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Abstract

This article presents a new class of nonlinear image filters, which can be used

in various application domains in early vision. The filters are equivariant with

respect to the Euclidean motion. To obtain equivariance we use the tool of group

integration. Group integration offers a constructive way to compute invariant

features in various spaces. In this work it is used to define a projection that

maps any image transformation on its equivariant part. Applying this concept

on an image transformation based on a holomorphic kernel we are able to derive

a class of filters which can be computed very efficiently. We show relations of

our approach with Volterra filters, steerable filters and complex moments. In

the context of object detection the filter may be interpreted as some kind of

generalized Hough transform.

The proposed algorithm is used for enhancing noisy contours and rapid object

detection in microscopical images. The obtained results are compared to state-

of-art approaches.

1 Introduction

In image processing the term ’filter’ is always related to a special class of image trans-
formation, which is characterized by the fact that its members are equivariant with
respect to the group of translations. If F is an image transformation, then it is said
to be equivariant with respect to some group G, if gF(x) = F(gx) holds for all images
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x and all g ∈ G. Here the expression gx denotes the action of the group on the image
x. If F is linear in x and G is the group of translations, it is just a convolution of the
image with some kernel function known as the impulse response. For nonlinear image
transformation this concept is generalized by the so called Volterra filters.

In this work we develop image transformations that are not only equivariant with
respect to translations but also with respect to rotations in the image plane. That is,
we consider the special Euclidean group of motion SE(2) as the equivariance group.
For linear filters the generalization is straight-forward, the only further restriction to
an ordinary linear filter is that the impulse response has to be rotationally symmetric.
For nonlinear transformation the answer is not quite as simple. We need some kind
of generalization of Volterra’s principle to SE(2). It will turn out that the concept of
group integration gives us such a tool by hand. The so called Reynolds operator RG,
which is based on the group integral, provides a projection on a certain linear subspace,
which will be associated with the space of G-equivariant image transformations.

If one has to deal with two dimensional rotations, complex analysis is known to be a
powerful mathematical tool. For a fast and cheap computation of our filter we propose
a special type of kernel function, which has its origin in complex analysis. Basically,
it is a gaussian-windowed, holomorphic function. The gaussian controls the locality
and scale of the filter, while the holomorphic part determines the filter characteristics.
Applying the projection operator RG on such a holomorphic image transformation
yields the desired SE(2)-equivariant filter.

The paper is organized as follows: in the preceding subsection we give a few ref-
erences to prior work which is related to ours. In the following we shortly give an
introduction to the principles of group integration and how to obtain best invariant
approximations. In Section 3 we present the holomorphic filter and show an efficient
way to implement it. Section 4 proposes some simple variants and modifications of
the framework and gives more insights into the relation of the proposed class of filters
to Volterra filters and steerable filters. Then we propose how to train such a filter
by an ordinary regression scheme. And then finally we present basically two types
of experiments: the enhancement of noisy contours and the detection and analysis in
microscopical images.

1.1 Related Work

The idea of group integration (GI) to obtain invariant representation has its origin in
classical invariant theory. In pattern recognition it is widely used to obtain invariant
representation that can be used for indexing large image or shape databases for fast
retrieval. For an introduction to GI in the field of pattern recognition see [2, 3]. Ap-
plication for shape retrieval can be found in [4] or [5]. We will use GI to project a
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nonlinear image transformation on a rotation- and translation equivariant transforma-
tion (an introduction into the mathematical details can be found in [1]).

Volterra filters are the canonical generalization of the linear convolution to a non-
linear mapping. They are widely used in the signal processing community and also
find applications in image processing tasks. In [6] a general framework for edge en-
hancement is proposed which is based on the idea of Volterra filters. In [7, 8] several
image processing applications are discussed, like image sharpening, texture discrimina-
tion and nonlinear interpolation. In [9] Volterra filters are used to detect noisy images
of curves. The filter proposed in this work might be interpreted as a kind of ’joint’
Volterra filter, for translation and rotation.

Steerable filters, introduced in [10], are a common tool in early vision and image
analysis. A generalization for non-group like deformations was proposed in [11] using
an approximative scheme. Applications of steerable filters are widespread, e.g. in local
orientation analysis [12], 2D rotation invariant object recognition [13, 14] and feature
detection [15]. For 2D rotations steerable filters get a very simple form in complex
notation and are closely related to complex filters [16] and complex moments [17].
We will see that our filter computes a certain subset of gaussian-windowed complex
moments in a first step.

The generalized Hough transform [18] is a major tool for the detection of arbitrary
shapes. Many modern approaches [19, 20] for object detection and recognition are
based on this idea that local parts of the object cast votes for the putative center
of the object. If the proposed algorithm is used in the context of object detection,
it may be interpreted as some kind of voting procedure for the object center. This
interpretation will later help us to design the scale parameters of the filter.

2 Group Integration

Let H be some vector space. The objects v ∈ H living in this space need not to be
interpreted as images. They are rather mappings from images to images. At this
point we are not yet interested in the details, just consider H as some arbitrary linear
space. Further let G be some compact group acting on the vectors v ∈ H by some
representation Tg (for basics in group representation theory with application to image
processing see [21]). We call the set of all points that stay unchanged during the action
of the group

HG = {v ∈ H | ∀g ∈ G : v = Tgv}. (1)

For example, consider the three dimensional rotations acting on the R3. If we rotate
around some fixed axis through the origin, then the rotation axis itself is the space HG.
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It is obviously a linear space, because the group acts linearly on H. Consider a vector
v that is not lying on the rotation axis. What is the best approximation of v in HG,
i.e. what is the solution of the optimization problem

min
w∈H

G
||v −w||2 (2)

For the rotation example it is a very simple question. It is just the orthogonal projection
of v on the rotation axis. But how does this projection look in general for arbitrary
groups or representations, respectively? To find such a projection we have to introduce
the principle of group integration. Let f : G → C be some function defined on the
group G. The left invariant Haar integral over f is denoted by

∫

G
f(g) dg. The left

invariance means that
∫

G
f(hg) dg =

∫

G
f(g) dg for all h ∈ G. For compact groups we

can assume that the measure is normalized such that
∫

G
dg = 1 (for more about Haar

integrals we refer to [22]). The canonical projection on HG is known as the Reynolds
operator (see e.g. [1]). It just performs a simple averaging over the whole group,

RG =

∫

G

Tg dg.

A result from classical invariant theory is that the best approximation of a vector v

with the fix point property v = Tgv is the projection via the above defined group
integration operator.

Unfortunately, the above theory is only well developed for compact groups. For
non-compact groups the Haar measure is not normalizable and RG is not bounded
anymore and everything breaks down. Nevertheless, in the next section we transfer
the introduced concept to the non-compact group SE(2) and we will see that the
projections of particular kind of objects are bounded and well-behaved.

3 Holomorphic Filters

The image function is represented by a square integrable complex function defined on
the complex plane C. It is denoted by x, an element of L2(C). The ’pixels’ of x, i.e.
its function values are written in unbold face x(z) = (x)(z). The area measure in the
complex plane is denoted by dzz̄, which is in ordinary cartesian dzz̄ = du dv, where
z = u + iv. For further introduction in complex analysis see e.g. [23]. By calligraphic
letters, e.g. A, we denote image transformations, i.e. mappings from L2(C) into itself.
The space of image transformations has to be associated with the space H from the
last section.
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The special Euclidean group usually acts on the image function by

(gx)(z) := x(e−iφ(z − t)), (3)

where φ is a rotation angle and t a translational shift. We use a small g for denoting
the group representation to distinguish it formally from the naturally induced group
action on an image transformation A which is given by

(TgA)[x] := gA[g−1x].

By this definition the fixpoint property TgA = A from the last section is identical to
the equivariance of the image transformation A[gx] = gA[x].

As already pointed out we are interested in a nonlinear behavior of our filter. The
natural extension of a linear image transformation to a nonlinear homogeneous of nth
order can be written as follows

(A[x])(z0) =

∫

Cn

x(z1) . . . x(zn)a(z0, z1, . . . , zn)dz1z̄1 . . . dznz̄n

The function a, the kernel, completely describes the transformation. We propose to
use kernels of the following form

a(z0, . . . , zn) = h(z0, . . . , zn)e−
Pn

k=0 λk|zk|
2

where λk ∈ R and h is holomorphic in zk for k > 0 and anti-holomorphic in z0, i.e. we
can write h as follows

h(z0, z1, . . . , zn) =
∑

i0,...,in

αi0,...,in z̄i0
0 zi1

1 . . . zin
n , (4)

where the sum is (n+1)-fold with indices ik ≥ 0 that are bounded by some finite cutoff
index. The αi0,...,in ∈ C are some expansion coefficients which have to be learned.
The form of the kernel might remind the reader of the well known complex moments
(see [17] for a review) and complex filters (see [16]). The advantage of such filters is
that the group acts irreducibly on the components, they do not mix during a rotation.
The Gaussians control the scale behavior of the image transformation. For k > 0 the
parameters λk determine at which size the input image is sampled. The parameter λ0

controls the size of the output image. The function h is the mapping which assigns
to each input image the corresponding output image. The proposed kernel has the
advantage that it is separable, i.e. we can write the image transformation as follows,

(H[x])(z0) =
∑

i0,...,in

αi0,...,in z̄i0
0 e−λ0|z0−t|2

(
n∏

k=1

∫

C

x(zk)z
ik
k e−λk|zk|

2

dzkz̄k

)

,
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which makes the computation tractable. The choice of this particular type of kernel is
further driven by the following observation. In [11] Perona introduced the concept of
computing optimal steerable approximations of certain image templates. He computed
a bank of optimal filters for an elongated edge template, in fact, this bank is very
similar to the kernels zie−λ0|z0−t|2 for i = 0, . . . , n. As edges are one of the most
important image features it seems reasonable to choose such functions as the basis for
our kernel function. And fortunately, there is a fast method to compute convolutions
with zie−λ0|z0−t|2-type of kernels. We will later show how they can be expressed by
complex derivatives; these are much cheaper to compute than a full convolution or a
approximation with separable filters as proposed in [11].

To make the image transformation A equivariant with respect to the Euclidean
motion we now want to use the proposed theory from the last section. Applying the
Reynolds operator RG on A yields

H[x] =

∫

SE(2)

(TgA)[x] dg =

∫

SE(2)

gA[g−1x] dg, (5)

a SE(2)-equivariant transformation. After inserting all the definitions from above we
obtain

(H[x])(z0) =
1

2π

2π∫

0

∫

C

∑

i0,...,in

αi0,...,in(eiφ(z̄0 − t̄))i0e−λ0|z0−t|2

(
n∏

k=1

∫

C

x(eiφzk + t)zik
k e−λk|zk|

2

dzkz̄k

)

dφ dtt̄

(6)

The most inner integral is a convolution of the input function with a (g
(i)
k )(z) :=

zie−λk|z|
2
. By reparametrizing the inner integral according to z′ = −zeiφ it can be

rewritten as
∫

C

x(eiφzk + t)zik
k e−λk|zk|

2

dzkz̄k = (−e−iφ)ik(x ∗ g
(ik)
k )(t),

where the asterisk ∗ denotes a convolution. Now we are able to compute the integral
over φ independently. By collecting all the φ dependencies we have

1

2π

∫ 2π

0

eiφ(i0−
P

k>0 ik)dφ = δi0,i1+...+in (7)

This means that the sum in equation (6) gives only a contribution whenever i0 =
i1 + . . .+ in. This condition is very similar to the rotation invariance constraint known
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in the context of complex moments (see e.g [17]). The outer integral in eq. (6) over
t is also a convolution, but this time with the complex conjugate ḡi0

0 . Concluding
everything leads to

(H[x])(z0) =
∑

P

il=i0
il∈N

αi0,...,in(−1)i0 ḡ
(i0)
0 ∗

(
n∏

k=1

(x ∗ g
(ik)
k )

)

(8)

Let us summarize. At first several feature images x
(i)
k = x ∗ g

(i)
k are computed. They

act like some kind of neighborhood descriptors of each pixel. The larger the Gaussians
in g

(i)
k the larger the corresponding neighborhood. All possible point-wise products of

such descriptor images are computed. According to the ’degree’ i1 + . . .+ in = i0 of the
product images they are convolved with the conjugates ḡ

(i0)
k . This approach achieves

the rotation equivariance of the filter. Finally, everyting is summed up weighted by
the parameters αi0,...,in . The question remains how to design the filter parameters and
how to choose the width of the Gaussians, which we will discuss later.

3.1 Differential Formulation

The convolutions with the functions g
(i)
k are computationally expensive, even if we use

a Fast Fourier Transform (FFT) or a decomposition into separable filters to speed it up.
We will use complex differential calculus to figure out a more efficient way. Actually
the function g

(i)
k is proportional to the ith order complex derivatives of a gaussian

gk = g
(0)
k , that is

∂g
(i−1)
k

∂z̄
= −λk g

(i)
k ,

where the partial derivative with respect to z̄ is defined by ∂
∂z̄

= 1
2
( ∂

∂x
+ i ∂

∂y
). The

z-derivative is defined accordingly. Inserting this relation into equation (8) and using
the fact that convolutions and derivations commute gives

(H[x])(z) =
∑

P

il=i0
il∈N

βi0,...,in

∂i0

∂zi0

(

g0 ∗

n∏

k=1

∂ikxk

∂z̄ik

)

,

where we used gk := g
(0)
k and further xk(z) := (x ∗ gk)(z) and

βi0,...,in := (−1)i0αi0,...,in

n∏

k=0

(−λk)
−ik .
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Figure 1: The workflow of a second order-filter (n = 2). The holomorphic function is
expanded up to a degree of m = 3. The star ’*’ in the circle is indicating a convolution
of the two incoming images. The dot ’·’ or the plus ’+’ indicate the point wise multipli-
cations or addition of the incoming images, and a squared dot a multiplication of the
input with itself. The labels at the arrows indicate a multiplication or differentiation,
respectively.

To speed up the algorithm we limit the number of convolutions by using just one size
of Gaussians for the input, i.e. λ1 = λ2 = . . . = λn. So we only have to compute one
convolution of the input image with g

(0)
1 . And secondly, several index combinations

which appear twice or more times can be discarded. For example, for a n = 2 (second
order)-filter the monom for β2,2,0 is the same as for β2,0,2. In Figure 1 all index com-
bination for a second-order filter with m = 3 are shown. If we now reformulate the
filter by the use of the linearity of the derivative and linearity of the convolution we
can obtain the following expression

(H[x])(z) = g0 ∗





m∑

i0=0

∂i0

∂zi0

∑

P

il=i0

βi0,...,in

n∏

k=1

x
(ik)
1 (z)



 ,

where we used the abbreviation ∂ix1

∂z̄i = x
(i)
1 . We only have to compute two convolutions

with Gaussians, the remaining steps are computations of derivatives which can be
performed quickly by the use of finite difference schemes. The whole computation
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procedure is sketched in Algorithm 1.

Algorithm 1 Filter Algorithm y = H[x]

Input: x

Output: y

1: Initialize filter output y := 0
2: Convolve x1 := g1 ∗ x

3: Compute derivatives (x
(i)
1 )(z) := ∂ix1

∂z̄i for i = 1, . . . , m
4: for i0 = m : −1 : 1 do

5:

y := y +
∂

∂z

∑

P

il=i0

βi0,...,in

n∏

k=1

x
(ik)
1

6: end for

7: Let y := y + β0,...,0x1

8: Convolve y := g0 ∗ y

After a initial convolution with a gaussian we have to compute m derivatives with
respect to z̄. By an iterative scheme the number of outer z-derivatives can also be
reduced to m. The number of multiplications is at most of order mn. Of course there
is much space for optimization by making use of intermediate results. In Figure 1 a
workflow graph of the filter is shown. One can see that we only need to keep the m
’derivative’-images in memory. The rest can be computed in place.

4 Filter Variants and Related Filters

In this section we propose three modifications of the proposed filter and discuss relations
to Volterra filters and steerable filters.

4.1 Mixed Holomorphic Filters

The condition arising from the rotation equivariance i1 + . . . + in = i0 can be quite
restrictive for low order filters. But there is a easy way to generalize the filter such
that already for low order filters the condition holds more often. We required the
filter kernel h(z0, . . . , zn) in equation (4) to be holomorphic in zk for k > 0. We can
also be less restrictive by just demanding that it is holomorphic or anti-holomorphic.
As a consequence the indices in the equivariance condition may also give a negative
contribution which leads to much more possibilities. If the input image x(z) is real the
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actual algorithm has to be modified only slightly, because we know that ∂x
∂z̄

= ∂̄x
∂z

. So

we do not only form products of the derivatives x
(i)
1 but also mixed products of x

(i)
1 and

x̄
(i)
1 . With a little abuse of notation, namely x

(−i)
1 = x̄

(i)
1 this is gently incorporated in

our formal framework.

4.2 Orientation Filters

Up to now we have only considered ’scalar’ images, which meant that the transfor-
mation behavior of the input and output image is according to equation (3). It is no
problem to extend the proposed filter to different transformation behaviors. As an ex-
ample we want to design a filter which maps a ’scalar’ input image on an ’orientation’
image that describes some kind of directional quantity. Later in the experiments we use
such a kind of filter to jointly detect a structure and also estimate its orientation in one
step. If the orientation is encoded by the phase of a complex number, the ’orientation’
image has to behave like

(gy)(z) := eiφy(e−iφ(z − t)). (9)

The corresponding algorithm for the filter is very similar to the original one. During
the derivation of the filter in the Section 3 only equation (7) changes, i.e. the index
combination has to fulfill now i0 + 1 = i1 + . . . + in.

Of course, also the input image can be an ’orientation’ image, for example the
gradient image. Generalization from ’orientation’-like images to higher order tensor-
images with transformation behavior (gy)(z) := eirφy(e−iφ(z − t)) for r > 1 are also
worth to consider and can be included in our framework without problems.

4.3 Non Homogeneous Filters

The proposed filter is homogeneous of order n, i.e. for any number γ ∈ C (λ ∈ R

for a mixed holomorphic filter) it holds that H[γx] = γnH[x] (homogeneity is just
equivariance with respect to the group of gray value scalings). In [24] advantages
of homogeneous filters and construction principles are discussed. It depends on the
application whether homogeneity is desired or not. But it is no problem to generalize
the proposed filter to non homogeneous filters, which are sums of filters of different
orders.

4.4 Relation to Volterra Filters

Volterra filters are well known in the field of image and signal processing. They are
the nonlinear extension of the linear convolution. In our terms, they are translation-
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equivariant image transformations. One can show that, if we restrict the integration
range in equation (5) to be just the group of translations, we arrive at a particular
kind of Volterra filter of order n, which arises from the holomorphic kernel. As we
are also considering rotation equivariance, the filter may also be interpreted as some
kind of Volterra filter with respect to the rotation group. And that is actually the
case. Imagine the partial derivatives ∂ixk

∂z̄i as the frequency representation of a function
defined on a circle. The function is representing the neighborhood of some point z
in the image plane. The index i corresponds to the angular frequency number of the
neighborhood, the index k can be associated with the radial part of the function. The
mapping, which assigns to each neighborhood the expressions

∑

P

ik=i0

βi0,...,in

n∏

k=1

x
(ik)
k (z) for i0 ≥ 0 (10)

can be interpreted as a Volterra filter in a frequency domain representation. The
condition

∑
ik = i0 assures the rotation equivariance. It corresponds to the constraint

that the filter kernel only depends on the relative quantities between input and output
variables as it is known from ordinary Volterra filters.

4.5 Relation to Steerable Filters

Steerable filters are well known in the pattern recognition community. We show that in
complex analysis the theory of steerable filters for 2D rotations gets much more simple
and is directly related to our work. In fact, in complex theory the transformation be-
havior (the steering) has a canonical form in terms of the irreducible representations of
the rotation group corresponding to the behavior known from Fourier transformations
(see e.g. [21]).

In cartesian coordinates (u, v) ∈ R2 a steerable filter s is a function of the form

s(u, v) =
M∑

k=1

k∑

i=0

ηk,i

∂k−i

∂uk−i

∂i

∂vi
g(u, v).

By this the convolution of an image function x with a rotated version of s can be
expressed by a a linear combination of the individual filter responses

x(k,i) = x ∗
∂k−i

∂uk−i

∂i

∂vi
g(u, v)

The function g(u, v) is an arbitrary rotationally symmetric function. Usually the
weights of the linear combination are a cumbersome expression depending on the
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rotation angle. They are higher order tensor products of the representations of the
two dimensional rotation group. The reduction of such higher order representation
to irreducible ones is a well known task in group representation theory. For the two
dimensional rotation group the irreducible representation is known to be eiφi for i ∈ Z.
By choosing the filter coefficients as

ηk,i = ξk

1

2k

(
k
i

)

(−i)n−k

and using the binomial formula, we arrive at

s(u, v) =

M∑

k=1

ξk

(
1

2
(

∂

∂u
− i

∂

∂v
)

)k

g(u, v)

︸ ︷︷ ︸

(g
(k)
0 )(u+iv)

.

If we choose g(u, v) to be a Gaussian then we get the complex Gaussian derivatives

g
(k)
0 which we already know from our holomorphic filter. Now, the steering property

becomes very simple

x ∗ (gφs) =
M∑

k=1

ξke
ikφx(k),

where the individual filter responses are x(k) = x ∗ g
(k)
0 and (gφs)(z) := s(e−iφz) is

defined as usual. This means that the first step in our filter algorithm, the computation
of the derivatives, is nothing else than a particular filter response of a complex steerable
filter.

5 Filter Design

The question arises how to adapt the filter parameters β = (βi0,...,in) to a specific
problem. In this work we follow the traditional approach of minimizing the mean
square error. It is widely used in signal processing community in the context of adaptive
nonlinear filters (see e.g. [25]). While in signal processing mostly iterative algorithms
and stochastic gradient approaches are common, we use the closed form solution. For
a given input image x and a desired output image y we want to minimize

J(β) = ||Hβ[x] − y||2.

As Hβ is linear in β it is simple to find an explicit expression for the optimum. Let ui

be the column vector containing the monoms for the jth pixel, that is the vector with
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components

(uj)I =

(

∂i0

∂zi0

n∏

k=1

x
(ik)
1

)

(zj),

where I is a multiindex ranging over all (i0, . . . , in) = I with
∑

ik = i0 and zj are the
discrete pixel coordinates in complex notation. Further let vj = (y)(zj) be the values
of target image at position zj , then the solution of the optimization problem can be
written as follows

β =

(
∑

j

uju
†
j

)−1
∑

j

vjuj ,

where j ranges over all discrete image sites.
As the number of filter parameters is usually much lower than the number of pixels

in the image, the correlation matrix is in most cases well behaved and regular, such
that the inversion makes no difficulties. But in some cases regularization is necessary.
We found that ordinary regularization schemes by J(β) 7→ J(β) + ρ||β||2 with the L2-
norm do not work. The filter parameters are driven in ranges that are not reasonable,
because by using the standard norm it is implicitly assumed that the monoms (u)I are
uncorrelated, which is actually not the case. A more reasonable assumption is that
the input pixels x(zj) are pairwise uncorrelated and Gaussian distributed. To find the
corresponding norm for regularization we have to compute the expectation valued of
uu† under this assumption. But the computation of this matrix is quite cumbersome
and involves computations of higher order cumulants of the gaussian distribution. To
avoid this explicit computation we follow in practice a much more simple way; the
input training image x is artificially corrupted by adding gaussian distributed noise
before training. This is done multiple times and the corresponding estimates for the
correlation matrix are averaged. We found that this approach works very well in
practice and theoretically converges to the desired regularization norm.

From an implementational viewpoint the training procedure itself is a little bit more
costly than an application of the filter itself. Most of the time is spent on building the
correlation matrix. For each valid multiindex I the feature image (uj)I has to be
computed, which involves multiplications and multiple differentiations.

6 Experiments

Before starting with the experiments let us clarify some details of the implementation.
For speed reasons, we use the FFT to perform the initial and final convolutions (line
2 and line 8 in Algorithm 1). As already pointed out we want to approximate the
differentiation (line 3 and 4) by a finite difference scheme. Higher order derivatives are
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a) b) c)

Figure 2: The real part of the function g
(8)
0 in a 32 × 32 grid is shown. In image a) it

is computed explicitly, in b) by a crude approximation with finite difference operator
∆1 of first order. Image c) shows a approximation with second order finite differences
by the use of ∆2.

obtained by multiple applications of the first order derivative. This approach is rather
crude and inaccurate, because the approximation errors are accumulated by multiple
applications of the rough approximation. But it helps to speed up the algorithm and for
low orders the effect is not too hazardous. The important issue is that the errors behave
’isotropically’, such that the rotation behavior and hence the rotation equivariance
is not destroyed. In Figure 2 we try to illustrate the errors which occur when the
expansion degree gets too high. We computed the function g8

0 in three different ways.
First we computed it by the direct use of the formula z8e−λ0|z|2 in an accurate way.
Then we iteratively apply a first order finite difference operator ∆1 or alternatively a
second order operator ∆2 on the plain gaussian g0

0. The difference operators are given
by
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For details how to compute higher order approximations of derivatives see e.g. [26].
Figure 2 shows that the approximations obviously produce artefacts around the origin.
These artefacts are not compliant with the original rotation behavior anymore. The
accurate version in Figure 2 a) has a rotation symmetry of degree 8, the error intro-
duced by the first order scheme has a rotation symmetry of degree 4, i.e. the rotation
equivariance of the filter is partially destroyed. One can see that the second order
scheme substantially reduces this error, while doubling the computationally load. In
the experiments we exclusively used the first-order approximations. We found that,
despite the errors even for low degrees, it makes no difference in practice whether we
use ∆1 or ∆2 up to degrees of about 8.

Finally, some words about the handling of the boundary of the image domain. We
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Figure 3: Results for the contour denoising experiment. We compare our approach at
different noise levels with an optimal Wiener filter and a steerable filter.

did not find a method which works fine in general. Any approach which makes use of
modified finite differences at the borders of the image, makes an implicit assumption
about the continuation of the image beyond the boundary. This leads, depending on
the task and type of image, to undesired artefacts near the boundary. We found that
a cyclic extension of derivatives, as one is used to get from FFT-based convolutions, is
appropriate for most of the tasks.

All experiments are performed on a Pentium 4, 2.8Ghz with MATLAB. The time
consuming parts are implemented in C + + using the MEX -interface.

6.1 Enhancing Noisy Contours

Let us begin with a toy example. The filter should remove noise from contour images.
It makes use of the prior knowledge that the original image was a contour before it was
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distorted by additive noise. We use a non-homogeneous mixed-holomorphic second-
order filter (n = 2) with a holomorphic expansion up to a degree of m = 7. For
example, for i0 = 5 we have the following monoms

x
(5)
1 , x

(0)
1 x

(5)
1 , x̄

(1)
1 x

(6)
1 , x̄

(2)
1 x

(7)
1 .

These are all possible combinations such that i2 − i1 = 5, where i1, i2 ∈ {0, . . . , 7}.
This means that we use a filter kernel h(z0, z1, z2) which is anti-holomorphic in z1 and

holomorphic in z2. Additionally we have the singelton x
(5)
1 belonging to the linear filter,

which makes the filter non-homogeneous. Thus, the dimension of the parameter vector
β is given by (m + 1)(m + 2)/2 + (m + 1) = 44.

We use gray scale images of size 128 × 128. The gray value of the image varies
between 0 and 1. The question arises how to choose the sizes of the Gaussians g0 and
g1. We used λ0 = λ1 = 1 measured in pixel units, i.e. the gaussian are rather small to
preserve the sharpness of the contour. Also other values for λ0, λ1 work. The choice is
always driven by the demands of the specific task.

For training we used an image with some painted white strokes on black background.
The input training image is corrupted by uncorrelated additive gaussian noise with a
signal to noise ratio of 0.3. The target image contains just the clean white strokes.
Results on a toy image are shown in Figure 3. For comparison we show results obtained
by an adaptive noise-removal Wiener filter (see [27], p.548, equations 9.44 – 9.46) and
a steerable filter [10]. For the steerable filter we used an elongated Gabor-like line
template in 56 orientations. The images were distorted by additive gaussian noise of
different noise levels. The proposed holomorphic filter performs quite well. The output
of the Wiener filter is more grainy and less impressive. The results of steerable filter are
comparable to the holomorphic filter. However the response on the noise is somewhat
different. The steerable filter tends to produce much more contour like fringes even in
areas where no signal is present. Another observation is that the holomorphic filter is
able to localize the contour a little bit more precisely than the steerable filter, which
can can be explained by the fact that for the steerable filter also slightly misplaced
line templates can give contributions (of course, a non-maximum suppression would
also make the response of the steerable filter more precise). As the holomorphic filter
is explicitly trained to return a sharp contour such problems are avoided. Loosely
spoken, the holomorphic filter computes implicitly a kind of deconvolution with a
certain template to get this more precise response.

The steerable filter also provides a second information, the orientation of the de-
tected line segments. This information can be extremely useful for further postpro-
cessing. Until now the holomorphic filter only provides evidence for the presence of the
contour but not its orientation. In Section 4.2 we explained how to design holomorphic
filters that can return orientation-like images, where the orientation is encoded in the
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complex phase of the response. We will now use this approach to build a holomorphic
filter which also gives the direction of the detected line segments. First we have to
determine according to which transformation law the output image has to be trans-
formed. To find the right transformation behavior consider the rotational symmetry
of the problem. A line template has obviously a rotational symmetry of degree r = 2,
i.e. after a rotation with 2π/r = π it turns out be the same. Hence, the filter will
only be able to recover the orientation modulo π. So the output image has to obey the
following transformation law

(gy)(z) := ei2φy(e−iφ(z − t)),

where g is a rotation around the origin of angle φ. The implementation of the filter
is the same as before, just the index combination are differently chosen, according to
i0 + 2 = i1 + i2 − i3. The training procedure is also similar, but we need a different
target image which also includes the orientation information. We constructed this
information manually. The orientation is assigned to each pixel on the contour in the
target image by multiplying it with a complex unit number representing the orientation.
Additionally the target image gets a small smooth such that the width of the the
detected contour is similar to the one obtained by a steerable filter. The rest of the
training procedure is exactly as before. Figure 4 shows the orientation responses for
the holomorphic filter in comparison to the steerable filter at a sharp corner and a
crossing. The holomorphic filter is able to handle the sharp corner a little bit better.
The steerable filter produces some kind of overshoots due to the elongated line template.
This can bring further postprocessing steps into difficulties, like a contour tracker. The
effect can be attenuated with the use of a shorter line template. But then also the
detection confidence for straight line segments drops. The holomorphic filter does not
have such problems. It does not explicitly use a template but adaptively learns to
detect contours that also can contain sharp corners. At the crossing the response of
the holomorphic filter is a little bit confused and weak. The steerable filter does not
have such problems. It is very unlikely to happen that the optimal orientation of the
line template is not parallel to one of the dominant orientations.

6.2 Analyzing Pollen Grains

Analysis techniques for data acquired by microscopy typically demand for a rotation
and translation invariant treatment. The microscopical images of particles like cells,
pollen grains or spores have usually no predetermined orientation. In this experiment
we use the holomorphic filter for the analysis of pollen grains.

Palynology, the study and analysis of pollen, is an interesting topic with very diverse
applications like in Paleoclimatology or Forensics. An important feature of certain
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overshoots

Holo. Filter Steerable Filter

Figure 4: Comparison of the quality of the orientation estimates. The steerable filter
shows overshoots at sharp corners. The holomorphic filter can overcome this problem.
Therefore the holomorphic filter has small problems at the crossings.

types of pollen grain are the so called porates that are small pores on the surface of the
grain. Their relative configuration is crucial for the determination of the species. We
want to use the proposed filter to detect such porates. The input images are acquired by
translucent microscopy, i.e. there may be varying illumination and contrast conditions.
Such changes should not have an impact on the detection results. To make the filter
invariant against global additive change of the gray values the filter must not depend
on zero degree x

(0)
1 expressions because they carry the information about the local

mean of the images. The contrast changes affect the images by a scaling of the gray
values. We will not make the filter invariant against such a scaling but equivariant,
i.e. we use a homogeneous filter. As the local maxima of the filter response serve as
detection hypotheses a gray scale change will not affect the detection results if the filter
is homogeneous.

Figure 5: Example for the porate detection. On the left you see the original input
image. On the right the output of the filter. For visualization filter responses below
zero are set to zero. The local maxima of the filter output are marked in the left image
by red circles.

20



Figure 6: Results for the porate detection. Some of the birch pollen grains have
only two porates because they were not deposited in equatorial pose. For very strong
gradients, as in right image, the filter gets severe problems.

This time we use a third order filter (n = 3) with degree m = 5. The filter
is again mixed holomorphic, two variables are chosen holomorphic, the third anti-
holomorphic, i.e. we search for monomes that fulfill i0 = i1 + i2 − i3. We found
55 monoms fulfilling this selection rule, while not violating the gray value invariance
constraint from above. The choice of λ0 and λ1 is motivated by interpreting the filter
as some kind of generalized Hough transform [18]. Imagine that the object, in our
case the porate, consists of several parts (just for imagination, the parts are actually
the pixels of the object). Each part performs some kind of ’voting’ for the putative

center of the object. The parts are described by the derivatives x
(i)
1 , which serve as

local descriptors. The size of such hypothetical parts is determined by the width of the
input gaussian g1. The filter maps these local descriptions of the parts onto a ’voting’
function for the object center. This mapping is actually the mapping described in
equation (10). The size of the impact of the voting function depends on the parameter
λ0. It has to be chosen, such that also the parts at the outer border has a influence on
the decision for the object center. Hence, the width of the output Gaussian should be
at least half of the diameter of the object. The images we use in this experiment are
of size about 200× 200. A porate has an approximate length of 40 pixels (compare to
Figure 5 and 6). So we used a output Gaussian with λ0 = 1

202 . The input gaussian has
a size of about λ1 = 1

22 .
For the design of filter parameters β we used the eight birch pollen (four of them

are shown in Figure 5). Each pollen grain possess 3 porates. The target output image
is just an indicator image for the porate center. It contains everywhere zeros except
at the object center location where the pixel is set to one. The object centers were
manually labeled.
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detect prec. HOLO SIFT PCASIFT INVFEAT

10 px 27% 48% 46% 49%
20 px 22% 26% 22% 48%

Table 1: Equal error rates for the porate dataset.

6.2.1 Results

The filter response for the training image is shown in Figure 5. The computation time
for this filter is just under 200ms. The local maxima of the filter response are marked in
the original image by red circles. We only show up those local maxima that are above a
certain threshold. Obviously, the filter performs very well for the test image. In Figure
6 we show some results for other images. In a clean environment (Figure 6 top) the
porate are well detected (again with the same threshold as before). In the presence of
dirt the filter gets problems. If the gradients are strong and well oriented along an edge
(Figure 6 bottom) the problems get severe. At least for two of the three porates the
local maxima are at the right position. The detection of the third upper right porate is
shifted because of the strong influence of the responses from the neighboring gradients.
Such problems are inherent if we use a homogeneous filter, because the filter response
directly depends on the scale of the input gray values. If there are large gray values,
or large gray value changes, the filter response gets also strong, regardless whether the
shape or structure of the neighborhood is of interest or not. A possible way out would
be a local normalization of the filter response or a preprocessing of the input images.

To measure the performance of our system we collected a test set of 150 segmented
pollen grains with about 500 porates at all. The segmentation was done with a circular
Hough transform. It may still happen that the pollen is impurified with dust and dirt
particles, which may cause false positive detections. All porate centers were manually
labeled. As the porates are not always in the equatorial pose it is sometimes difficult
to define an objective ground truth.

We define a detection to be successful if the local maxima of the filter response is
at most 10(20) pixels apart from the labeled center (a porate has a length of about 40
pixels). All local maxima of the filter responses are collected as detection hypotheses.
The filter strength at the putative detection sites are assigned to each hypothesis.

We compared our approach with two different methods. In a first approach we ex-
tract SIFT-features at DoG-interest points (following [19]). For compactification of the
features we used a PCA. Based on the SIFT(PCASIFT)-features we perform a GHT-
like probabilistic voting procedure as done in the ISM model [20]. To achieve rotation
invariance we steered the features at the gradient’s main orientation and cast votes
relative to the orientation as it is done in [28, 29]. For training we used agglomerative
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Figure 7: 1-Precision/Recall graphs for the porate test set. Left: with high detection
accuracy of 10 pixels. Right: with low detection accuracy of 20 pixels.

clustering to obtain local appearance clusters. The training set is the same as for the
holomorphic filter. As the porate dataset does not require for a scale invariant treat-
ment the Hough voting map is only two dimensional, just the location of the object.
Local maxima of the smoothed voting map serve as detection hypotheses, the absolute
values of the maxima as a confidence value. We also tried to use a three dimensional
voting map of object position times orientation, but we found that it mostly performed
worse, because we got a lot of spurious local maxima and the final localization of the
objects were very poor. Secondly, we used an approach (INVFEAT) which extracts a
set of rotation invariant features for each pixel and classifies them whether they are
an object center or not. A similar approach was used in 3D for detection of cell nuclei
[30]. As features we use multiple complex derivatives, that is fk,j = dk+jx1

dzkdz̄j , up to an
order of 8 resulting in 8 · 9/2 = 36 features per pixel. Rotation invariance is obtained
by just taking the absolute value of the feature images |fk,j| as it was done in [16].
To keep the running times comparable to our approach we used a linear classifier for
classification and the same training procedure as for our approach.

In Figure 7 we show the results in form of 1-Precision/Recall graphs. We make
two runs with 10 and 20 pixels detection accuracy. In comparison to our approach
(HOLO) the localizations of SIFT and PCASIFT detections are much more imprecise.
This might be explained by the imprecise localization of the keypoints which are the
basis for the subsequent voting. Our approach does not have such problems because
all pixels are taken under consideration. For a low detection precision PCASIFT can
slightly outperform HOLO in a certain threshold area. Only INVFEAT is able to
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Figure 8: Results for the Orientation Filter. On the left the original image and the
detection and its orientation are marked with a red circle. On the right the filter
response is shown. The gray values indicate the magnitude of the response, the arrows
the phase of the complex number.

finally detect nearly all porates by the cost of very high false positive rates.
We have already shown in the contour experiment that it is possible to build a

filter, whose output is some kind of ’orientation’ image. Again, we want to use this
approach to detect the location of the porate as well as its orientation in the image
plane. As the porate shows no rotational symmetry the output has to behave like an
ordinary ’orientation’ image, i.e. according to equation (9). The index combination
has chosen according to i0 + 1 = i1 + i2 − i3. The target image for the training of the
filter parameters is also very similar. The only difference is that instead of placing a
1 at each object center we place a eiϕ pointing to the center of the current pollen. In
Figure 8 we show the filter response for a test image. We selected the local maxima of
the magnitude of the filter response as detection hypotheses. The porate are detected
nicely and the orientation is right. But there is also a drawback of this approach. By
taking the local maxima of the magnitude much more false positive detections can
occur. In our first approach the sign (or complex phase) of the filter response was
also carrying information about the presence of the object. Responses below zero were
promptly neglected. Now, the complex phase is abused for the orientation estimation.
We do not know whether the local maxima of the magnitude is a ’local minima’ of
the original response with the opposite orientation. But this drawback can easily be
overcome by combining the ’detection’-filter with the ’orientation’-filter. And even the
computational complexity does not double because intermediate results can be used
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twice.

6.3 Detecting Fungal Spores

Asthma is one of the major respiratory diseases. There may be multiple factors, but
it seems that sensitivity to Alternaria spores plays an important role with the onset
asthma in certain areas [31]. Alternaria is one of the most common fungi worldwide,
found literally everywhere, both indoors and outdoors. This makes the counting, de-
tection and forecasting of Alternaria an important task. In this experiment we want to
propose a fast method for detecting Alternaria spores in microscopical images by the
use of the presented holomorphic filter.

We have demonstrated in Figure 6 that the filter gets severe problems in the pres-
ence of dirt. If we want to use the filter for object detection this is a real problem.
Suppose that the objects we search for are located in images that are full of additional
particles and dirt, we would get a lot of false positive detections. As mentioned above
this problem is inherent with such a direct approach, because the filter response directly
scales with the input gray values. We want to use a preprocessing step to attenuate this
effect. Instead of working directly with the gray value image we compute the gradient
image before and normalize softly with the magnitude as follows,

(dx)(z) =
∂x
dz̄

1 + γ|∂x
dz̄
|
,

with γ > 0. For large γ only the direction of the gradient remains. Note, that dx is
SE(2)-equivariant, i.e. gdx = dgx, where the group action gx on the right hand side
obeys eq. (3) and on the left hand side gdx to eq. (9). By using the orientation-
like dx image as the input, we have again to modify the filter algorithm to satisfy the
equivariance constraint. This time the index combination has to fulfill i0−1 = i1+i2−i3.

Figure 9: Positive Training Examples.

The training procedure is similar as before, merely also typical background parts
which are around the spores are used for the training, this additionally regularizes the
solution and makes the approach more discriminative. In Figure 9 the positive training
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a) b) c)

Figure 10: Comparison for different γ. In a) original image, in b) with γ = 0, in c)
with γ = 0.5.

examples are shown. The training image for background is similar to the clutter in
Figure 14. We used again a third-order filter with m = 5. The input and output
gaussian we adapted according to the explanation in the last Section.

First we show some results concerning the choice of γ. In Figure 10 the filter
responses for γ = 0 and γ = 0.5 are given. In both cases the filter finds the spore, but
for γ = 0 we also get a equally strong response for the pollen grain in the upper left in
the image. This is not the case if we choose γ = 0.5, the false responses are damped
but also new are appearing that are not caused by strong gradients.

detect prec. HOLO SIFT PCASIFT INVFEAT

10 px 37% 44% 37% 60%
20 px 37% 29% 27% 60%

Table 2: Equal error rates for the spore dataset.

6.3.1 Results

For testing we labeled 50 spores manually in overall 20 images. By varying the thresh-
old over the filter response we obtain the 1-Precision/Recall graphs in Figure 11 and
13. Figure 11 shows 1-P/R-graphs for different choices of γ. The preprocessing dis-
cussed above improves the results for a moderate choice of γ. For larger γ the perfor-
mance drops. In Table 2 the obtained equal error rates are reported. In comparison
to (PCA)SIFT we can observe the same behavior as for the porate data set. The
(PCA)SIFT detection are much more imprecise, but the voting values are slightly
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Figure 11: A Precision/Recall plot for different values of the normalization parameter
γ.

Figure 12: Spores that were detected by our approach, but missed by (PCA)SIFT.

more reliable. Our HOLO approach has the advantage that the recall rates are better
for low thresholds, that is most of the spores are finally detected. The missing detec-
tions by (PCA)SIFT are mostly due to missing keypoints caused by low contrast and
fuzziness. This is an inherent problem with such keypoint based methods. In Figure
12 three examples of spores are shown that are detected by our approach but missed
by the (PCA)SIFT approach.

Another advantage of our approach is that it is fast and does not depend on the
complexity of the scene because it works in a pixel-wise manner. For an image of size
1400× 1000 the filter needs only about 4 seconds (without initial and final blur). Sup-
pose that such an image is full of non interesting airborne particles like in Figure 14 (a
small 300 × 200-sized clipping of the original image). The original SIFT implementa-
tion by Lowe needs about 11 seconds on our machine to detect and extract about 5000
keypoints.
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Figure 13: 1-Precision/Recall graphs for the sporen test set. Left: with high detection
accuracy of 10 pixels. Right: with low detection accuracy of 20 pixels.

7 Conclusion

In this work we presented a rotation equivariant image filter. The filter can be in-
terpreted as joint Volterra filter for rotations and translations. The approach is also
deeply related to steerable filters. The output of the holomorphic filter is polynomial in
terms of the individual filter responses of a special kind of steerable filter. Thereby the
monoms are chosen such that the rotation equivariance is fulfilled. The filter design,
i.e. the choice of polynomial coefficients, is accomplished by a training procedure based
on a simple regression scheme. We also reported a fast, approximative computation of
the proposed filter, which makes use of the correspondence of holomorphic functions
with complex gaussian derivatives.

In a first experiment we used the filter for denoising of contours and compared the
results to steerable filters. We found that the results are competitive and show superior
behavior at sharp corners. An advantage of our adaptive approach is that the filter
can easily be trained to fulfill the user’s demands. It does not rely on a predefined
template as a steerable filter.

In a second experiment the filter is used for rotation invariant detection in micro-
scopical images. Compared to a GHT-based approach relying on SIFT features our
approach is competitive for the microscopical data. The holomorphic filter provides a
much more precise localization of the object, because it does not rely on an intermedi-
ate representation by uncertain localized keypoints. Another drawback of the keypoint
based approach is that in fuzzy regions of low contrast no keypoints are detected and
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Figure 14: Detection results. On the top the input image is given. Detections with
the EER-threshold are marked with red circles. The bottom image shows the filter
response.

hence a detection becomes impossible. The holomorphic filter does not have such
problems because all pixel are taken under consideration. Of course, for more complex
vision problems the non-parametric GHT-based approaches will outperform the holo-
morphic filter, because the model complexity of the filter is very limited. But therefore,
due to the small number of parameters, the filter is able to show better generalization
ability for certain data.

In conclusion, the presented framework offers a handy tool for several low level
vision problems that require for a rotation invariant treatment. There are many possi-
ble directions for future work. A generalization of the framework to multiple scales is
straight forward. Different training procedures are also worth to consider, e.g. boost-
ing. A composition of several filters in the manner of a convolutional neural network
may also be interesting, whereas the training would be iterative and much more costly.
In some way the holomorphic filter can be seen as a heavy weight interest point de-
tector. In the context of keypoint based object detection it may be used instead of a
DoG interest point detector, for example. In this context it may be possible to adapt it
individually to a specific task and robustness demands. More generally, the holomor-
phic filter can be seen as the link between the classical interest point detectors that are
only able to detect very simple structures and the more complex and expensive object
recognition systems that are able to learn very complex models like the ISM.
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