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Abstract. We present a new technique for the extraction of features
from 3D volumetric data sets based on group integration. The features
are invariant to translation, rotation and global radial deformations.
They are robust to local arbitrary deformations and nonlinear gray value
changes, but are still sensitive to fine structures. On a data set of 389 con-
focally scanned pollen from 26 species we get a precision/recall of 99.2%
with a simple 1NN classifier. On volumetric transmitted light data sets of
about 180,000 airborne particles, containing about 22,700 pollen grains
from 33 species, recorded with a low-cost optic in a fully automated
online pollen monitor the mean precision for allergenic pollen is 98.5%
(recall: 86.5%) and for the other pollen 97.5% (recall: 83.4%).

1 Introduction

Nearly all worldwide pollen forecasts are still based on manual counting of pollen
in air samples under the microscope. Within the BMBF-founded project “OM-
NIBUSS” a first demonstrator of a fully automated online pollen monitor was
developed, that integrates the collection, preparation and microscopic analysis
of air samples. Due to commercial interests, no details of the developed pattern
recognition algorithms were published within the last three years. This is the
first time that we show how this machine works behind the scenes.

Challenges in pollen recognition. Due to the great intra class variability and
only very subtle inter-class differences, automated pollen recognition is a very chal-
lenging but still largely unsolved problem. As most pollen grains are nearly spher-
ical and the subtle differences are mainly found near the surface, a pollen expert
needs the full 3D information (usually by “focussing through” the transparent
pollen grain). An additional difficulty is that pollen grains are often agglomerated
and that the air samples contain lots of other airborne particles. For a reliable mea-
surement of high allergenic pollen (e.g. Artemisia. A few such pollen grains per m3

of air can already cause allergic reactions) the avoidance of false positives is one
of the most important requirements for a fully automated system.

State of the art. Almost all published articles concerning pollen recognition
deal with very low numbers of pollen grains from only a few species and use
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manually prepared pure pollen samples, e.g. [1]. Only [4] used a data set from
real air samples containing a reasonable number of pollen grains (3686) from
27 species. But even on a reduced data set containing only 8 species and dust
particles, the recall was only 64,9% with a precision of 30%.

Main Contribution. In this paper we describe the extension of the Haar-
integration framework [9,6,7,8] (further denoted as “HI framework”) to global
and local deformations. This is achieved by creating synthetic channels con-
taining the segmentation borders and employing special parameterized kernel
functions. Due to the sparsity of non-zero-values in the synthetic channels the
resulting integral features are highly localized in the real space, while the frame-
work automatically guarantees the desired invariance properties.

For efficient computation of these integrals we make use of the sparsity of
the data in the synthetic channels and use a Fourier or spherical harmonics
(“SH”) series expansion (for the desired rotation invariance) to compute multiple
features at the same time.

a) volume rendering of
confocal data set

b) horizontal and vertical
cuts of confocal data set

c) horizontal and vertical cuts
of transmitted light data set

Fig. 1. 3D recordings of Betula pollen grains. In transmitted light microscopy the
recording properties in z-direction (the direction of the optical axis) are significantly
different from those in the xy-direction, because the effects of diffraction, refraction
and absorption depend on the direction of the transmitted light. Furthermore there
is a significant loss of information in z-direction due to the low-pass property of the
optical transfer function.

2 Material and Methods

Data Sets. To demonstrate the generality of the proposed invariants and com-
pare them to earlier results, we use two different pollen data sets in this article.
Both contain 3D volumetric recordings of pollen grains.

The “confocal data set” contains 389 pollen grains from 26 German pollen
taxa, recorded with a confocal laser scanning microscope (fig 1a,b). For further
details on this data set refer to [6].

The “pollen monitor data set” contains about 180,000 airborne particles in-
cluding about 22,700 pollen grains from air samples that were collected, prepared



3D Invariants with High Robustness to Local Deformations 427

and recorded with transmitted light microscopy from the online pollen monitor
from March to September 2006 in Freiburg and Zürich (fig. 1c). All 180,000
particles were manually labeled by pollen experts.

Segmentation. To find the 3D surface of the pollen grains in the confocal data
set, we use the graph cut algorithm described in [2]. The original data were first
scaled down. The edge costs to source and sink were modeled by a Gaussian
distribution relative to the mean and minimum gray value. We added voxel-to-
voxel edges to the 124 neighborhood, where the weight was a Gaussian of the
gray differences. The resulting binary mask was then smoothly scaled up to the
original size.

The first step in processing the pollen monitor data set is the detection of
circular objects with voxel-wise vector based gray-scale invariants, similar to
those in [8]. For each detected circular object the precise border in the sharpest
layer is searched: As parts of the object border are often missing or not clear, we
use snakes to find a smooth and complete border. To avoid the common problem
of snakes being attracted to undesired edges (if plain gradient magnitude is used
as force field), we take the steps depicted in fig 2.

a) sharpest layer b) found edges c) weighted edges d) final snake

1. Applying modified Canny edge
detection.
As pollen grains have a nearly
round shape, the edges that are
approximately perpendicular to
the radial direction are more rele-
vant. We replace the gradient with
its radial component in the orig-
inal Canny edge detection algo-
rithm.

2. Model-based weighting of the
edges.
The curvatures and relative loca-
tions of the edges are analyzed
and each edge is given a different
weight. Some edges are even elim-
inated. As a result, a much clearer
weighted edge image is obtained.

3. Employing snakes to find the
final border.
The initial contour is chosen to be
the circle found in the detection
step. The external force field is the
so-called “gradient vector flow”
[10] computed from the weighted
edge image

Fig. 2. Segmentation of transmitted light microscopic images

2.1 Construction of Invariants

For the construction of invariants we use the combination of a normalization
and Haar-integration [9,6,7,8](see eq. (1)) over a transformation group con-
taining rotations and deformations (Haar-integration has nothing to do with
Haar wavelets). In contrast to the very general approach in [6], we now use the
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object center and the outer border found in the segmentation step to extract
more distinctive features describing certain regions of the object.

T [f ](X) :=
∫

G

f(gX)dg

G : transformation group
g : one element of the transformation group

dg : Haar measure
f : nonlinear kernel function
X : n-dim, multi-channel data set

(1)

Invariance to translations. Invariance to translations is achieved by moving
the center of mass of the segmentation mask to the origin. The final features are
quite insensitive to errors in this normalization step, because they are computed
“far” away from this center and only the direction to it is used.

Invariance to rotation. Invariance to rotation around the object center is
achieved by integration over the rotation group. In the confocal data set we can
model a 3D rotation of a real-world object by a 3D rotation of the recorded volu-
metric data set (see fig. 1b). In contrast to this, the transmitted light microscopic
image stacks from the pollen monitor data set show very different characteristics
in xy- and z-direction, (see fig. 1c). A rotation around the x- or y-axis of the
real-world object results in so different gray value distributions, that it is more
reasonable to model only the rotation around the z-axis, resulting in a planar
rotation invariance.

Invariance to global Deformations and Robustness to local Deforma-
tions. The deformation model consists of two parts. The global deformations
are modeled by a simple shift in radial direction er, which depends only on the
angular coordinates (see figure 3a). For full 3D-rotations described in spherical
coordinates x = (xr , xϕ, xϑ) this model is

x′ = x + γγγ(x) with γγγ(x) = γ(xϕ, xϑ) · er(xϕ, xϑ) . (2)

For rotations around the z-axis described in cylindrical coordinatesx=(xr , xϕ, xz)
we get

x′ = x + γγγ(x) with γγγ(x) = γ(xϕ) · er(xϕ) . (3)

Please note, that this deformation is well defined only for r > −γ(ϕ), which is
no problem in the present application, because the features are computed “far”
away from the center.

The smaller local deformations are described by an arbitrary displacement
field D(x) such that

x′ = x + D(x) (4)

(see fig. 3b). For the later partial Haar-integration [3] over all possible realizations
of this displacement field, it is sufficient to know only the probability for the
occurrence of a certain relative displacement r within this field as

p
(
D(x + d) − D(x) = r

)
= pd (r; ‖d‖) ∀x,d ∈ IR3 , (5)
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a) Global deformation model (radial) b) Local deformation model (arbitrary)

Fig. 3. Possible realizations of the deformation models

where we select pd (r; ‖d‖) to be a rotationally symmetric Gaussian distribution
with a standard deviation σ = ‖d‖ · σd.

While we achieve full invariance to radial deformations by full Haar-integration
we can only reach robustness to local deformations by partial Haar-integration.
But this non-invariance in the second case is exactly the desired behavior. In com-
bination with appropriate kernel functions this results in a continuous mapping of
objects (with weak or strong local deformations) into the feature space.

The kernel functions. Instead of selecting a certain fixed number of kernel
functions, we introduce parameterized kernel functions here. Embedded into the
HI framework, each new combination of kernel parameters results in a new in-
variant feature. For multiple kernel parameters, we now have a multidimensional
invariant feature array describing the object.

Robustness to gray value transformations. To become robust to gray value trans-
formations the information is split into gradient direction (which is very robust
even under nonlinear gray value transformations) and gradient magnitude. This
was already successfully applied to the HI framework in [8] and to confocal pollen
data sets in [5].

Synthetic channels with segmentation results. To feed the segmentation informa-
tion into the HI framework we simply render the surface (confocal data set) or
the contour of the sharpest layer (transmitted light data set) as delta-peaks into
a new channel S and extend the kernel-function with two additional points that
sense the gray value in this channel. The only condition for this technique is
that the computation of the synthetic channel and the action of transformation
group can be exchanged without the result being changed (i.e., we must get the
same result if we first extract the surface and then rotate and deform the volume
and vice versa).

Resulting kernel function. To achieve the requested properties we construct 4-
point kernels, where 2 points of the kernel a1 and a2 sense the segmentation
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channel and the other 2 points b1 = a1 +q1 and b2 = a2 +q2 sense the gradient
∇X of the gray values relative to the information in the segmentation channel,

k1[p](S, X) = S(a1) · ‖∇X‖(b1) · δ

(
c1 − a1

‖a1‖
· ∇X

‖∇X‖
(
b1

))

·S(a2) · ‖∇X‖(b2) · δ

(
c2 − a2

‖a2‖
· ∇X

‖∇X‖
(
b2

)) (6)

while the delta-functions restrict the kernel to “see” only gradients with the given
“direction” c1 and c2. Not all combinations of a1, a2, q1, q2, c1 and c2 make
sense, because the Haar integration returns identical features for all kernels that
are equivalent under the given transformation group. Furthermore for certain
combinations, only trivial features will be returned. To ensure, that only non-
trivial and non-identical features are created, we introduce the low-dimensional
parameterization p. Examples of this kernel function are depicted in figure 4.

3D−rotation

radial 

deformation

local 

deformationa1 a2

b1 b2 a′
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2

b′
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b′
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a) parameterized kernel
for free rotations

planar

rotation

radial
deformation

local

deformation

a1 a2

b1 b2

a′
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a′
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b′

1

b′

2

b) parameterized kernel
for rotations around z-axis

Fig. 4. Action of the transformation group on the selected 4-point kernel functions

As mentioned above, the resulting “structural” features are fully invariant to
the global radial deformations. To also extract the shape information, we select
the parameterized kernel

k2[a1,a2](S) = ‖γγγ(a1)‖S(a1) · ‖γγγ(a2)‖S(a2) , (7)

that operates on the synthetic channel. When we use the simple scheme of creat-
ing the synthetic channels described above, the resulting features are equivalent
to the magnitude of the Fourier coefficients of the contour in the 2D case and
spherical harmonic (“SH”) coefficients for the surface in the 3D case.

2.2 Fast Simultaneous Computation of the invariants

With the group of radial deformations Gγ , the group of arbitrary deformations
GD and the group of rotations GR the final Haar integral becomes:

T =
∫

GR

∫

Gγγγ

∫

GD

f
(
gRgγγγgDS, gRgγγγgDX

)
p(D) dgD dgγ dgR , (8)
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where p(D) is the probability for the occurrence of the local displacement field
D. The transformation of the data set is described by (gX)(x) =: X(x′), where

x′ = Rx︸︷︷︸
rotation

+ γγγ(Rx)︸ ︷︷ ︸
global deformation

+ D
(
Rx + γγγ(Rx)

)
︸ ︷︷ ︸
local deformation

. (9)

To ensure a strong coupling of a′
1 and b′

1 (and a′
2,b

′
2 accordingly) we only use

kernels, where these two points will be treated equally by the global transforma-
tion, i.e., the kernel must fulfill the condition γγγ(Rai) = γγγ(Rbi), ∀R (illustrated
by thick connections in fig 4). The transformed kernel points are

a′
i(R,γγγ,D) = Rai + γγγ(Rai) + D

(
Rai + γγγ(Rai)

)
b′

i(R,γγγ,D) = Rbi + γγγ(Rai) + D
(
Rbi + γγγ(Rai)

)
.

(10)

Now inserting the kernel into the Haar integral gives:

T =
∫

GR

∫

Gγγγ

∫

GD

S(a′
1) · ‖∇x′X‖

(
b′

1
)

· δ
(

c1 − a1

‖a1‖
· ∇x′X

‖∇x′X‖
(
b′

1
))

· S(a′
2) · ‖∇x′X‖

(
b′

2
)

· δ
(

c2 − a2

‖a2‖
· ∇x′X

‖∇x′X‖
(
b′

2
))

· p(D) · dD
(
Ra1 + γγγ(Ra1)

)
· dD

(
Rb1 + γγγ(Ra1)

)
· dD

(
Ra2 + γγγ(Ra2)

)
· dD

(
Rb2 + γγγ(Ra2)

)
· dγγγ(Ra1) · dγγγ(Ra2)
· dR ,

(11)

where ∇x′ denotes the del operator in the transformed coordinate system. The
uncommon notation like dγγγ(Ra1) is necessary, because each displacement field is
described here with an infinite number of parameters (one displacement for each
location in the 3D space). During the integration the outer integral continuously
“selects” the integration parameter for the inner integral.

If the synthetic channel is created from a single surface or contour and if
we can assume a star-shaped object (which is granted for all considered pollen
types) we will find for every given R only one nonzero response of S during the
integration over all deformations γγγ(Rai). By defining this coordinate as s(Rai)
we see that the integral only returns nonzero values for

s(Rai) = a′
i

⇒ γγγ(Rai) = s(Rai) − Rai − D
(
Rai + γγγ(Rai)

)
,

(12)

which allows to eliminate the direct dependency of b′
i on γγγ(Rai):

b′
i = s(Rai) + Rbi − Rai + D

(
Rbi + γγγ(Rai)

)
− D

(
Rai + γγγ(Rai)

)
. (13)

With the additional precondition that the probability for the occurrence of a
certain relative displacement r only depends on the distance of the two consid-
ered points (5) we can fully eliminate the dependency of the global transfor-
mation γγγ(Rai) and replace the four integrals over the local displacement field
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p(D)·dD
(
Ra1+γγγ(Ra1)

)
·. . . by the integration over all relative displacements ri

weighted with their probability pd (r1; ‖d1‖) · pd (r2; ‖d2‖) dr1dr2. The resulting
b′

i is
b′

i(R, ri) = s(Rai) + Rbi − Rai + ri . (14)

and
‖di‖ = ‖Rbi + γγγ(Rai) − Rai − γγγ(Rai)‖ = ‖bi − ai‖

By the substitution of qi := bi − ai the full Haar integral can be written as

T =
∫

GR

∫

IR3

‖∇x′X‖
(
b′

1
)

δ

(
c1 − a1

‖a1‖
· ∇x′X

‖∇X‖
(
b′

1
))

pd (r1; ‖q1‖) dr1

∫

IR3

‖∇x′X‖
(
b′

2
)

δ

(
c2 − a2

‖a2‖
· ∇x′X

‖∇X‖
(
b′

2
))

pd (r2; ‖q2‖) dr2 dR . (15)

After integration over the local deformations, this results in two scalar functions
defined on a sphere (or a cylinder), that are “scanned” by a simple two-point-
kernel, which allows to use the framework introduced in [7] for fast but still fully
rotation invariant approximation of the solution. For 3D rotations this framework
uses a spherical-harmonics series expansion, and for planar rotations around the
z-axis it is simplified to a Fourier series expansion.

Parameterization. For the experiments described in this paper we only used
kernels with ‖q1‖ = ‖q2‖ and c1 = c2. For the application on the confocal data
set (allowing full 3D rotations) this results in 3 parameters for the kernel: The
distance q to the segmentation surface, the relative direction of the gradient c
and the desired angular resolution n. For the application on the pollen monitor
data set (rotational invariance only around the z-axis), q is split into a radial
distance qr to the segmentation border and the z-distance to the central plane
qz.

For the computation, each voxel of the dense 3D data is first projected into
the sparse representation in the 4D kernel parameter space, defined by each
“arm” of the kernel function (q, c, ϕ, ϑ for confocal data and qr, qz, c, ϕ for the
pollen monitor data). The advantage of this sparseness is that fine detail infor-
mation from the original images “survive” the smoothing effects of the partial
Haar-integration over the local deformation model and the extraction of rotation
invariant features.

For the selected kernels with ‖q1‖ = ‖q2‖ and c1 = c2 a further reduction of
the complexity can be achieved, because the final features are only a nonlinear
combination of the magnitudes of the computed SH- / Fourier coefficients. As
this final recombination does not introduce additional informations we can omit
it, and instead use the magnitudes of the SH- / Fourier coefficients directly.

The best sampling of the parameter space of the kernel functions (correspond-
ing to the inner class deformations of the objects), was found by cross validation
on the training data set, resulting in Nqr ×Nqz ×Nc×n = 31×11×16×16 = 87296
“structural” features (using kernel function k1) and 8 “shape” features (using
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kernel function k2). For combination into one feature vector the structural fea-
tures were normalized to unit sum and the shape features were multiplied by
0.01 . For the confocal data set this resulted in Nq × Nc × n = 64 × 7 × 2 = 896
“structural” features (using kernel function k1). The “shape” features were not
yet used here. For both data sets, σd, describing the allowed local deformations,
was set to 0.1 .

3 Experiments

Experimental setup. For the confocal data set a simple 1 Nearest Neighbor
classifier (using the L1-norm) was used.

The pollen monitor data set was split to approximately equal sized sets by
using the air samples with an even index as training set and that with odd
index as test set. From the training set only the “clean” (not agglomerated, not
contaminated) pollen and the “non-pollen” particles from a few samples were
used to train the support vector machine (SVM) using the RBF-kernel (radial
basis function) and the one-vs-rest multi-class approach. The best parameters
were selected using cross-validation on the training data set. After that the
resulting SVM was used to classify all particles (about 100,000) in the training
set and the false classified “non-pollen” objects were added to the final SVM-
training set.

The detection step (before segmentation) only finds circular objects. For the
very few non-circular (fortunately also non-allergenic) species like pinus, often
only fragments are segmented. These fragments are simply labeled as “non-
pollen”.

Results. On the confocal data set we got a recognition rate of 99.2% with the
simple 1NN classifier using a leave-one-out test, which is a significant improve-
ment to best published 1NN result on the same data set: 94,5% [5]

Table 1. Confusion matrix for pollen monitor samples. The pollen grains that the
biologists were not able to recognize (“indeterm.”) were left out from the statistics.
Due to space limitations only the recall of the results with “no rejection” are given.

with rejection no rejection

rej. no p. Cory. Alnu. Betu. Poac. Arte. other recall (%) recall (%)

indeterm. (826) (1518) (5) (8) (23) (40) (3) (461)
no pollen 1882 77430 1 7 3 1 0 119
Corylus 14 6 75 0 0 0 0 0 78.9 86.3
Alnus 96 41 0 751 2 0 0 0 84.4 90.8
Betula 86 10 1 4 933 1 0 0 90.1 95.7
Poaceae 84 7 0 0 1 576 0 10 85.0 92.5
Artemisia 6 0 0 0 0 0 24 0 80.0 96.7
other pollen 814 195 1 4 5 3 1 5126 83.4 93.6

precision (%) 96.2 98.0 98.8 99.1 96.0 97.5

mean precision (allergenic): 98.5% 93.8%
mean recall (allergenic): 86.5% 93%
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On the pollen monitor data set, for allergenic pollen species, we got a mean
precision of 98.5% at a recall of 86.5% or a precision of 93.8% at a recall of 93%
depending on the selected rejection scheme. The details are shown in table 1. Due
to the limited space only the results of the 5 allergenic pollen taxa are explicitly
listed, the remaining 28 pollen taxa were combined into the row “other pollen”.
Objects were rejected, when the SVM returned no or more than one positive
decision values. The results in the small table on the right “no rejection” were
obtained by always assigning the class with the highest decision value.

There were several air samples with 100% precision and 100% recall and other
with very low recall, mainly caused by extreme climate conditions (e.g. snow
flakes, that melted on the air sample and created a big cluster of particles in
multiple layers) or malfunction of the pollen monitor (e.g. vibrations during the
recording of the image stack, misadjustment of the optics , etc.)

4 Conclusions and Outlook

The integration of deformation models into the feature extraction seems to be
a central step for a reliable recognition of biological structures. At least for the
presented application on automated pollen recognition this technique produced
results that are better than all comparable results published elsewhere (e.g.,
[1,4]). Furthermore it has proven to also work outside the clean laboratory world
in a real routine application. Anyhow, we can expect that pollen recognition still
remains a challenging research area. In pollen monitor data sets from more than
only one machine, one year and two cities, the variations will be even larger.
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