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Abstract

We present a novel method for the fast computation of

rotation invariant “local binary patterns” (LBP) on 3D

volume data.

Unlike a previous publication on 3D LBP, this new ap-

proach is not limited to “uniform patterns”, providing

a real 3D extension of the standard and rotation invari-

ant LBP. We evaluate our methods in the context of 3D

texture analysis of biological data.

1 Introduction

”Local Binary Patterns” (LBP) [7] have been estab-

lished as a standard feature based method for 2D image

analysis. LBP have been successfully applied to a wide

range of different applications from texture analysis [7]

to face recognition [8]. Various extensions to the basic

LBP algorithms were published in recent years, in-

cluding rotation invariant and computationally efficient

”uniform binary patterns” (fuLBP) - a comprehensive

overview can be found in [7].

In this paper, we extend the original LBP from 2D

images to 3D volume data. We also generalize the

rotation invariant LBP, implementing full rotation

invariance in 3D.

Related Work. So far, standard LBP have only been

applied to 2D images and 2D time series. There are

several recent publications on ”volume local binary

patterns” (vLBP)[10][9][11], but confusingly these

methods deal with dynamic texture analysis on 2D time

series and not on full 3D volumetric data. Respectively,

vLBP only provide rotation invariance towards rota-

tions around the z-axis.

To the best of our knowledge, there has been only one

publication on full 3D LBP: previously we introduced

a 3D method for the approximate computation of

“uniform LBP” (uLBP) in [3]. This first approach

has several drawbacks: Since the number of possible

“uniform patterns” is drastically increasing in the 3D

case, we had to generate template like, data dependent

uLBP. Also, the approximation method does not

provide complete gray-scale invariance. With our new

method, we are able to cope with these problems.

LBP in 2D. LBP encode the gray-scale invariant pat-

tern of N neighboring pixels with gray values xi, i ∈
{0 . . .N − 1} . The neighbors are given as equidistant
points on a circle with radius r around a center pixel
with gray value c.

LBPrN :=
N

∑

i=0

sig(xi − c) · 2i (1)

with sig(x) :=

{

1 for x > 0
0 otherwise

For more details on 2D LBP refer to [7].

Rotation Invariance in 2D can be achieved via nor-

malization:

rLBPrN := min(ROT(LBP rN , n) (2)

with n = 0 . . .N − 1

Where ROT(LBP rN , n) is a discrete rotation of the
neighbors by n steps. More details on rotation invari-
ant 2D LBP can be found in [7].

2 LBP in 3D

At a first glimpse, the extension of LBPs to 3D seems

to be straight forward: Simply pick a center voxel

with gray value c, and sample a fixed number of N
equidistant points with gray values x0 . . . xN−1 on the

respective sphere with radius r. Compute sig(xi − c)
for all xi and encode the binary pattern as in the usual
LBP algorithm.

This appears to be very simple, but one has to face
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several severe problems following this direct approach:

first, equidistant sampling on a sphere is a very hard

task which is known as Fejes Toth’s problem. In

general, it cannot be solved analytically. Since we need

equidistant sampling in order to achieve full rotation

invariance, we are limited to the few known point sets

where a sampling is known [2] or we have to use rather

expensive numerical approximations. Secondly, rota-

tion invariant LBPs require an ordering of the sampled

points, which is trivial in 2D - but turns out to be a

quite hard problem given three degrees of freedom on

a sphere. And last, computational complexity becomes

an issue with the vast rising number of sampling points

needed on a sphere.

Our approach is based on the pre-computation of so-

called 2-patterns. A 2-pattern P rN is the volume rep-
resentation (3D grid) of a set of N equidistant points
on a sphere with radius r. Each of theses points is
weighted in an arbitrary but fixed order with the gray

values p0 := 20, . . . , pN−1 = 2N−1. All other points

in the volume are set to zero.

For each LBP computation, we generate a volume rep-

resentation Xr of the gray values of all points on the

neighborhood sphere with radius r. Given a center
point with gray value c, we then compute the point-wise
threshold of the entire volume grid:

T r : ∀ti ∈ T r, xi ∈ Xr : ti := sig(xi − c). (3)

The resulting LBP is then computed via the dot-product

of the 2-pattern and the threshold:

LBPrN :=< P rn , T
r > (4)

Hence, given an equidistant sampling, the computation

of 3D LBP is not so difficult - the actual problem is to

obtain rotation invariance in 3D.

2.1 Rotation Invariance

In the 2D case, where rotations have only one degree

of freedom, invariance can be realized via minimum

search over all cyclic shifts of the circular 2-pattern in

O(N) (2). Using our fixed 2-pattern on a sphere, we
now encounter three degrees of freedom. This makes

the 3D case a lot more difficult and computationally ex-

pensive.

We engage this problem by revising (2): we can refor-

mulate the problem as the computation of the minimum

of the full correlation (⋆) over all angles of the fixed
2-pattern PNr with T

r:

rLBPrN := min(P rN ⋆ T r) (5)

In the next section, we will show how this correlation

can be computed efficiently in the frequency domain.

3 Fast Implementation

3.1 Mathematical Foundations

Let us start with a very brief introduction of the

basic mathematical tools and conventions we need to

construct a fast correlation on a sphere. Please refer

to [5] and [1] for more detailed background on the

methods used.

Spherical Harmonics. Spherical Harmonics (SH) [5]

form an orthonormal base on the 2-sphere. Analogical

to the Fourier Transform, any given real valued signal

f on a sphere with its parameterization over the angles
Θ,Φ (latitude and longitude on the sphere) can be rep-
resented by an expansion in its harmonic coefficients:

f(Θ,Φ) =
∞
∑

l=0

m=l
∑

m=−l

f̂lmY
l
m(Θ,Φ) (6)

where l denotes the band of expansion,m the order for
the l-th band and f̂lm the harmonic coefficients. The
harmonic base functionsY lm(Θ,Φ) are computed as fol-
lows:

Y lm(Θ,Φ) =

√

2l+ 1

4π

(l −m)!

(l +m)!
·P lm(cosΘ)eimΦ, (7)

where P lm is the associated Legendre polynomial.

The harmonic expansion of a signal f will be denoted
by f̂ with corresponding coefficients f̂lm. In our case,
where we are only considering signals on a discrete grid

in R
3, the f̂lm can be computed via point-wise multi-

plication (·) of the 3D data grid with pre-computed dis-
crete approximations of the harmonic base functions of

fixed radii:

f̂lm =
∑

R3

Y lm · f (8)

Rotations in SH. We use the Euler notation in zyz-
convention denoted by the angles ϕ, θ, ψ with ϕ, ψ ∈
[0, 2π[ and θ ∈ [0, π[ to parameterize the rotations
R ∈ SO(3) (short hand for R(ϕ, θ, ψ) ∈ SO(3)).
Rotations R(ϕ, θ, ψ) · f in the Euclidean space find
their equivalent representation in the harmonic domain

in terms of the so called Wigner D-Matrices, which

form an irreducible representation of the rotation group

SO(3). For each band l, Dl(ϕ, θ, ψ) (or short handed
Dl(R)) defines a band-wise rotation in the SH coeffi-
cients. Hence, a rotation in the Euclidean space can be

estimated in the harmonic domain (with a maximum ex-

pansion b) by

R · f ≈
b

∑

l=0

l
∑

m=−l

l
∑

n=−l

Dl
mn(R)f̂lmY

l
m (9)



3.2 Fast Correlation in SH

We are following the fast correlation method which is

inspired by [6]. The full correlation function corr :
SO(3) → R of two signals f and g under the rotation
R ∈ SO(3) on a 2-sphere is given as:

corr(f, g, R) :=

∫

S2

f · (R · g) dφdθdψ (10)

Using the DFT Convolution Theorem and substituting

f and g with their SH expansions (9, 8) leads to

corr(f, g, R) =
∑

lmn

Dl
mn(R)f̂lmĝln (11)

The actual “trick” to obtain the fast correlation is

now to factorize the original rotation R(ϕ, θ, ψ) into
R = R1 ·R2, choosingR1(ξ, π/2, 0) andR2(η, π/2, ω)
with ξ = ϕ− π/2, η = π − θ, ω = ψ − π/2.

Using the fact that

Dl
mn(ϕ, θ, ψ) = e−imϕdlmn(θ)e−inψ (12)

where dl is a real valued so called ”Wigner (small) d-
matrix” [1], and

Dl
mn(R1 · R2) =

l
∑

h=−l

Dl
nh(R1)D

l
hm(R2) (13)

we can rewrite the rotation as

Dl
mn(R) =

l
∑

h=−l

dlnh(π/2)dlhm(π/2)e−i(nξ+hη+mω)

(14)

Substituting (14) into (11) provides the final formula-

tion of the correlation function regarding the new angles

ξ, η and ω:

corr(f, g, ξ, η, ω) =
∑

lmhn

dlmh(π/2)dlhn(π/2)

·f̂lmĝlne
−i(nξ+hη+mω) (15)

where l is running from 0 to the maximum band of ex-
pansion, andm,h, n from −l, . . . , l. The direct evalua-
tion of this correlation function is of course not possible

- but it is rather straight forward to obtain the Fourier

transform of (15), hence eliminating the missing angle

parameters:

ĉorr(f, g,m, h, n) =
∑

l

dlmh(π/2)dlhn(π/2)

·f̂lmĝln (16)

Finally, the full correlation (f ⋆ g) over all angles
(ξ, η, ω) can be retrieved via inverse FFT of the entire
grid Ĉorr of all possible ĉorr(m,h, n)

f ⋆ g = FFT−1(Ĉorr), (17)

revealing the correlation values on a sparse grid in a

three dimensional (ξ, η, ω)-space. The minimum corre-
lation min(f ⋆ g) is found by searching the grid which
has a size of (2b+ 1)3, where b is the maximum band.
Hence, correlation accuracy and computational com-

plexity are directly linked to the maximum spherical

harmonic expansion. Since the grid sizes are still con-

siderably small for any likely b, the full correlation can
be computed in a few milliseconds on a standard PC.

3.3 Final Algorithm

Given our fast correlation, we compute the rLBP in

three steps: first, compute the 2-pattern P rN and T
r

using known equidistant samplings [2] with 24 to 124

samples. Then expand both in spherical harmonics and

obtain the coefficients P̂ rN and T̂
r and finally compute

the rLBP via the minimum of the fast correlation of P̂ rN
and T̂ r as stated in (5).

3.4 Further Speedup

The actual bottleneck of our approach is the complex-

ity of the computation of T r which is increasing with
the number of sampling points. For full gray-scale in-

variance we have to compute T r correctly, but there is
an elegant way to approximate T̂ r while preserving a
gray-scale robustness: we compute X̂r and subtract c
in the frequency domain, which only affects the 0th co-

efficient T̂ r0 :

T̂ r0 ≈ X̂r
0 − c · b, T̂ ri ≈ X̂r

i (18)

Hence, we no longer have a binary but continuous

weighting of the n-pattern. We will refer to this approx-

imation as aLBP.

4 Experiments

We evaluated the texture analysis performance of the

rLBP and aLBP on 3D volumetric biological data

and compared the results to the fuLBP methods pre-

sented in [3] and a Haar-Integration approach in[4]. A

database containing 229 3D volume datasets of 3 dif-

ferent classes of cell-nuclei was given. The cells were

recorded in tissue via confocal laser microscopy us-

ing two different anti-body markers, YoPro and Cy3,



Figure 1. Sample database entry, xy-

slices of 3D volumetric data. From left to

right: YoPro marker, Cy3 marker, ground
truth labeling of the cell nuclei, binary

mask for the database entry.

type result in [4] fuLBP[3] rLBP aLBP

A 93,3% 88,7% 91,3% 90,5%

B 84,6% 75,8% 79,8% 78,2%

C 79,8% 74,2% 75,1% 74,8%

D 94,1% 90,9% 93,4% 91,0%

Table 1. Results of the nuclei clas-

sification comparing the Haar-Intergral
based features from [4] and fuLBPs with

our new approach. The celltypes are
A:Erythrocyte, B:Endothelial cell, C: Fi-

broblast and D:Background.

which were recorded in separate channels. For this ex-

periment, we used only the YoPro channel. A sample

database entry is shown in Fig. 1, please refer to [4] for

further details on the database.

We used 12 different features of varying radii, num-

ber of samples and expansion bands. After feature

extraction, we performed a voxel-wise classification

via support-vector machine (SVM) following the algo-

rithms in [4]. Results are shown in table 1.

5 Conclusions

We presented a novel method for the computation of ro-

tation invariant 3D LBP for 3D texture analysis on vol-

ume data. Our new approach rLBP clearly outperforms

the previous fuLBP, and even the approximative aLBP

perform slightly better. However, the main improve-

ment of the general rLBP is the easy handling compared

to the fuLBPwhere one has to perform an elaborate pre-

computation of the uniform patterns. In terms of com-

putational complexity, the cost of the rLBP depends on

the number of samples and can become quite expensive

- a tradeoff between resolution and costs. aLBP provide

an efficient alternative, if gray scale invariance is not

crucial. All LBP methods were outperformed by the

Haar-Intergral based features from [4]. The reason for

this may be that LPB have a larger spacial resolution,

but a weaker gray scale resolution than Haar-features -

which might be not favorable for the given task.
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