model takes only about 20 msec per model. A new query image needs
about 4 seconds to be fully annotated (this includes computation time for fea-
ture extraction, evaluation of 600 models, and decision on unlikely keywords),
as compared to 20 minutes for the HMM-based approach in ALIP. This makes
1 We thank James Wang for making the category annotation available for comparison.
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Table 1. Sample annotation results from the system. The query images are taken
from the Corel Collection but did not belong to the training set. It can be observed
that while the original category was sometimes not found, it was due to the fact that
the categories often overlapped, as the top matches do indeed contain very similar
categories, leading to robust annotation results.

Query Image Original
Category

Top 8 Matches Final Annotation

africa

wildlife rare,
architect,

shells, dogs,
mammals,

newzealand,
197000,
pastoral

grass, animal,
dog, rareanimal,

shell,
mammal,

NewZealand,
pastoral

wl_ocean

plants, green,
foliage,

can park,
US garden, flora,

texture13,
flower2

plant, flower,
green, foliage,

leaf, flora

189000

tribal, 239000,
thailand,
189000,

groups, perenial,
indonesia,

work

people, cloth,
guard, face,
life, tribal

holland

rural UK, forest,
zionpark, flowerbeds,

plants, forests,
perenial,
flower2

tree, forest,
flower,

ruralEngland,
Zion, flowerbed,

perenial

lizard1

microimg, design1,
textures,

texture1, skins,
texture7,
texture9,

food2

texture,
natural,

microimage

yosemite

canyon park, isles2,
US parks, alaska,

126000,
rural UK,

gardens, cal sea

Alaska,
mountain,

park, landscape,
garden, house,

California
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Table 2. Confusion Matrix for the 10-category classification task

% Africa beach buildings buses dnsrs elephants flowers horses mnts food

Africa 66 6 12 0 0 2 2 2 6 4

beach 16 32 28 0 0 8 2 2 6 6

buildings 6 6 76 2 0 0 2 0 6 2

buses 0 0 30 64 0 0 0 6 0 0

dinosaurs 0 0 2 0 94 0 0 0 0 4

elephants 28 0 0 0 0 50 0 8 12 2

flowers 10 0 4 0 0 0 78 0 4 4

horses 6 2 6 0 0 2 2 72 10 0

mountains 4 4 10 0 0 0 6 0 70 6

food 0 2 14 0 2 0 2 0 4 76

our system faster by a factor of 300 (or 100 taking the clock speed of the ALIP
system into account). The system scales linearly with the number of models.

6 Conclusion and Future Outlook

A feature weighting method and a modelling scheme based on the one-class SVM
for automatic image annotation was presented in this paper. It is clear that the
power of the overall system is heavily dependant on the discriminative power
of the used features. Thus, complex features should in general be expected to
lead to a performance improvement. Local features extracted around interest
points, e.g. [14], have recently given excellent results in the field of object recog-
nition and could be directly plugged into the system (at least the methods which
can return a single consolidated feature vector per image, instead of a bag of
vectors).

It was shown that the modelling scheme scales well to larger number of key-
words, both in terms of annotation results quality as well as the speed of execu-
tion. The system ran orders of magnitude faster than a MHMM-based scheme
while giving comparable or better results. The effectiveness of the feature weight-
ing was also demonstrated as the small number of visual features used lent them-
selves to direct interpretation.

A simplified view of the linguistic component of the annotation system was
taken, as it lies outside the scope of this work. Also, currently the system does
not check for mutually exclusive keywords or other inconsistencies, and ends up
annotating the same image with combinations like sunrise and sunset, or with
England and Finland. This can however be taken care of automatically to an
extent by extracting conditional probabilities of keywords given the presence or
absence of other keywords, given sufficient training data.
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