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Abstract. We present a refined method for rotation estimation of sig-
nals on the 2-Sphere. Our approach utilizes a fast correlation in the
harmonic domain to estimate rotation angles of arbitrary size and reso-
lution. The method is able to achieve great accuracy even for very low
spherical harmonic expansions of the input signals without using cor-
respondences or any other kind of a priori information. The rotation
parameters are computed analytically without additional iterative post-
processing or “fine tuning”.

The theoretical advances presented in this paper can be applied to a
wide range of practical problems such as: shape description and shape
retrieval, 3D rigid registration, robot positioning with omni-directional
cameras or 3D invariant feature design.

1 Introduction

Methods involving functions on the 2-Sphere have recently received growing at-
tention in a wide range of different computer vision and pattern recognition
problems. For example in the area of shape description and retrieval, various in-
variant shape-features which have been proposed are based on spherical functions
[1] [2] [3] [4]. For biomedical applications, many algorithms including invariant
3D features [5] or rigid 3D registration for 3D volume data analysis have their
mathematical foundations in the rotation group SO(3) which directly implies the
use of functions on spheres. In all these cases, a fast and accurate rotation esti-
mation would provide a helpful tool for further feature design and descriptors.
Finally, in robotics, positioning algorithms which use images of omni-directional
cameras [6] [7] [8] directly rely on a precise rotation estimation on the 2-Sphere.
Problem statement: given any two real valued signals f1 and f2 on a 2-
sphere which are considered to be equal or at least similar under some rotational
invariant measure (∼R):

f1 ∼R f2, R ∈ SO(3) (1)

the goal is to estimate the parameters of an arbitrary rotation R as accurate as
possible without any additional information other than f1 and f2.

Obviously, the computational cost of a direct matching approach - testing
all possible rotations R - is way too high. Especially when we are considering
arbitrary resolutions of the rotation parameters.
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1.1 Related Work

Recently, there have been proposals for several different methods which try to
overcome the direct matching problem. Here, we are only considering methods
which provide full rotational estimates (there are many methods covering only
rotations around the z-axis) without correspondences.

A direct nonlinear estimation (DNE) which is able to retrieve the parameters
for small rotations via iterative minimization techniques was introduced in [7].
However, this method fails for larger rotations and was proposed only for “fine
tuning” of pre-aligned rotations. Most other methods use representations in the
spherical harmonic domain to solve the problem. The possibility to recover the
rotation parameters utilizing the spherical harmonic shift theorem (SHIFT) [9]
has been shown in [10]. This approach also uses an iterative minimization and was
later refined by [8]. Again, the estimation accuracy is limited to small rotations.

The basic method which we extend in this paper is a fast full correlation
(FCOR) in the spherical harmonic domain. This approach was first suggested
by [11], stating a fast correlation in two angles followed by a correlation in the
third Euler angle in an iterative way. This method was later extended to a full
correlation in all three angles by [12]. This approach allows the computation of
the correlation directly from the harmonic coefficients via FFT, but was actually
not intended to be used to recover the rotation parameters. Its angular resolution
directly depends on the range of the harmonic expansion - making high angular
resolutions rather expensive. But FCOR has been used by [7] to initialize the
DNE and SHIFT “fine tuning” algorithms. The same authors used a variation
of FCOR (using inverse Spherical Fourier Transform [13] in stead of FFT) in
combination with SHIFT [6] to recover robot positions from omni-directional
images via rotation parameter estimation.

1.2 Contributions

The contribution of this work is twofold: first, we introduce novel theoretical
extensions (3.2, 3.3) of the previous methods which allow accurate estimations
for even very low spherical harmonic expansions without any additional iterative
post-processing or “fine tuning”. Secondly, we show how the rather complex
theoretical methods can be implemented efficiently - previous publications gave
very little insight into many practical implementation problems.

The remainder of this paper is structured as follows: first we revise the math-
ematical foundations of our approach in section (2). In section (3) we show the
actual rotation estimation in all theoretical details, followed by methods for the
practical implementation in section (4). Finally, we show detailed experiments
in section (5).

2 Mathematical Foundations

Let us start with a very brief introduction of the basic mathematical tools and
conventions used throughout the rest of the paper. For more detailed introduc-
tions please refer to [14] and [9].
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Spherical Harmonics. Spherical Harmonics (SH) [14] form an orthonormal
base on the 2-sphere. Analogical to the Fourier Transform, any given real valued
signal f on a sphere with its parameterization over the angles Θ, Φ (latitude
and longitude of the sphere) can be represented by an expansion in its harmonic
coefficients:

f(Θ, Φ) =
∞∑

l=0

m=l∑

m=−l

f̂lmY l
m(Θ, Φ) (2)

where l denotes the band of expansion, m the order for the l-th band and f̂lm

the harmonic coefficients. The harmonic base functions Y l
m(Θ, Φ) are calculated

as follows:

Y l
m(Θ, Φ) =

√
2l + 1

4π

(l − m)!
(l + m)!

· P l
m(cosΘ)eimΦ (3)

where P l
m is the associated Legendre polynomial.

The harmonic expansion of a signal f will be denoted by f̂ with corresponding
coefficients f̂lm. In our case, where we are only considering signals on a discrete
grid in R

3, the f̂lm can be computed via point-wise multiplication (·) of the
3D data grid with pre-computed discrete approximations of the harmonic base
functions of fixed radii (more details in section (4)):

f̂lm =
∑

R3

Y l
m · f (4)

Rotations in SH. Throughout the rest of the paper we will use the Euler
notation in zyz-convention denoted by the angles ϕ, θ, ψ with ϕ, ψ ∈ [0, 2π[ and
θ ∈ [0, π[ to parameterize the rotations R ∈ SO(3) (short hand for R(ϕ, θ, ψ) ∈
SO(3)). Rotations R(ϕ, θ, ψ) · f in the Euclidean space find their equivalent
representation in the harmonic domain in terms of the so called Wigner D-
Matrices, which form an irreducible representation of the rotation group SO(3).
For each band l, Dl(ϕ, θ, ψ) (or short handed Dl(R)) defines a band-wise rotation
in the SH coefficients. Hence, a rotation in the Euclidean space can be estimated
in the harmonic domain (with a maximum expansion b), by

R · f ≈
b∑

l=0

l∑

m=−l

l∑

n=−l

Dl
mn(R)f̂lmY l

m (5)

In section (4.1), we further discuss practical issues concerning the computation
of the D-matrices.

3 Estimating Rotation Parameters

We use several steps to recover the rotation parameters. First, we apply a fast
correlation in the harmonic domain, gaining a similarity measure as stated in
(1). Within the harmonic domain, we are then extending the angular resolution
of the correlation function and minimize ambiguities of the Euler representation
before we recover the full correlation matrix via FFT.
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3.1 Fast Correlation in SH

We are following the fast correlation method which was introduced in [12] and
later used in a similar way by [8]. The full correlation function c : SO(3) → R

of two signals f and g under the rotation R ∈ SO(3) on a 2-sphere is given as:

c(R) :=
∫

S2

f · (R · g) dφdθdψ (6)

Using the DFT Convolution Theorem and substituting f and g with their SH
expansions (5, 4), leads to

c(R) =
∑

lmn

Dl
mn(R)f̂lmĝln (7)

The actual “trick” to obtain the fast correlation is now to factorize the original
rotation R(ϕ, θ, ψ) into R = R1 · R2, choosing R1(ξ, π/2, 0) and R2(η, π/2, ω)
with ξ = ϕ − π/2, η = π − θ, ω = ψ − π/2.

Using the fact that

Dl
mn(ϕ, θ, ψ) = e−imϕdl

mn(θ)e−inψ (8)

where dl is a real valued and so called ”Wigner (small) d-matrix” (see section
(4.1)), and

Dl
mn(R1 · R2) =

l∑

h=−l

Dl
nh(R1)Dl

hm(R2) (9)

we can rewrite

Dl
mn(R) =

l∑

h=−l

dl
nh(π/2)dl

hm(π/2)e−i(nξ+hη+mω) (10)

Substituting (10) into (7) provides the final formulation for the correlation func-
tion regarding the new angles ξ, η and ω:

c(ξ, η, ω) =
∑

lmhm′

dl
mh(π/2)dl

hm′(π/2)f̂lmĝlm′e−i(mξ+hη+m′ω) (11)

The direct evaluation of this correlation function is of course not possible -
but it is rather straight forward to obtain the Fourier transform of (11), hence
eliminating the missing angle parameters:

ĉ(m, h, m′) =
∑

l

dl
mh(π/2)dl

hm′(π/2)f̂lmĝlm′ (12)

Finally, the correlation c(ξ, η, ω) can be retrieved via inverse FFT of ĉ

c(ξ, η, ω) = FFT−1(ĉ(m, h, m′)), (13)
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Fig. 1. Ortho view of a resulting 3D correlation grid in the (ξ, η, ω)-space with a
maximum spherical harmonic expansion to the 16th band, φ = π/4, θ = π/8, ψ = π/2.
From left to right: xy-plane, zy-plane, xz-plane.

revealing the correlation values on a sparse grid in a three dimensional (ξ, η, ω)-
space. Figure (1) shows a resulting correlation grid for a sample rotation of
random input data. Given our fast correlation, the basic idea is now to simply
search the 3D grid for the position of the maximum correlation and compute
the rotation parameters (ϕ, θ, ψ) from the (ξ, η, ω)-angles associated with this
position.

3.2 Increasing the Angular Resolution

Let us take a closer look at Figure (1): first of all, it appears (and our experiments
clearly support this assumption) that the fast correlation function has a clear
and stable maximum in a point on the grid. This is a very nice property, and
we could now simply recover the corresponding rotation parameters which are
associated with this maximum position. But there are still some major problems:
The image in Figure (1) appears to be quite coarse - and in fact, the parameter
grids for expansions up to the 16th band have the size of 33 × 33 × 33 since the
parameters m, m′, h in (12) are running from −l, . . . , l. Given rotations up to
360◦, this leaves us in the worst case with a overall estimation accuracy of less
than 15◦.

In general, even if our fast correlation function (13) would perfectly estimate
the maximum position in all cases, we would have to expect a worst case accuracy
of

Errcorr = 2 · 180◦

2l
+

90◦

2l
(14)

Hence, if we would like to achieve an accuracy of 1◦, we would have to take
the harmonic expansion roughly beyond the 180th band. This would be com-
putationally expensive. Even worse, since we are considering discrete data, the
signals on the sphere are band-limited. So for smaller radii, higher bands of the
expansion are actually not carrying any valuable information.

Due to this resolution problem, the fast correlation has so far only been used
to initialize iterative algorithms [6][7].
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Sinc Interpolation. Now, instead of increasing the sampling rate of our input
signal by expanding the harmonic transform, we have found an alternative way
to increase the correlation accuracy: interpolation in the frequency domain.

In general, considering the Sampling Theorem and given appropriate discrete
samples an with step size Δx of some continuous 1D signal a(x), we can recon-
struct the original signal via sinc interpolation [15]:

a(x) =
∞∑

n=−∞
ansinc(π(x/Δx − n)) (15)

with

sinc(x) =
sin(x)

x
(16)

For a finite number of samples (15) changes to:

a(x) =
N∑

k=0

ak
sin(π(x/Δx − k))

N sin(π(x/Δx − k)/N)
(17)

This sinc interpolation features two nice properties[15]: it entirely avoids aliasing
errors and it can easily be applied in the discrete Fourier space. Given the DFT
coefficients αr of the discrete signal an, n = 0, 1, . . . , N − 1, sinc interpolation is
simply a zero padding of the spectrum between aN/2 and a(N/2)−1.

Returning to our original correlation problem, it is easy to see that the
(m, h, m′)-space in (12) actually is nothing else but a discrete 3D Fourier spec-
trum. So we can directly apply the 3D extension of (17) and add a zero padding
into the (m, h, m′)-space. This way, we are able to drastically increase the reso-
lution of our correlation function at very low additional cost (see section (4) for
implementation issues as well as suitable pad sizes). Figure (2) shows the effect
of the interpolation on the correlation matrix for different pad sizes p.

It has to be noted, that even though the sinc interpolation implies some
smoothing characteristics to the correlation matrix, the maxima remain fixed to
singular positions in the grid.
Finally, we are now theoretically able to reduce the worst case accuracy to arbi-
trarily small angles for any given band.

Errpad
corr = 2 · 180◦

2l + p
+

90◦

2l + p
(18)

Fig. 2. Same experiment as in Fig. (1) but with increasing size of the sinc interpolation
padding. From left to right: p = 0, p = 16, p = 64, p = 128, p = 256.
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Of course, the padding approach has practical limitations - inverse FFTs are
becoming computationally expensive at some point. But as our experiments
show, resolutions below one degree are possible even for very low expansions.

3.3 Euler Ambiguities

After applying the sinc interpolation and the inverse FFT, (13) provides us
with a fine parameter grid. The final obstacle towards the recovery of the rota-
tion parameters inherits from the Euler parameterization used in the correlation
function. Unfortunately, Euler angle formulations cause various ambiguities and
cyclic shift problems.

One minor problem is caused by the fact that our parameter grid range is
from 0, . . . , 2π in all dimensions, while the angle θ is only defined θ ∈ [0, π[. This
causes two correlation peaks at θ = β and θ = 2π − β for an actual rotation of
θ = β. We avoid this problem by restricting the maximum search to θ ∈ [0, π[,
hence neglecting half of the correlation grid.

The formulation of the correlation function also causes further cyclic shifts in
the grid representation of the Euler angles. This way, the zero rotation R(φ =
0, θ = 0, ψ = 0) does not have its peak at the zero position c(0, 0, 0) of the para-
meter grid as one would expect. For a more intuitive handling of the parameter
extraction from the grid, we extend the original formulation of (12) and use a shift
in the frequency space in order to normalize the mapping of R(π, 0, π) to c(0, 0, 0):

ĉ(m, h, m′) =
∑

l

dl
mh(π/2)dl

hm′(π/2)f̂lmĝlm′ · im+2h+m′
(19)

Rotation Parameters. Finally, we are able to retrieve the original rotation
parameters. For a given correlation peak at the grid position c(x, y, z), with
maximum harmonic expansion b and padding p the rotation angles are:

φ =
{

π + (2π − xΔ) for xΔ > π
π − xΔ otherwise (20)

θ =
{

(2π − yΔ) for yΔ > π
yΔ otherwise (21)

ψ =
{

π + (2π − zΔ) for zΔ > π
π − zΔ otherwise (22)

with Δ = 2π/(b + p)

Fig. 3. φψ-plane for of the cor-
relation matrix with θ = 0

The resulting rotation estimates return very
precise and unique parameter sets. Only one
ambiguous setting has to be noted: for θ =
0, π all zyz-Euler formulations which hold φ +
ψ = 2π encode the very same rotation (see
Figure (3)). This is actually not a problem for
our rotation estimation task, but might be quite
confusing especially in the case of numerical
evaluation of the estimation accuracy.
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3.4 Normalized Cross-Correlation

In many cases, especially when one tries to estimate the rotation parameters
between non identical objects, it is favorable to normalize the (cross-)correlation
results. We follow an approach which is widely known from the normalized cross-
correlation of images: First, we subtract the mean from both functions prior to
the correlation and then divide the results by the variances:

cnorm(R) :=
∫

S2

(f − f̄) · (R · (g − ḡ))
σfσg

dφdθdψ (23)

Analogous to Fourier transform, we obtain the expected values f̄ and ḡ directly
from the 0th SH coefficient. The variances σf and σg can be estimated directly
from the band-wise energies:

σf ≈
∑

l

|f̂l| (24)

4 Implementation

An actual implementation of our algorithm can be quite challenging. In this
section, we give some hints on how the methods can be implemented very effi-
ciently and what pitfalls one should avoid. The main problem is, that even small
implementation errors can easily produce correlation matrices which appear to
be correct at first sight, but are in fact containing wrong estimates. Then, the
search for errors in the ĉ(m, h, m′)-space can be very tedious.

Harmonic Base Functions. The Spherical Harmonic base functions can be
pre-computed off-line for a fixed radius and be stored in a file. The actual com-
putation is straight forward (see [14]), but often not necessary because most
common math tools like MATLAB or the GNU-scientific-library are already
providing SH implementations.

Sinc Interpolation Padding. The implementation of the inverse FFT in (13)
combined with the frequency space padding requires some care: we need an
inverse complex to real FFT with an in-place mapping (the grid in the frequency
space has the same size as the resulting grid in R

3). Most FFT implementations
are not providing such an operation. Due to the symmetries in the frequency
space not all complex coefficients need to be stored, hence most implementations
are using reduced grid sizes. We can avoid the tedious construction of such a
reduced grid from ĉ by using an inverse complex to complex FFT and taking only
the real part of the result. In this case, we only have to shuffle the coefficients of ĉ,
which can be done via simple modulo operations while simultaneously applying
the padding. We rewrite (19) to:

ĉ(a, b, c) =
∑

l

dl
mh(π/2)dl

hm′(π/2)f̂lmĝlm′ · im+2h+m′
(25)



Fast and Accurate Rotation Estimation on the 2-Sphere 247

where

s :=2bp, a :=(m+s+1)mod s, b :=(h+s+1)mod s, c :=(m′+s+1)mod s

Concerning the pad size: due to the nature of the FFT, most implementations
achieve notable speedups for certain grid sizes. So it is very useful to choose
the padding in such a way, that the overall grid size has, e.g., prime factor
decompositions of mostly small primes [16].

4.1 Computation of the Wigner d-Matrices

The greatest implementation challenge is the actual computation of the Wigner
d-Matrices. Even though, the d-Matrices for (25) can be pre-computed (we are
always only considering dl

mn(θ) with a fixed θ = π/2), we still need an efficient
implementation. In a direct approach, the d-Matrices can be computed by the
sum

dl
mn(θ) =

∑

t

(−1)t

√
(l + m)!(l − m)!(l + n)!(l − n)!

(l + m − t)!(l − n − t)!t!(t + n − m)!

· cos(θ/2)2l+m−n−2t · sin(θ/2)2t+n−m (26)

over all t which lead to non-negative factorials [9]. It is easy to see that the con-
straints on t are causing the computational complexity to grow with the band
of expansion. To overcome this problem, [17] introduced a recursive method for
the d-Matrix computation. We are applying a closely related approach inspired
by [18], where we retrieve d-matrices from recursively computed D-matrices.

Recursive Computation of the Wigner D-Matrices. Given Dl for the first
two bands l = 0 and l = 1,

D0(φ, θ, ψ) := 0

D1(φ, θ, ψ) :=

⎛

⎜⎜⎝

e−iψ 1+cos(θ)
2 e−iφ − sin(θ)√

2
e−iφ eiψ 1−cos(θ)

2 e−iφ

e−iψ sin(θ)√
2

cos(θ) −eiψ sin(θ)√
2

e−iψ 1−cos(θ)
2 eiφ sin(θ)√

2
eiφ eiψ 1+cos(θ)

2 eiφ

⎞

⎟⎟⎠

we can compute Dl via band-wise recursion:

Dl
mn =

l∑

m,m′,n,n′=−l

D1
m′n′Dl−1

(m−m′)(n−n′)

· < l − 1, m|1, m′, l, m − m′ >

· < l − 1, n|1, n′, l, n − n′ > (27)

where < l, m|l′, m′, l′′, m′′ > denotes Clebsh-Gordan coefficients [9] known from
angular momentum theory. Using (10), we finally obtain:

dl
mn(θ) = Dl

mn(0, θ, 0) (28)
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5 Experiments

Unlike previous publications [6][7][8], which only

Fig. 4. Volume rendering of an
“ant”-object from the PSB

performed a small set of experiments with a
fixed number of predefined example rotations,
we evaluate our methods with a series of large
scale experiments on real word data.

We use the “Princeton Shape Benchmark”
(PSB) [1] dataset (which contains about 1800
3D objects) for our experiments. Figure (4)
shows the volume rendering of a sample object.
If not mentioned otherwise, all experiments have
the same basic setup: for each parameter set, we evaluate the error statistics of
100 random rotations of random objects. We generate the rotations over all pos-
sible angles ϕ, ψ ∈ [0, 2π[ and θ ∈ [0, π[ with a resolution of 0.001 ≈ 0.1◦. Note
that an error of 1◦ ≈ 0.017. All given error rates are the combined errors of all
three angles.

5.1 Rotating Objects in the Harmonic Domain

In this first series of experiments, we extract a harmonic expansion with a fixed
radius around the object center and then rotate this expansion using (5).
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pad size

Fig. 5. Estimation errors with b = 24 and increasing pad size p

Pad Size. In a first experiment, we are able to show the effect of our padding
method on the estimation accuracy. Figure (5) clearly shows the correlation of
the pad size and the expected error. It is also evident, that we are able to achieve
a precision of less than 1 degree while the experimental errors are found to be
well within the theoretical bounds given in (18).

Maximum Band. The next two experiments investigate the practical influence
of the maximum expansion band on the estimation errors. Figure (6) strongly
supports our initial assumption, that the original formulation is not able to
achieve accurate estimates for low expansions. Our method on the other hand,
achieves very low error rates even for extremely low expansions with b = 2.
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Fig. 6. Estimation errors with increasing maximum expansions. Left: p = 0. Right:
p > 512 (p is not fix due to the padding to optimal FFT sizes). Note that the experiment
with p = 0, b = 2 is left out because the result was so poor that it did not fit into the
the chosen error scale.
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Fig. 7. Left: Maximum correlation for separate rotations in each angle. Right: Com-
putational costs in ms on a standard PC.

Rotational Invariance and Computational Costs. are investigated in the
last two experiments (figure (7)) of the first series. We rotate the object in π/8
steps in every angle to show that the correlation maximum is stable and indeed
independent of the rotation. The computational complexity is largely dominated
by the costs for the inverse FFT, hence growing with the pad size. So accuracy
comes at some cost but reasonable accuracy can still be achieved well within 1
second.

5.2 Rotating Objects in R
3

The results of figure (6) suggest, that the maximum expansion band has no
influence on the quality of the rotation estimation - of course, this is only true
if we are considering input signals which are limited to the very same maximum
band. This is very unlikely for very low bands in the case of real data.
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Fig. 8. Accuracy for rotations in R
3. Left: Influence of the maximum band b, p >

512, σ = 0.25. Right: Correct sampling does matter! Without Gaussian smoothing and
with different values for σ, p > 512, b = 24.

In order to evaluate the actual influence of the maximum expansion band,
we need to rotate the objects in R

3 and extract a second harmonic expansion
after the rotation. As mentioned before, the usability of our sinc interpolation
approach is limited to correctly sampled (concerning the Sampling Theorem)
input signals. Hence, one must not expect to obtain precise rotation estimates
for low band expansions, which act as a low pass filter, of high frequent input
signals. Luckily, for most input data, we are not depending on the high frequent
components in order to find the maximum correlation. Hence, we can apply a
low pass filter (Gaussian) on the input data prior to the harmonic expansion.
Figure (8) shows the impact of the maximum band and smoothing for rotations
in R

3. Overall, the estimation results are slightly worse than before, but are still
quite reasonable.

6 Conclusions

We presented a fast and accurate rotation estimation on the 2-Sphere. We were
able to show that our method is capable to estimate arbitrary rotations directly
in the harmonic domain without any further iterative “fine tuning”. We also
introduced several implementation techniques, which allow a robust and efficient
realization of the estimation algorithm.

Despite the theoretic nature of this paper, we emphasize the practical rele-
vance of the rotation estimation for e.g. robotics or feature design.
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