
Learning Taxonomies in Large Image Databases

Lokesh Setia and Hans Burkhardt
Chair for Pattern Recognition and Image Processing

Albert-Ludwigs-University Freiburg
79110 Freiburg im Breisgau, Germany

{setia, burkhardt} @informatik.uni-freiburg.de

ABSTRACT
Growing image collections have created a need for effec-
tive retrieval mechanisms. Although content-based image
retrieval systems have made huge strides in the last decade,
they often are not sufficient by themselves. Many databases,
such as those at Flickr are augmented by keywords supplied
by its users. A big stumbling block however lies in the fact
that many keywords are actually similar or occur in common
combinations which is not captured by the linear metadata
system employed in the databases. This paper proposes a
novel algorithm to learn a visual taxonomy for an image
database, given only a set of labels and a set of extracted
feature vectors for each image. The taxonomy tree could
be used to enhance the user search experience in several
ways. Encouraging results are reported with experiments
performed on a subset of the well known Corel Database.

Categories and Subject Descriptors: H.3 [Informa-
tion Storage and Retrieval]: H.3.1 Content Analysis and In-
dexing; H.3.3 Information Search and Retrieval; I.5 [Pattern
Recognition]: I.5.3 Clustering; I.5.4 Applications;

General Terms: Algorithms, Design

Keywords: Taxonomy, Image Retrieval, Clustering

1. INTRODUCTION
Image retrieval has received its fair share of attention since

the past decade. But it would not be an exaggeration to say
that the demand outsizes what the research can currently
supply. The core of the problem lies in the so-called semantic
gap [5], or the inability of low-level features to capture effec-
tively the high-level semantic meaning present in the image.
To a limited extent, this problem can be alleviated using
relevance feedback [10]. However, there are other practical
issues to be resolved as well. The most common paradigm
used in the image retrieval research community is the query-
by-example paradigm, where the aim is to find best matches
to a query image supplied by the user. In practice, however,
a good query image might not be easy to find. Another

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR Workshop on Multimedia Information Retrieval, 2007

Copyright 2007 ACM 0-12345-67-8/90/01 ...$5.00.

possibility is to perform automatic annotation of the image
collection [2][4], so as to allow a keyword search like in text
search engines. This automatic annotation can be performed
in addition to any manual labelling that might already exist
for the database. An important factor to keep in mind is
that manual labelling is often subjective, and in the absence
of a small and fixed vocabulary often different users would
arrive at different labellings.

In this work we propose building a visual taxonomy for
a labelled database. The taxonomy is built offline using a
fully automated method which needs just a set of labelled
images and a set of features extracted from each image. Ob-
viously, the features play an important part in the method,
and better results can be expected by incorporating more
discriminative features for the categories in hand. Still, in
order to demonstrate the effectiveness of our visual taxon-
omy generation algorithm, we use a very simple set of visual
features as we describe in Section 4. The constructed tax-
onomy tree can have a variety of uses. It can be used to au-
tomatically weed out redundant labels in a large database.
It can guide the user by offering images not just from the
query keyword, but also from the keywords close to it. Since
the taxonomy is built offline, this step does not introduce
any extra delay. Furthermore, by offering the user direct
access to the taxonomy, it can allow the user to choose the
right keywords quickly and effectively, thus shortening the
average search time. Finally, the taxonomy can be used as
a data mining tool, providing insights to the patterns and
correlations existing naturally in the database.

2. ALGORITHM
The main stages of the proposed algorithm for taxonomy

generation are listed in Algorithm 1, and would be elabo-
rated in the following section.

2.1 Estimating Closeness of Labels
We determine the closeness of labels in a novel way. Rather

than having an absolute measure of closeness of two labels,
we estimate it by taking their relationships to other labels in
the database into account. To give an example by analogy
on a semantic level: to ask if a spoon is similar to a fork
is a rather abstract question, but when given the fact that
the other objects are industrial tools, one can say that the
two are similar because they distinguish themselves using
the same property (usage). We wish to model this math-
ematically in the following. We propose two methods, the
first being more intuitive, but with the disadvantage that
it is not kernelizable, i.e. works only in the original input

Algorithm 1 Taxonomy Generation Algorithm

1: Given an image database, labeled with L labels (key-
words) li, i = 1, . . . , L along with a set of images for
each label.

2: Extract suitable features for each image. We assume
that the set of features for an image is represented by a
single feature vector x (though we would later propose
a modification such that this is not strictly required).

3: For all pairs of labels, estimate the closeness of the label
pair (see Section 2.1).

4: Perform agglomerative clustering to generate a hierarchy
tree for the labels.

5: Postprocessing: Pruning/joining of the nodes of the hi-
erarchical tree to relax the binary tree constraint.

feature space or with the computation cost of an explicit
feature mapping. In the two sections below, we are estimat-
ing the distance between two labels lp and lq, using other
labels for intermediate calculations. We define Dk

pq as the
distance or dissimilarity between lp and lq using the inter-
mediate label class lk. The overall distance Dpq can thus be
defined over all intermediate labels excluding the labels in
question:

Dpq =
L

X

k=1,
k 6=p,q

D
k
pq

2.1.1 Using Feature Similarity
This method works by recognizing features essential for

classifying lp against lk, and the ones for classifying lq against
lk. The commonness of these sets of features is an indica-
tion of the similarity of the classes lp and lq. One simple
way to get an estimate of the feature importance is to train
a linear classifier (e.g. a linear SVM), and use the absolute
value of the normal vector coefficients as the measure of the
relative feature importance. The principle is illustrated in
Figure 1, where the classes lp and lq are deemed similar on
virtue of using the same feature x2 for classification against
the current intermediate class lk.

lp lq

lk

ω⊥
pk ω⊥

qk

x1

x2

Figure 1: Using feature similarity to compute dis-

similarity between classes

Let the linear classification boundary between classes lp

and lk be given through

〈ωpk,x〉 + bpk = 0

and the boundary between lq and lk through

〈ωqk,x〉 + bqk = 0

We assume, without any loss of generality that the hyper-
plane normal vectors ωpk and ωqk are already normalised
with respect to their L2 norm. The distance Dk

pq can thus
be defined as

D
k
pq =

F
X

f=1

˛

˛ |ωf

pk| − |ωf

qk|
˛

˛

where F is the number of features, or the dimensionality
of the norm vectors. In words, this is the L1 distance be-
tween the magnitudes of the normalised hyperplane normal
vectors. Although this measure gives good results, it is not
kernelizable as it uses properties other than the dot product.
Thus, in cases where the hyperplane yielded by the linear
classifer was very crude, this may give poor results. The
alternative method proposed in the next section is easily
kernalizable, and thus may be preferable in such cases.

2.1.2 Using Hyperplane Similarity
Here we use the dot products between the SVM hyper-

planes as the similarity measure, i.e.

D
k
pq = 1 −

〈ωpk, ωqk〉

‖ωpk‖‖ωpk‖

The hyperplane is expressed as a sum of transformed train-
ing vectors, i.e.: ωpk =

P

i αi · Φ(xi) and ωqk =
P

j βj ·

Φ(yj). Φ is a (typically non-linear) transformation to a
new feature space, where the data might be better sepera-
ble using a linear classifier. The SVM algorithm needs access
only to dot products between feature vectors 〈Φ(x1),Φ(x2)〉
which might be directly computable in the original feature
space [9], thus sparing the computation cost of the transfor-
mation Φ. In some case, it might not even be possible to
compute Φ(x). The dot product in the transformed space
is known as kernel evaluation and would be denoted by:

K(x1,x2) = 〈Φ(x1),Φ(x2)〉

Thus, we can simplify:

D
k
pq = 1 −

〈ωpk,ωqk〉

‖ωpk‖‖ωpk‖

= 1 −
〈

P

i αiΦ(xi),
P

j βjΦ(yj) 〉

〈
P

i αiΦ(xi),
P

j αjΦ(xj) 〉
1

2 〈
P

i βiΦ(yi),
P

j βjΦ(yj) 〉
1

2

= 1 −
P

i

P

j αiβj〈Φ(xi),Φ(yj)〉

(
P

i

P

j αiαj〈Φ(xi),Φ(xj)〉)
1

2 (
P

i

P

j βiβj〈Φ(yi),Φ(yj)〉)
1

2

= 1 −
P

i

P

j αiβjK(xi ,yj)

(
P

i

P

j αiαjK(xi,xj))
1

2 (
P

i

P

j βiβjK(yi ,yj))
1

2

which can be computed using kernel evaluations between
the support vectors of the two hyperplanes. It should be
noted that the bias terms bpk and bqk do not play a role
during the calculation of Dk

pq , and it is not clear if it should.

After all, the role of the bias term is only to shift the hyper-
plane in the direction of the normal vector, thus making the
first class more preferable (for positive bias), or the second
class (for negative bias). At this stage, it is interesting to
note the fact that one would expect a bias value of 0 for
a neutral classifier. This statement is in sense of the test
points x which are very dissimilar to all support vectors,
i.e. K(x,xi) ≈ 0,∀i = 1 . . . NSV . A classifier with a non-
zero bias would classify all such points to exactly one of the
classes which may not be the desired behaviour, especially
for distance based kernels.

3. CLUSTERING OF LABELS
We use agglomerative clustering [1] to construct a hier-

archical tree of labels, once the pair-wise dissimilarities be-
tween labels have been computed. This is a bottom-up al-
gorithm, where initially all labels are disjunct clusters. The
algorithm proceeds iteratively. At each step, the pair of
clusters having the smallest distance is combined to form a
single cluster entity. The process continues until just a single
cluster remains which is the ancestor cluster for all previous
clusters. An important design decision is the choice of the
distance function between two clusters. Since each cluster
is a collection of one or more labels, for which we already
have computed pairwise distances, we can define the dis-
tance between two clusters as the mean distance between
their constituent labels. This is the version used in our ex-
periments. Another option, though more time-consuming is
to view a newly-formed cluster as a new label (a superla-
bel), and re-compute distances as in the previous section.
A hierarchical binary tree obtained by this method can be
viewed as a dendrogram [1] which we would also use to dis-
play our results. The y-axis shows the distance between two
cluster nodes when they are combined. The smaller the dis-
tance (relatively), the more confident the system is about
the pairing.

4. EXPERIMENTS AND RESULTS
We perform a controlled experiment to evaluate our visual

taxonomy generation scheme. Below we state our choice of
databases, features used, experiment setting, and clustering
results.

4.1 Database
For experiments, we use selected categories from the Corel

collection which was kindly made available by James Wang1.
Out of the 600 categories available, we use 27 categories, ex-
amples from all of these are shown in Figure 2. The reason
for not taking the complete corel database is that we wish
to keep manual validation of the taxonomy tree convenient,
especially on printed paper. In a software environment, ef-
fective navigation mechanisms can be easily built in order
to traverse the taxonomy tree. The categories were selected
with the simple rule of having a few categories containing
human beings, few nature categories, and a few categories
containing man-made objects. Apart from this, the selec-
tion process was arbitrary. Each category consists of 100
images of size 384×256 or 256×384. The following features
were extracted from each image:

1http://wang.ist.psu.edu/IMAGE/

4.2 Features
To demonstrate the effectiveness of the taxonomy gener-

ation process, we use a small set of simple visual features
comprising of the following:

Colour Features: Colour features have been widely used
for image representation because of their simplicity and ef-
fectiveness [6]. We use color moments calculated on HSV
images. For each of the three layers we compute the layer
mean, layer variance and layer skewness respectively. This
yields a 9-dimensional vector. Since this does not incor-
porate any interlayer information, we calculate three new
layers SV, VH and HS non-linearly by point-wise multipli-
cation of pairs from original layers and calculate the same 3
moments also for the new layers. The final 18-dimensional
vector outperformed a 512-bin 3D Joint Colour Histogram
in CBIR tests that we performed.

Texture Features: Texture features can describe many
visual properties that are perceived by human beings, such
as coarseness, contrast etc. [7]. We use the Discrete Wavelet
Transformation (DWT) for calculating texture features. The
original image is recursively subjected to the DWT using the
Haar (db1) wavelet. Each decomposition yields 4 subim-
ages which are the low-pass filtered image and the wavelets
in three orientations: horizontal, vertical and diagonal. We
perform 4 level of decompositions and for the orientation
subimages we use the entropy (−

PL

i=1 H(i)·log(H(i)), with

H ∈ R
L being the normalized intensity histogram of the

subimage) as the feature, thus resulting in a 12-dimensional
vector.

Edge Features: Shape features are particularly effective
when image background is uncluttered and the object con-
tour dominates. We use the edge-orientation histogram [8]
which we compute directly on gray-scale images by first cal-
culating the gradient at each point. For all points where the
gradient magnitude exceeds a certain threshold, the gradi-
ent direction is correspondingly binned in the histogram. We
use an 18-bin histogram which yields bins of size 20 degrees
each.

The final feature vector is a concatenation of the above
three vectors and has a dimensionality of 48.

4.3 Results
The hierarchy tree obtained by applying the hyperplane

similarity method with the gaussian kernel is shown in Fig-
ure 3. The tree obtained by the feature similarity method is
omitted as in this case it is quite similar. As can be seen, the
tree is meaningful even at the upper nodes of the tree. One
possible explanation of this can be that the images within
a Corel category are relatively uniform, which aids the al-
gorithm. Some peculiarities, such as the placement of the
category dogs can be understood by viewing the example
images for that category, and taking into account that only
simple low-level visual features were used.

4.4 Computation Time
For this experiment, i.e. with 27 labels each with 100

training vectors of dimensionality 48, the construction of the
taxonomy tree takes about a minute on a standard modern
PC (P IV 2.8 GHz running Ubuntu Linux). However, since
in reality the databases are expected to be much larger, it
is interesting to note how the algorithm would scale. The
running time t is proportional to the dimensionality F of the
features as the L1 and L2 similarity measures are both lin-

ear with respect to F . The effect of the number of training
vectors (per label) N is not exactly definable, but empirical
studies [3] suggest that SVM training is superlinear with re-
spect to number of training vectors, perhaps even quadratic.
Finally, the algorithm scales cubically with respect to the
number of labels L. This can be easily seen from the fact
that the number of label pairs increase quadratically, and
the calculation of distance between a label pair increases
linearly with L. Thus, the running time can be expressed in
the O notation as O(L3 · N2 · F).

5. DISCUSSION
We presented a method for visual taxonomy generation

and results for selected keywords of the Corel collection.
The natural question is about how the method would scale
to larger number of keywords and how would it react to
wrongly or inconsistently labelled images. In our opinion,
the feature extraction step is the key here. If the features
are not representative enough for the keyword in hand, then
no subsequent machine learning algorithm can account for
this deficiency. It is for this reason that ‘loaded’ keywords
like Amsterdam were not used in our experiments. A user
at Flickr might label an image with the keyword Amsterdam

because the image was taken in a friend’s apartment in Am-
sterdam, a fact which is impossible to learn from pixel in-
formation alone.

However, many other keywords would have more visually
consistent content, and the user would likely benefit from a
hierarchy tree of the used keywords. With a large number
of keywords, it is possible that some parts of the hierarchy
tree, especially the upper ones, do not convey much informa-
tion. However, if the subtrees containing the user-supplied
keyword are meaningful, the system could still prove to be
useful.

In conclusion, we would like to mention the fact that the
method can be used to group any kind of entities from which
meaningful features can be extracted. This includes other
multimedia types and multi-class problems in general.

6. REFERENCES
[1] A. K. Jain and R. C. Dubes. Algorithms for clustering

data. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1988.

[2] J. Li and J. Z. Wang. Automatic linguistic indexing of
pictures by a statistical modeling approach. IEEE
Trans. Pattern Anal. Mach. Intell., 25(9):1075–1088,
September 2003.

[3] J. Platt, N. Cristianini, and J. Shawe-Taylor. Large
margin dags for multiclass classification. In S. Solla,
T. Leen, and K.-R. Mueller, editors, Advances in
Neural Information Processing Systems 12, pages
547–553, 2000.

[4] L. Setia and H. Burkhardt. Feature selection for
automatic image annotation. In Proceedings of the
28th Pattern Recognition Symposium of the German
Association for Pattern Recognition (DAGM 2006),
Berlin, Germany. LNCS, Springer, September 2006.

[5] A. W. M. Smeulders, M. Worring, S. Santini,
A. Gupta, and R. Jain. Content-based image retrieval
at the end of the early years. IEEE Trans. Pattern
Anal. Mach. Intell., 22(12):1349–1380, December 2000.

[6] M. J. Swain. Color indexing. PhD thesis, 1990.
Supervisor-Dana H. Ballard.

[7] H. Tamura, S. Mori, and T. Yamawaki. Texture
features corresponding to visual perception. IEEE
Trans. Systems Man Cybernet, 1978.

[8] A. Vailaya, A. Jain, and H. Zhang. On image
classification: city images vs. landscapes, 1998.

[9] V. N. Vapnik. The nature of statistical learning theory.
Springer-Verlag New York, Inc., New York, NY, USA,
1995.

[10] X. S. Zhou and T. S. Huang. Relevance feedback in
content-based image retrieval: some recent advances.
Inf. Sci. Appl., 148(1-4):129–137, 2002.

Figure 2: Sample images from the Corel categories used for the experiments

autumn

dogs

plants

texture1

texture2

aviation

car_race

car_old1

children

fashion1

flower1

forests

fractals

people1

wildcats

wl_afric

flora

peoplei

warplane

women

mountain

ruins

churches

roses

harbors

beach

men

F
ig

u
r
e

3
:

T
a
x
o
n
o
m

y
o
b
t
a
in

e
d

fo
r

t
h
e

2
7

s
e
le

c
t
e
d

c
la

s
s
e
s

fr
o
m

t
h
e

c
o
r
e
l
c
o
lle

c
t
io

n

children men people1 peoplei dogs women fashion1 plants flora flower1 fractals texture1 texture2 roses autumn forests mountain wildcats wl_afric aviation warplane car_race car_old1 ruins beach harbors churches

6

8

10

12

14

16

18

20

22

