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Abstract

This paper presents a new class of matrix valued kernels, which are ideally
suited to learn vector valued equivariant functions. Matrix valued kernels are a
natural generalization of the common notion of a kernel. We set the theoretical
foundations of so called equivariant matrix valued kernels. We work out several
properties of equivariant kernels, we give an interpretation of their behavior and
show relations to scalar kernels. Further we translate the notion of (ir)reducibility
of group representations into the framework of matrix valued kernels. Finally we
give two exemplary applications. We design a non-linear rotation and translation
equivariant filter for 2D-images and propose an invariant object detector based
on the generalized Hough transform.

1 Introduction

In the last decade kernel techniques have gained much attention in machine learning
theory. There is a large variety of problems which can be naturally formulated in
a kernelized manner, ranging from regression and classification problems, over feature
transformation algorithms to coding schemes. There is a large literature on this subject.
We recommend [14, 16] and references therein.

The notion of a kernel as a kind of similarity between two given patterns can be
naturally generalized to matrix valued kernels. A matrix valued kernel can carry more
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information than only similarity, like information about the relative pose or configu-
ration of the two patterns. It is one way to overcome the ’information bottleneck’ of
the kernel matrix. Despite its generality, there was not spent much attention on this
subject in the past, maybe due to the fact, that the most famous representative of the
kernel framework, the Support Vector Machine, does not benefit from this more gen-
eral approach. First [3] studied the theory of vector-valued reproducing kernel Hilbert
spaces leading to the notion of a matrix (or operator) valued kernel. [1] applied it for
the solution of PDEs and more recently [10] used it in the context of machine learning.

In this paper we introduce a new class of matrix valued kernels with a specific
transformation behavior. The new type of kernel is motivated by a vector valued
regression problem. The function to be learned is desired to be equivariant, meaning
that group actions on the input space of the function translate to corresponding group
actions on the output space. To get an intuition: from signal processing theory one is
familar with the notion of a ’time-invariant linear filter’. In our words the term ’time-
invariant’ means that the filter is equivariant to the group of time-shifts. More exactly,
the time-shift equivariance is expressed by the fact that the group-representations of
time-shifts and the action of the filter (in this case a linear convolution) commute.
Equivariance is of high interest in signal-/image processing problems and geometrically
related learning problems.

We give a constructive way to obtain kernels, whose linear combinations lead to
equivariant functions. These kernels are based on Group Integration. Group Integra-
tion is widely used for invariant feature extraction. For introduction see [4]. Recently
[6] used Group Integration to get invariance in kernel methods.

The paper is organized as follows: In Section 2 we give a first motivation for our
kernels by solving an equivariant regression problem. We give an illustrative interpre-
tation of the kernels and present an equivariant Representer Theorem, which justifies
our lax motivation from the beginning. Further we uncover a relation of our framework
to Volterra Theory. In Section 3 we give rules how to contruct matrix kernels out of
matrix kernels and give constraints how to preserve equivariance. Section 4 introduces
the notion of irreducibility for kernels and show how the traces of matrix valued kernels
are related to scalar valued kernels. Two possible application of matrix valued kernels
are given in Section 5: a rotation equivariant non-linear filter and a rotation invari-
ant object detector. Finally, Section 6 gives a conclusion and an outlook for future
direction of research and applications.
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2 Group Integration Matrix Kernels

In this section we propose the basic approach. After some preliminaries we give a first
motivation for our idea. Then we give an interpretation of the proposed kernels and
present an equivariant Representer Theorem.

2.1 Preliminaries and Notation

We consider compact, linear, unimodular groups G. A group representation ρg is
a group homomorphism G 7→ L(V), where V is a finite dimensional Hilbertspace.
Sometimes we write gx meaning ρgx, where the patterns x ∈ V are always in bold face.
In the continuous case (G is a Lie group), the action should also be continuous. In this
case we can restrict ourselves with no loss of generality to unitary group actions, i.e.
always ρg−1 = ρ†

g holds. We denote the Haar Integral (or Group Integral) by
∫

G
f(g) dg

regardless whether we deal with finite groups or Lie groups. Due to the unimodularity
all reparametrizations are possible. For further reading on these topics we recommend
[5, 12, 11, 15].

We want to learn functions f : X 7→ Y, where X ,Y are finite dimensional Hilbertspaces.
Tensor- or Kroneckerproducts are denoted by ⊗. An equivariant function is a func-
tion fulfilling f(gx) = gf(x). We assume that group actions in X and Y are properly
chosen. Inner products are denoted by 〈·|·〉X , where the subscript indicates in which
space the arguments are living. Due to the unitary group representation the inner
product is invariant in the sense 〈gx1|gx2〉X = 〈x1|x2〉X . A scalar valued kernel is a
symmetric, positive definite function k : X × X 7→ R fulfilling the Mercer property.
More precisly, we use the term positive definite in the sense of semi-positive definitness.
If strict positive definitness is forced, we make this explicit. We also assume invariance
to group actions of G, i.e. k(gx1, gx2) = k(x1,x2) for all g ∈ G. The function space
spanned by all vector-valued linear combination of kernel evaluations of k is called Zk

(isomorphic to the vector-valued RKHS of k), where the vector-valued coefficents live
in Y, i.e. Zk = {f(x) =

∑

i k(x,xi)ai | xi ∈ X , ai ∈ Y}.
We assume the reader is familiar with basics in kernel methods, tensor algebra and

representation theory.

2.2 Motivation

Our goal is to learn functions f : X 7→ Y from learning samples {(xi,yi)|i = 1..n} in
an equivariant manner, i.e. the function has to satisfy f(gx) = gf(x) for all g ∈ G,
while f(xi) = yi should be fulfilled as accurate as possible.
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Due to the Representer Theorem by [8] minimizer in Zk of arbitrary risk functionals
are of the form

f(x) =
n

∑

i=1

k(x,xi)ai, (1)

where the ai ∈ Y are some vector valued coefficients, which have to be learned. To
obtain an equivariant behavior we pretend to present the training samples in all possible
poses {(gxi, gyi)|i = 1..n, g ∈ G}. Since no pose g should be favored, the coefficients
ai are not allowed to depend on g explicitly, but they have to turn its pose according
to the actions in the input space. And hence the solution has to look like

f(x) =

∫

G

n
∑

i=1

k(x, gxi) gai dg, (2)

where the integral ranges over the whole group G. As desired the following lemma
holds

Lemma 2.1. Every function of form (2) is an equivariant function with respect to G.

Proof. Due to the invariance of the kernel we have

f(gx) =

∫

G

∑

i

k(x, g−1g′xi) g′ai dg′,

and using the unimodularity of G we reparametrize the integral by h = g−1g′ and
obtain the desired result

f(gx) =

∫

G

∑

i

k(x, hxi) ghai dh = gf(x),

using the linearity of the group representation.

So we have a constructive way to obtain equivariant functions. Since we can ex-
change summation with integration and the group action is linear we can rewrite (2)
by

f(x) =
n

∑

i=1

(
∫

G

k(x, gxi) ρg dg

)

ai, (3)

where we can interpret the expression inside the brackets as a matrix valued kernel.
First we want to characterize its basic properties in the following
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Proposition 2.2. Let K : X × X 7→ L(Y) for every x1,x2 ∈ X be defined by

K(x1,x2) =

∫

G

k(x1, gx2) ρg dg,

where ρg ∈ L(Y) is a group representation and k is any symmetric, G-invariant func-
tion. The following properties hold for a function above,

a) For every x1,x2 ∈ X and g, h ∈ G, we have that

K(gx1, hx2) = ρg K(x1,x2) ρ†
h,

i.e. K is equivariant in the first argument and anti-equivariant in the second, we
say K is equivariant.

b) It holds K(x1,x2) = K(x2,x1)
†.

Proof. To prove a) we just have to follow the reasoning in the proof of Lemma 2.1. For
b) we use the invariance and symmetry of k and the unimodularity of G and get

K(x1,x2) =

∫

G

k(g−1x1,x2) ρg dg =

∫

G

k(x2, gx1) ρg−1 dg = K(x2,x1)
†,

as asserted.

We know, if k is a scalar kernel then there exists a feature space F and a feature
map Φ : X 7→ F such that the kernel is a inner product in this space, i.e. k(x1,x2) =
〈Φ(x1)|Φ(x2)〉F . For matrix valued kernels this idea can be transferred nearly without
changes.

Definition 2.3 (Matrix Valued Kernel). A function K : X × X 7→ L(Y) is called
a matrix valued Kernel if for all x1,x2 ∈ X

K(x1,x2) = 〈Ψ(x1)|Ψ(x2)〉H,

where Ψ is a mapping from X to a feature-space H = F ⊗ L(Y) with the property that
for all 0 6= Ψ ∈ H the matrix 〈Ψ|Ψ〉H ∈ L(Y) is positive definite.

This definition is the simple generalization of the ordinary notion of a kernel. There
are many equivalent ways to define matrix kernels (e.g. [10] or [3]). We have chosen
the constructive way to let a kernel be given by the existence of its feature-map. But
there are also two ways to do that. In the definition above the elements of the feature-
space H can be imagined as L(Y)-valued or matrix-valued vectors, just elements of
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F ⊗ L(Y) or from the L(Y)-module. We can adopt all operations from the underlying
vector space F . Only the conjugate for the ring-elements L(Y) has to be defined.
An alternative (or dual) way would be to decompose the kernel by the outer product
K(x1,x2) = |Ψ(x1)〉〈Ψ(x2)|. One might argue that this way is the more general one.
But we decided to use the first, because it emphasizes the relation to the scalar kernels
as an inner product in some vector space (or module) and simplifies the formal reasoning
in some cases.

Remark 2.4. In Definition 2.3 the matrix-valued inner product in H also induces a
scalar inner product by the trace tr(〈Ψ|Ψ′〉H) and it indeed holds that tr(〈Ψ|Ψ〉H) ≥ 0
for all Ψ 6= 0. Hence the space H is naturally attached with a (semi-)norm ||Ψ|| =
√

tr(〈Ψ|Ψ〉H).

Theorem 2.5 (GIM-Kernels). If the function k is a scalar kernel, then the function
K given in Proposition 2.2 is a matrix valued kernel. We call this kernel a Group
Integration Matrix Kernel or short GIM-Kernel.

Proof. To show this, we give the feature mapping Ψ by the use of the feature mapping
Φ corresponding to the scalar kernel k and show that the GIM-Kernel can be written
as a positive matrix valued inner product in the new feature space H = F ⊗L(Y). Let
Ψ be given by

Ψ(x) =
1

√

µ(G)

∫

G

Φ(gx) ⊗ ρg dg,

where µ(G) =
∫

G
dg is the volume of the group. The matrix valued inner product in H

is given by the rule
〈Φ1 ⊗ ρ1|Φ2 ⊗ ρ2〉H := ρ†

1ρ2〈Φ1|Φ2〉F

and its linear extension, i.e. it is a sesquilinear mapping of type H × H 7→ L(Y).
And the so defined product is indeed positive. Any Ψ ∈ H can be written as a sum
(integral) of kronecker products Ψ =

∑

i Φi ⊗ ρi. So for any Ψ ∈ H and any y ∈ Y we
have

〈y|〈Ψ|Ψ〉Hy〉Y =
∑

i,j

〈Φi|Φj〉F〈ρiy|ρjy〉Y =
∑

i,j

kij〈ρiy|ρjy〉Y =
∑

i,j

kij〈yi|yj〉Y ≥ 0

is positive, because the matrix kij is positive definite by the Mercer property of k.
Using the above rule for the inner product we can compute

〈Ψ(x1)|Ψ(x2)〉H =
1

µ(G)

∫

G2

〈Φ(gx1) ⊗ ρg|Φ(hx2) ⊗ ρh〉H dg dh

=
1

µ(G)

∫

G2

〈Φ(gx1)|Φ(hx2)〉F ρg−1h dg dh.
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Inserting the scalar kernel k and reparametrizing by g ′ = g−1h gives

〈Ψ(x1)|Ψ(x2)〉H =
1

µ(G)

∫

G2

k(x1, g
′x2)ρg′ dg′ dh =

∫

G

k(x1, gx2)ρg dg = K(x1,x2)

which is the desired result.

2.3 Interpreting Equivariant Kernels

To get more intuition how equivariant kernels, not necessarily GIM-kernels, behave,
we want to sketch how such kernels can be interpreted as estimates of the relative pose
of two objects. Assume that we want to align the features Ψ(x1) and Ψ(x2) optimally
with respect to the group G, i.e. we try to minimize

J(g) = ||Ψ(x1) − Ψ(gx2)||
2,

Reformulating the objective leads to maximizing the trace

J ′(g) = tr(K(x1,x2)ρ
†
g + ρgK(x2,x1)),

Let us assume that the group representation is surjective, i.e. for any unitary matrix
there is a g ∈ G such that ρg is identical to this matrix. Then we can use the Singular
Value Decomposition (SVD) of the Kernel to get the optimal solution. Let K(x1,x2) =
V ΣW the SVD, then one can show that ρg∗ = V W gives the optimal alignment, where
J ′ takes J ′(g∗) = 2tr(Σ) in the optimum. Interpreting this result, we can say that the
sum of the singular values of a equivariant kernel expresses the similarity of the two
given objects, while the unitary parts U and V give information about the relative pose
of the objects. And in fact, if x1 = g′x2, then g∗ = g′ holds. This subject is discussed
by [13] for 3D rotations in more detail.

2.4 Equivariant Representer Theorem

In the beginning of this section we motivated our approach by pretending to present
training patterns in all possible poses, where the pose of a target is implicitly turned
by letting the group act on the regression coefficients. We did not clarify whether this
is the optimal solution to obtain an equivariant behavior. Are there other possible
solutions which are more general but also equivariant?

It is easy to check that the subspace E ⊂ Zk of equivariant functions is a linear
subspace. The unitary projection ΠE onto this subspace is given by

(ΠEf)(x) =
1

µ(G)

∫

G

g−1f(gx) dg.
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This projection operator is the core of the construction principle presented in this
work.

Lemma 2.6. The projection ΠE of (1) admits the proposed representation given in (2).

Proof. Applying the projection on (1) yields

(ΠEf)(x) =
1

µ(G)

∫

G

n
∑

i=1

k(gx,xi) (g)−1ai dg =
1

µ(G)

∫

G

n
∑

i=1

k(x, g−1xi) (g)−1ai dg

=
1

µ(G)

∫

G

n
∑

i=1

k(x, hxi)hai dh,

where we used the substitution h = g−1.

Interestingly ΠE has a nice representation Π̃E in featurespace. Using the equation
(ΠEf)(x) = 〈Ψ(x)|Π̃EΨf 〉H one can derive that Π̃E is the unitary projection on the
space {Ψ ∈ H|∀g ∈ G : gΨ = Ψ} of fix-points.

Note a fundamental difference between matrix- and scalar-valued kernels. A scalar-
valued function f(x) : X 7→ R has a correspondent representation in its feature-space
F by a linear product f(x) = 〈Φ(x)|Φf 〉F , where both Φ(x) and Φf are elements of F .
The feature vector usually looks like Φf =

∑

i Φ(xi)αi with scalar-valued expansion
coefficients αi. For vector-valued functions f(x) : X 7→ Y it is different. There is also
a representation as a linear product f(x) = 〈Ψ(x)|Ψf〉H and also Ψ(x) is an element of
the feature-space H = F ⊗ L(Y), but the corresponding feature-space representation
of the function is an element of the contracted feature-space F ⊗ Y. It is written by
Ψf =

∑

i Φ(xi) ⊗ ai, where the ai are now vector-valued expansion coefficients. The
naturally induced scalar-valued inner product in this space is given by

〈Φ ⊗ a|Φ′ ⊗ a′〉F⊗Y = 〈Φ|Φ′〉F〈a|a
′〉Y. (4)

The proof of the following theorem is similar to the proof given in [14] for the general
Representer Theorem. Note that we allow coupling between the training samples.

Theorem 2.7 (Equivariant Representer Theorem). Let Ω : R+ 7→ R be a strictly
monotonically increasing function and c : (X × Y × Y)n 7→ R a loss function. Then
each equivariant minimizer f ∈ Zk of

R(f) = c(x1,y1, f(x1), ...,xn,yn, f(xn)) + Ω(||f ||2)

is of the form

f(x) =

∫

G

n
∑

i=1

k(x, gxi) gai dg,
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Proof. We can decompose a function f ∈ Zk orthogonally (in the sense of the inner
product given in (4)) into a part in the span of

{Φ(xi) ⊗ y ∈ F ⊗ Y|i = 1..n,y ∈ Y}

and its orthogonal complement;

f(x) = f||(x) + f⊥(x)

We know by construction that f⊥(xi) = 0 for all i = 1..n. Every equivariant function
in Zk is a projection of the form ΠE f . Considering the projection of the decomposition

(ΠEf)(x) = (ΠEf||)(x) + (ΠEf⊥)(x)

we also know that the second term (ΠEf⊥)(xi) = 0 vanishes for all training samples.
Thus the loss function in R(ΠEf) stays unchanged if one neglects ΠEf⊥. By Lemma
2.6 we know that ΠEf|| is of the proposed form

ΠEf|| =

∫

G

n
∑

i=1

k(x, gxi) gai dg

Due to the orthogonality we also know

||ΠEf ||
2 = ||ΠEf||||

2 + ||ΠEf⊥||
2

and hence Ω(||ΠEf ||
2) ≥ Ω(||ΠEf||||

2). And thus for fixed values of ai we get R(ΠEf) ≥
R(ΠEf||), so we have to choose ΠEf⊥ = 0 to minimize the objective. As this also has to
hold for the solution, the theorem holds.

2.5 Non-Compact Groups and Relation to Volterra Filters

In this work we consider compact unimodular groups. This is indeed very restrictive.
Demanding that the functions f(g) = k(x1, gx2) are all functions of compact support,
it seems possible to generalize our theory for non-compact groups.

In signal-processing the group of time-shifts is elementary, which is actually a non-
compact unimodular group. Convolutions are known to be linear time-invariant map-
pings. In our terms convolutions are equivariant to time-shifts. The so called Volterra
series or filters are generalized non-linear convolutions. The Volterra theory states that
a nonlinear system, that maps a function x defined on the time line on a function f in an
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equivariant manner, can be modeled as infinite sums of multidimensional convolutions
of increasing order

[f(x)]t = h0 +

∫

g∈G

h1(g)[gx]t dg +

∫

g∈G

∫

g′∈G

h2(g, g′)[gx]t[g
′x]t dgdg′ + ...,

where [x]t denotes the value of x at time t and G is the group of time-shifts. In fact,
Volterra series of degree n can be modeled with polynomial matrix kernels of degree n,
i.e. the scalar basis kernel is k(x1,x2) = (1+〈x1|x2〉)

n. In other words, the RKHS of the
induced matrix kernel is the space of n-th order Volterra series. Using the exponential
kernel k(x1,x2) = eλ〈x1|x2〉 the RKHS is actually the space of infinite degree Volterra
series. In conclusion we can say that this work tries to give a kernelized generalization
of Volterra theory for arbitrary unimodular groups from a machine learning point of
view.

3 Constructing Kernels

Similar to scalar valued Kernels there are also several building rules to obtain new
matrix and scalar valued Kernels from existing ones. Most of them are similar to the
scalar case, but there are also ’new’ ones. In particular, the rule for building a kernel
out of two kernels by multiplying them splits into two rules, either using the tensor
product or the matrix product.

Proposition 3.1 (Closure Properties). Let K1 : X ×X 7→ L(Y) and K2 : X ×X 7→
L(Y ′) be matrix valued kernels and A ∈ L(V,Y) with full row-rank, then the following
functions are Kernels.

a) Let Y = Y ′. K(x1,x2) = K1(x1,x2) + K2(x1,x2)

b) K(x1,x2) = A†K1(x1,x2)A

c) K(x1,x2) = K1(x1,x2) ⊗ K2(x1,x2)

d) Let Y = Y ′. If for all x ∈ X , K1(x,x) and K2(x,x) commute, then the matrix
product K(x1,x2) = K1(x1,x2) K2(x1,x2) is a kernel.

e) K(x1,x2) = K1(x1,x2)
†

f) k(x1,x2) = tr(K1(x1,x2))
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Proof. We omit proofs for a) and b) since the reasoning directly translates from the
scalar case. To show c) for matrix kernels we give the corresponding feature-maps in
terms of the already known feature-maps Ψ1, Ψ2 for kernel K1 and K2. From ordinary
tensor calculus we know that

〈Ψ1 ⊗ Ψ2|Ψ
′
1 ⊗ Ψ′

2〉K1⊗K2
= 〈Ψ1|Ψ

′
1〉K1

⊗ 〈Ψ2|Ψ
′
2〉K2

,

so the new feature-map for the tensor-product kernel c) is obviously Ψ = Ψ1 ⊗ Ψ2.
The positivity is also given, since the tensorproduct of two positive definite matrices
is again positive definite. For d) the feature-map is actually the same as for c), but we
define a different inner product by

〈Ψ1 ⊗ Ψ2|Ψ
′
1 ⊗ Ψ′

2〉K1K2
:= 〈Ψ1|Ψ

′
1〉K1

〈Ψ2|Ψ
′
2〉K2

,

which extends uniquely to the whole space and is well defined. Since we assume
that the diagonal Kernels K1(x,x) and K2(x,x) commute, the positive definiteness is
also given, because the eigenvalues of the matrix product are just the products of the
positive eigenvalues of its factors. The proof of e) is trivial. For the proof of statement
f), we only have to recall Remark 2.4, where we mentioned that the trace of a positive
matrix valued product is an ordinary positive scalar inner product.

Let us have a look how such rules can be applied to equivariant kernels and under
what circumstances equivariance is preserved. Rule a) can be applied if K1 and K2 have
the same transformation behavior, meaning that the underlying group representations
are identical. Rule b) preserves equivariance if the matrix A is unitary, which is easy to
see. Rule c) can also be used to construct equivariant kernels. Supposing an equivariant
kernel K1 and an invariant scalar kernel k in sense that k(x1, gx2) = k(x1,x2) for
all g ∈ G, then rule c) implies that K = K1 ⊗ k = K1k is also a kernel and in
fact equivariant. But how can we construct an invariant kernel k. The most simple
approach is to use invariant features, but our framework also offers two possibilties.
A GIM-Kernel based on the trivial representation (just ρg = 1) is obviously invariant
(this special case covers the approach proposed by [6]). Another possibility is to use
rule d) and f) to obtain an invariant kernel.

Lemma 3.2. If K is a normal equivariant kernel, then k = tr(K†K) is an invariant
kernel in the following sense k(x1, gx2) = k(g′x1,x2) = k(x1,x2) for all g, g′ ∈ G.

Proof. Since K is normal K(x,x) commutes with its transpose and hence K†K is a
kernel by rule d). By rule f) we know that tr(K†K) is a kernel. The invariance of the
trace

k(x1, gx2) = tr((Kρ†
g)

†Kρ†
g) = tr(ρgK

†Kρ†
g) = tr(K†K) = k(x1,x2)

proves invariance of the kernel.
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4 Irreducible Kernels

The question arises which representations we should use to construct the GIM-kernels.
There are many possibilities, but we want to choose, of course, the most simple and
computationally most efficient ones. First we want to introduce the notion of irre-
ducibility for equivariant kernels, which should cover the intuition of as ’simple’ as
possible kernels.

Definition 4.1. An equivariant Kernel K(x1,x2) ∈ L(Y) is reducible if there is a
nonempty subspace W ⊂ Y, such that for every y ∈ W and for every x1,x2 ∈ X , we
have K(x1,x2)y ∈ W, otherwise the kernel is called irreducible.

If an equivariant kernel transforms by an irreducible representation, then it can
be deduced that also the kernel itself is irreducible. But the opposite direction is not
true in general, otherwise any equivariant kernel would be a GIM-kernel. We will later
discuss this in more detail. But first two basic properties.

Lemma 4.2. If the representation ρ of an strictly positiv definite, equivariant Kernel
K is irreducible then K is also irreducible.

Proof. Assume that K is reducible, then there is a subspace W ⊂ Y, such that
y ∈ W ⇒ K(x1,x2)y ∈ W. Since ρ is irreducible, we can choose y ∈ W such
that there exists a g with ρgy = w + w⊥ ∈ W ⊕ W⊥. But we also know that
K(x1, g

−1x2)y = K(x1,x2)ρgy ∈ W. In particular, we can choose x1 = x2 = x. Due
to the reducibility of K and the regularity (because of strictly pd) of K(x,x), we know
that 0 6= K(x,x)w⊥ ∈ W⊥ and hence K(x,x)ρgy /∈ W. Contradiction!

Since we know from representation theory [5] that any unitary representation can
be decomposed in a direct sum of irreducible representations we can make a similar
statement for kernels.

Corollary 4.3. Any GIM-Kernel K can be decomposed in a direct sum of irreducible
GIM-kernels associated with its irreducible representations.

Proof. Let ρ be the representation of the GIM-kernel. Since any ρ can be decomposed
in a direct sum ρ = ρ(1) ⊕ ... ⊕ ρ(n), we directly see that

K = K1 ⊕ .. ⊕ Kn,

where Kl(x1,x2) =
∫

G
k(x1, gx2)ρ

(l)
g dg. And the Kl are irreducible due to Lemma

4.2.
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By the Peter-Weyl-Theorem [5] we know that the entries of the irreducible repre-
sentations of a compact group G form a basis for the space of square-integrable function
on G. We also know that the entries of the representations are unitary. The following
Lemma is based on that.

Lemma 4.4. If the representation ρ of an equivariant Kernel K is irreducible then K
is a GIM-kernel.

Proof. We define the corresponding scalar kernel by

k =
n

µ(G)
tr(K),

where n is the dimensionality of the associated group representation. Then
∫

G

k(x1, gx2)ρgdg =
n

µ(G)

∫

G

tr(K(x1,x2)ρ
†
g)ρgdg

By the unitary-relations for irreducible group representation we know that

n

µ(G)

∫

G

tr(K(x1,x2)ρ
†
g)ρgdg = K(x1,x2)

what was to show.

It seems that we should concentrate on the irreducible representations of the con-
sidered group, and this is indeed the canonical way. Any scalar kernel can be written
in terms of its irreducible GIM-kernel expansion.

Proposition 4.5. Let k be a scalar kernel, then

k(x1,x2) = tr(K(x1,x2)),

where K = K1 ⊕ K2 ⊕ ... is the direct sum of its irreducible GIM-kernels as given in
Corollary 4.3

Proof. Due to the Peter-Weyl-Theorem we can expand the scalar kernel in terms of
the irreducible representation of G, where the expansion coefficients are by definition
the corresponding GIM-kernels.

k(x1, gx2) =

∞
∑

l=0

tr(Kl(x1,x2)(ρ
(l)
g )†)

where Kl(x1,x2) =
∫

G
k(x1, gx2)ρ

(l)
g dg. And hence we have

k(x1, gx2) =

∞
∑

l=0

tr(Kl(x1, gx2)) = tr(K1(x1, gx2) ⊕ K2(x1, gx2) ⊕ ...) = tr(K(x1, gx2)),

which proves the statement.
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Hence we have a one-to-one correspondence between the scalar basis kernel k and
the GIM-kernels Kl formed by the irreducible group representations ρ

(l)
g . So we have

for GIM-kernels always the duality between the matrix- and scalar-valued kernels. For
Non-GIM-kernels this one-to-one correspondence does not hold.

4.1 Non GIM-kernels

We already mentioned after Definition 2.3 of the matrix valued kernel that there is a
second interpretation of the feature-space, as an outer-product of two feature-vectors.
This is probably the most simple way to construct equivariant Kernels. For example
assume that X = Y then K(x1,x2) = |x1〉〈x2| is obviously an equivariant kernel.
This kernel may be seen as the matrix-valued analogon to the linear scalar-valued
kernel k(x1,x2) = 〈x2|x1〉X and indeed k = tr(K) holds. Note that it is in general
not possible to reconstruct K from tr(K), this is only possible for GIM-kernels by
Proposition 4.5. Such a non GIM-kernel can be easily obtained by the construction
principle from above. But how to check whether a kernel is a GIM-kernel or not?

Corollary 4.6. Let K be an irreducible equivariant kernel and let its corresponding
representation be reducible, then K is not a GIM-kernel.

Proof. Assume K is of GIM-type then by Corollary 4.3 it is reducible. Contradiction!

This statement is the counterpart to Lemma 4.4, which says that if the group-action
is irreducible we know that we have a GIM-kernel.

The simple kernel K(x1,x2) = |x1〉〈x2| is not of practical value, because regression
functions which are build out of it are always proportional to its input-vector. So one
needs clever feature-maps to get useful kernels.

4.2 Kernel Response for Symmetric Patterns

Suppose a given pattern x0 ∈ X is U -symmetric, i.e. there is a subgroup U of G such
that for all u ∈ U we have ux0 = x0. Then the corresponding equivariant kernel
K(x,x0) has the behavior K(x,x0)ρ

†
u = K(x,x0). For a irreducible GIM-kernels this

fact has a simple consequence. For all irreducible representation ρ
(l)
g with ρ

(l)
u 6= id for

all u ∈ U the corresponding kernel Kl(x,x0) is equal to zero. So the image of the linear
mapping K(x,x0) ∈ L(Y) is the space of patterns with the same symmetry behavior
as x. Thus, GIM-kernels provide an intrinsic mechanism to cope with ambiguous
samples. Assume we want to map on an unsymmetric target y0 from a symmetric
input pattern x0, which is obviously an ill-posed problem. Using a GIM-kernel for
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this mapping the output would be a symmetrized version of y0, where symmetrizing is
done by integrating y0 over the symmetry group of x0. Depending on the application
such a superposition behavior can be wanted or unwanted. For example, if the output
space Y is a space of probability distributions the approach is not a bad idea. Because,
if we are uncertain about the original pose of an input object due to symmetry, we
should vote for all possible outputs allowed by the symmetry. This is nothing else
than superimposing all uy0 over the symmetry group. A last issue is that instead of
x0 the presented pattern x shows symmetry. For this case all statements from above
are transferred with no changes. If both patterns x and x0 show symmteries, then
superposition in the output space Y is done with the product group of both symmetry
groups.

5 Applications

We show two application examples that basically can be described as image processing
applications. We present a learnable rotation-equivariant filter, which can be used e.g.
for image restoration or image transformation. Thereby each pixel neighborhood is seen
as a training instance, which leads to an enourmous number of training samples. Hence
we let work the filter in the featurespace of a second-order matrix kernel. Secondly
we build an rotation equivariant object detector. Specific interest points in the image
are detected. Relative to local features around these interest points the center of the
object is learned. Of course ambiguities can occur. For example, relative to a corner of
an rectangle there are two possible centers of the rectangle (only for a square there is
a unique center). To cope with such ambiguities we learn the probability distribution
that the center of the object lies in a specific direction relative to the local features
around the interest points.

5.1 Equivariant Kernels for 2D Rotations

In both experiments we want to learn functions f : X 7→ X , where X is the space of
functions defined on the unit circle. The irreducible representations of 2D-rotations
are einφ and the irreducible subspaces correspond to the Fourier representation of the
function. Hence in Fourier representation the GIM-kernel is a diagonal Kernel with
entries

Kn(x1,x2) =

∫ 2π

0

k(x1, gφx2)e
inφ dφ (5)

on the diagonal. Discrete approximations of this integral can be computed quickly by a
Fast Fourier Transform (FFT). Assuming k is a dot-product kernel k(〈x1|x2〉X), a kernel
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Figure 1: The workflow of the rotation equivariant filter for the example of image
denoising.

evaluation looks as follows: Compute the cross-correlation c(φ) = 〈x1|gφx2〉X using
the FFT, apply the nonlinearity k(c(φ)) and transform it back into Fourier domain

Kn =
∫ 2π

0
k(c(φ))einφ dφ. If the patterns are already in Fourier domain, we need two

FFT per kernel evaluation. This approach is used in the second experiment.
The probably most simple non-linear scalar kernel is k(x1,x2) = 〈x1|x2〉

2
X
. Using

this kernel as a scalar base kernel the matrix-valued feature space looks very simple.
The feature map is given by

[Ψ(x)]nl ∝ [x]−l [xz]l+n, (6)

where [x]l denotes lth component of the Fourier representation of x. The induced
matrix valued bilinear product in this space is the ordinary

Kn(x1,x2) =
∑

l

[Ψ(x1)]nl [Ψ(x2)]
∗
nl.

hermitian inner product. We use a similar feature space representation in the first
experiment.

5.2 A Rotation Equivariant Filter for Images

For convenience we represent a 2D gray-value image I in the complex plane, where we
denote the gray value at point z ∈ C by Iz. The idea is to learn a rotation-equivariant
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function f : X 7→ X , which maps each neighborhood xz ∈ X of a pixel z onto a
new neighborhood f(xz) ∈ X with properties given by learning samples. This idea
is illustrated in Figure 1 for an image denoising application. The neighborhood is
represented by projections on local basis functions [bz]n = zne−λ|z|2 for n = 1..N .

[xz]n = Iz ∗ [b−z]
∗
n.

Here ∗ denotes the convolution operator. The basis functions from above have the
advantage that their transformation behavior is the as for functions defined on a circle,
i.e. [xz]n 7→ [xz]neinφ for rotations around z. The vector-components [f(xz)]n are
also interpreted as expansion coefficients of the neighborhood in this basis. Since the
neighborhoods overlap we formulate one global function which maps the whole image
I on a new image

F (Iz) =
∑

n

[f(xz)]n ∗ [bz]n = f(xz) ∗ bz

This function is translation- and rotation-equivariant, since f is rotation-equivariant
and the convolution is naturally translation-equivariant. The scalar basis kernel k for
the GIM-kernel expansion of f is chosen by

k(xz,x
′
z) = (1 + 〈xz|x

′
z〉X )2.

The corresponding feature-map is nearly the same as in (6). Given two images I src and
Idest our goal is to minimize the cost

∑

z∈[1,256]2

|Idest
z − Fw(Isrc

z )|2 + γ||w||2,

where w is the parameter vector yielding f(x) = 〈Ψ(x)|w〉H, where H is the feature
space of the above kernel. Hence Fw is linear in w since the convolution is a linear op-
eration. The parameter γ is a regularization parameter. The actual training procedure
is a simple ridge regression scheme.

In our experiments we use images of size 2562. Note that each pixel-neighborhood
is regarded as one training sample. Due to the overlap of the neighborhoods the cost
function couples training samples. The grayvalues of the images are scaled to [0, 1].
The neighborhood of a pixel is represented by N = 8 coefficients, where the width
of the gaussian is around 10 pixels. The corresponding feature-space is of dimension
N(N + 1)/2 + N = 44. As already mentioned the feature-space dimension is much
less than the number of training-samples (2562) and hence working in feature-space is
recommended.
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Isrc Idest Itest F (I test)

Figure 2: Results for the image transformation example. Images I src and Idest where
used for training. Image I test show the image for testing, the three connected should
be separated. F (I src) shows the image after application of the trained image transfor-
mation.

We conduct two experiments. First we train the filter to separate connected clusters
of pixels. The left two images in Figure 2 show the images I src, Idest used for training.
The regularization parameter γ was chosen appropriately. The right two images show a
test image in its original appearance and after the application of the trained filter. One
can see that the filter actually works properly. Of course, some artefacts are created.
One can nicely see the equivariance of the filter. The behavior depends neither on
the orientation of the touching areas nor the absolute position. In fact, the filter may
be interpreted as a locally applied quadratic (because of the second-order polynomial
kernel) Volterra filter. The test image I test was chosen such that common methods
would not work properly. For example, if one use distance transform, the agglomerate
would be divided in five instead three clusters, because the distance transform gives
five local maxima.

As a second experiment we trained the filter to perform a deconvolution. For
training we used a black disk on white background as target Idest and a blurred version
as Isrc (blurred with a gaussian of width 2 percent of the image size). In Figure 3 a) we
show a blurred image which has to be sharpened (blurred with the same width as used
for training). We compare our filter with an ordinary Wiener filter for deconvolution
(see e.g. [7]). Assuming decorrelated gaussian noise models, the Wiener filter only
depends on the signal-to-noise ratio, which controls the intensity of the sharpening of
the image. In our approach the regularization parameter γ plays a similar role as the
signal-to-noise ratio for the Wiener filter. We tuned both parameters such that the
obtained sharpness of both approaches are visually comparable. In Figure 3 b) we give
the result obtained by our method, in c) the result for the Wiener filter. Our method
produces a more natural looking image and more importantly it produces no over and
undershots at the sharp edges like the Wiener filter.
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a) b) c)

Figure 3: Results for the image restoration example. a) the blurred original. b) the
image after application of the deblurring using our equivariant filter. c) the image after
deblurring using an ordinary wiener filter. (have a look at these results in an electronic
form, a printer may destroy the fine differences)

5.3 A Rotation Equivariant Object Detector

The goal of the object detector is to find a specific object in an image independently of
its rotational or translational pose. The proposed object detector may be seen as some
kind of generalized hough transform (see [2]), where the lookup-table is is replaced
by an equivariant function, which is learned from a shape template. It has also some
similarities to the object recognition system using the so called SIFT features ([9]).

At first, stable interest points in the image have to be detected, e.g. points of high
variation or something similar. Relative to these interest points the algorithm votes for
a predefined center of the object. Assume we want to detect rectangles in an image.
Corners are an important and stable feature of a rectangle. Relative to a corner of a
rectangle we have obviously two hypotheses for the putativly rectangle center. To cope
with such multiple hypotheses in general we do not make discrete votes but vote for all
possible points with its corresponding probablity that there may be the center of the
object. Our goal is to learn a mapping that maps features from the local neighborhood
of the interest points to a probability distribution for the object’s center. To detect
the center of the object independently of its rotational pose this mapping has to be
rotation-equivariant. For simplicity we want to restrict ourselves to vote for points in
the same specific direction with the same probability or weight, i.e. the output of the
equivariant-mapping is a probability distribution defined on the circle.

For the features we use the same projections on local basis-functions as in the
previous experiment. To find the interest points we search for local maxima of the
absolute value |[xz]2|, which basically gives responses for corner-like structures. To
eliminate responses at edges, which are rather unstable, we only take those local max-
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a) b) c) d)

Figure 4: Example for the rectangle. a) The rectangle with its four interest points and
its center. b) The response of the trained voting function p(x) for the lower left interest
point (as mentioned the distance to the center is not learned, only the direction). The
function votes for the center of the shown rectangle and for the center of a putativly
rotated rectangle by 90 degrees. c) an rotated version of the training object with
additive gaussian noise. d) the superimposed responses of all four interest points. The
maxima is obviously in the center of the rectangle.

ima whose values for the quotient |[xz]2|/|[xz]1| are above a given threshold. Let x be
a feature vector around some interest point and φ the angle to the center of the object.
We are interested to learn the conditional distribution p(φ|x) from training samples
(φi,xi) belonging to the training object’s interest points. As we want to detect the
objects in a rotation invariant manner, the distribution has to fulfill rotation equiv-
ariance p(φ|gϕx) = p(φ + ϕ|x). In Section 4 we worked out that it is advantageous
to work with irreducible kernels. As already mentioned the irreducible kernels of the
2D-rotation group act on the fourier representation of functions, so we denote p(φ|x)
by the vector p(x), where its components are the fourier coeffcients of p(φ|x) in respect
to φ. We denote the cutoff-frequency of the fourier representation by N .

We do not rigourously model p as a probability distribution. Let eφ be the unit-
pulse in fourier representation, then we minimize

∑

i

||eφi
− p(xi)||

2,

which is nothing else then the ordinary least-square regression scheme. But the solution
basically behaves as we want it to. To get an idea, consider again the rectangle example
with its four corners as interest points. If we negelect noise the local features xi of the
corners are all the same xi = gϕi

x0 up to rotations gϕi
of 0, 90, 180, 270 degree. Then

the equivariant least-square minimizer p(x0) is proportional to the fourier transformed
histogram of the relative angles φi +ϕi. The reader should have an antipicatory look at
Figure 4 a) and b), where this is illustrated. One can see that p(x0) give contributions
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a) b)

Figure 5: Training image a) The only training leaf. The interest points for training
are marked and its corresponding direction to the center. b) The voting map for the
training object. Black means high probility for the center, white low probability.

for both possible corner directions.
The scalar basis kernel is chosen to be the gaussian kernel k(x1,x2) = e−λ||x1−x2||2.

The diagonal matrix kernel is approximated by using the FFT as depicted in Section
5.1. To get good approximations we have to perform frequency padding. In the exper-
iments we used a FFT of size 6N (this is enough to compute a third-order polynomial
kernel accuratly). For accurate computation of the exponential kernel an infinite size
FT would be needed, but the experiments have shown that an approximation is enough.
The final learning procedure is very simple. We just have to solve N linear equations
of the form

Knan = bn n = 0, ..., N − 1,

where the matrix entries of (Kn)i,j = Kn(xi,xj) are the approximations of equation
(5), and the entries of the target are (bn)i = einφi.

In Figure 4 we illustrate results for the rectangle example. In a) the training example
with its four interest points is shown and b) shows the contribution of the voting
function of the lower left corner. The sinusoidal artefacts are stemming from the finite
fourier representation. In c) and d) we applied our object detector to a rotated and
noisy rectangle. The results are satisfying, the voting function p(x) obviously behaves
in an equivariant manner and is robust against small distortions. To make a more
realistic example, we train our object detector to find leaves on natural background. In
Figure 5 a) a segmented leaf for training is shown. We found by hand that 14 interest
points are relativly stable. Of course, this number, depends on the size of the gaussian
used for feature computation (in our case the width is four percent of the image size, i.e.
rather large). After training we applied the object detector on the train image itself,
which is shown in Figure 5 b). For each interest point we superimpose its contributions
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a) b) c)

Figure 6: A test image of a leaf with background and small clutter. a) The testimage
with the found interst points. b) The voting map for test image with the simple matrix
kernel. c) The voting map achieved with the enhanced kernel for better selectivity.

within a distance of about fourty percent of the image size. To get equal contribution
from each point we normalize the output of our voting function p(x)/||p(x)||. To show
the stability and generalization ability of our object detector, we applied it on a more
complex image shown in Figure 6 a). The leaf is from the same species as the training
leaf but obviously different. The resulting voting map is shown in Figure 6 b), in fact,
the overall maximum is in the center of the leaf, but it seems that the maximum is
relativly unstable depending on the background. To improve the result, we modified
the kernel. As explained in Section 3 we can use Lemma 3.2 to compute an invariant
kernel and modify our matrix kernel by K ′ = K tr(K†K) to give it more selectivity to
the features itself. In Figure 6 c) the voting map with this enhanced kernel is shown,
the maximum seems to be much more robust.

6 Conclusion and Outlook

We presented a new type of matrix valued kernel for learning equivariant functions.
Several properties were shown and connections to representation theory were estab-
lished. We showed with two illustrative examples that the theory is applicable.

The usage in nonlinear signal and image processing are apparent. Problems like
image denoising, enhancement and image morphing can be tackled. Another simple
task for the equivariant filter would be to complete gaps in road networks.

The proposed object detector shows in spite its simplicity a nice behavior and gen-
eralization abbility and should be worth to improve. Generalizations of our proposed
experiments to 3D-rotations are straightforward.

From a theoretical point an extension of our framework to non-compact groups
would be satisfying. Another important challenge is to find sparse learning algorithms
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with an unitary invariant loss functional. Unfortunately, the unitary extension of the ε-
insensitive loss is not solveable via quadratic programming anymore. A last important
issue is the local nature of transformations. In hand-written digit recognition invariance
under rotations might turn a ”6” into a ”9”, while rotations by 5 degrees are ok. A
generalization of our theory using notions like approximate or partial equivariance are
necessary.
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