
Phase based 3D Texture Features

Janis Fehr1 and Hans Burkhardt1

Albert-Ludwigs-Universität Freiburg, Institut für Informatik, Lehrstuhl für
Mustererkennung und Bildverarbeitung, Georges-Koehler-Allee Geb. 052,

79110 Freiburg, Deutschland
fehr@informatik.uni-freiburg.de,

http://lmb.informatik.uni-freiburg.de/

Abstract. In this paper, we present a novel method for the voxel-wise
extraction of rotation and gray-scale invariant features. These features
are used for simultaneous segmentation and classification of anisotropic
textured objects in 3D volume data. The proposed new class of phase
based voxel-wise features achieves two major properties which can not
be achieved by the previously known Haar-Integral based gray-scale fea-
tures [1]: invariance towards non-linear gray-scale changes and a easy to
handle data driven feature selection. In addition, the phase based fea-
tures are specialized to encode 3D textures, while texture and shape
information interfere in the Haar-Integral approach. Analog to the Haar-
Integral features, the phase based approach uses convolution methods in
the spherical harmonic domain in order to achieve a fast feature extrac-
tion.
The proposed features were evaluated and compared to existing methods
on a database of volumetric data sets containing cell nuclei recorded in
tissue by use of a 3D laser scanning microscope.

1 Introduction

Segmentation and classification of anisotropic objects in 3D volume data, espe-
cially of biological structures in 3D laser scanning microscope (LSM) images,
has recently become a fast rising topic. Life sciences take more and more ad-
vantage of 3D imaging techniques like LSM, combined with fluorescent antibody
markers or auto-fluorescent probes. For a broad band of research topics from cel-
lular anatomy to gene expression experiments, 3D volumetric imaging methods
are used. Microscopes of the latest generation allow very fast, high resolution,
multi-channel recordings which produce high amounts of data. At this stage,
there is a rising demand for (semi)automatic image analysis methods which on
one hand would allow high-throughput experiments, and on the other hand,
provide a tool for quantitative data analysis. Most of the demanded automatic
analysis tasks include the ”basic”but difficult operations of segmentation, classi-
fication, or landmark detection for registration of textured objects in 3D volume
data. All these operations have in common, that a rotational invariant represen-
tation of the 3D data is needed.
This paper is structured as follows: first we give a brief overview of related work,



especially the Haar-Integral based gray-scale features are revised. Then we moti-
vate the phase based approach. In section 2 the proposed features are discussed
in detail. Section 3 introduces the data driven selection of phase based features.
Experiments are presented in section 4.

1.1 Related Work

To our best knowledge, there are not many publications available regarding the
segmentation or classification of anisotropic 3D objects in LSM volume data. [2]
presented a method for automatic segmentation of cell nuclei in dilution using
region-growing (watershed) techniques. However, this method fails for recordings
of nuclei in dense tissue probes as we present in our experiments. In general, we
found that standard edge based, contour based, or region-growing segmentation
methods deliver poor results on tissue probes. This is due the fact, that diffi-
cult segmentation tasks require a great amount of a-priori knowledge, which can
not be encoded in these methods. Model driven segmentation methods, such as
snakes or level-sets, are capable to encode a-priori knowledge and therefore might
work well on single examples of this data. But, since there is a high variability
in biological structures like cell nuclei and the demand is going towards very
general and easy adaptable methods, the use of such models is complex and not
flexible enough for many biological tasks.
Learning Segmantion by Example: An other way of incorporating a-
priori knowledge into a segmentation task was presented in [3]. Here segmenta-
tion and classification is performed voxel-wise and in a single step using training
examples given by a human expert. In an iterative process, the expert labels
some voxels of different object classes and background. Then voxel-wise invari-
ant features are extracted and each voxel is classified based on the given training
samples. Neighboring voxels of the same label are then grouped to objects. The
resulting segmentation/classification is adjusted by the expert until the model
reaches a stable state. Afterwards new datasets can be segmented using this
model. Models can be adopted to new cell types or even totally new data by
retraining the model with additional training samples. We use this method com-
bined with a Support Vector Machine (SVM) [4][5] classifier and our proposed
phase based features for the experiments in section 4.
Voxel-Wise Haar-Integration Features: [1] and [6] introduced voxel-
wise rotation invariant gray-scale features for combination with the previously
described simultaneous segmentation and classification algorithm. In general,
(rotation) invariance can be achieved via integration over the transformation
(rotation) group:

T [f ](X) :=

∫

G

f(gX)dg

G : transformation group (rotation)
g : element of the transformation group
f : non-linear mapping
X : n-dim, multi channel data

gX : transformed n-dim data

(1)



[1] and [6] formulated this approach for the special case of 3D ”2-point” and
”3-point” gray-scale invariants of the form (here given for ”3-point”):

T [f ](X) = fa

(
X(0)

)
·fb

(
X(q1)

)
·fc

(
X(q2)

) fa, fb, fc : arbitrary gray-scale map-
ping

qi : radius

and showed a fast way of voxel-wise calculation via convolution in the spher-

Fig. 1. Schematic calculation of Haar-Integral features. Left: slice through cell nuclei in
original data. Center: calculation of ”2-Point” invariants via Haar-Integration along the
surface of a sphere. Right: ”3-Point” features incorporate the relationship of gray-values
at three points (center and two on concentric spheres). In this case many degrees of
freedom have to be covered in order to achieve rotational invariance.

ical harmonic domain. Fig. (1) illustrates the calculation of gray-scale Haar-
Integration features.
The results which can be achieved with this method are very reasonable (as
shown in [1]), but the Haar-Integration approach also has some drawbacks: first,
the features are not invariant towards gray-scale shifts, which appear in record-
ings moving deeper into the specimen. Due to the integral nature, the mean
gray-value tends to dominate the value of the invariants and only a gray-scale
robustness can be achieved via elaborate normalization techniques. Second, the
Haar-Features have many degrees of freedom (q1, q2, fa, fb, fc), which makes an
extensive feature selection necessary. And last but not least, the integration step
makes it almost impossible to conduct an inverse inference from discriminat-
ing features to the original structure, which would be very useful for a deeper
understanding and further improvements of the method.

2 Phase based 3D Texture Features

In order to overcome the drawbacks of the Haar-Features while utilizing its
strengths, we propose a new phase based approach towards voxel-wise rotation
and gray-scale invariant features. As for the Haar-Features, we encode the spher-
ical neighborhood of a voxel to an invariant feature vector. Since this feature
calculation is conducted in the spherical harmonic domain, we first give a brief
introduction to the harmonic methods used for our approach.



2.1 Spherical Harmonics

To represent the neighborhood of some point in a 3D Euclidean space as a
function f on the surface of a sphere (parameterized over the two angles θ and φ),
the original 3D signal can be expanded in terms of spherical harmonics [7]. These
provide an orthogonal basis for such functions analog to the Fourier transform
in Euclidean space. This way, every spherical function can be represented by the
sum of its harmonics:

f(θ, φ) =

∞∑

l=0

l∑

m=0

almY m
l (θ, φ) (2)

where l denotes the band of expansion, m the number of components for the l-th
band and alm the harmonic coefficient. The harmonic base functions Y m

l (θ, φ)
are calculated as follows:

Y m
l (θ, φ) =

√
2l + 1

4π

(l − m)!

(l + m)!
· Pm

l (cos θ)eimφ (3)

with the associated Legendre polynomial Pm
l .

Note that in this formulation we take advantage of the symmetry in the har-
monic representation, neglecting the negative coefficients. For practical reasons
we also split the base components into their real and imaginary parts following
the notation Y mr

l and Y mc
l respectively. Fig. (2) shows the first few spherical

harmonics.
The transformation ̂D(l, m) of the original volumetric data D into the harmonic
domain is easily computed via fast convolution:

̂D(l, m) = Y m
l (θ, φ) ∗ D (4)

where ∗ denotes a convolution in Euclidean space and Y m
l (θ, φ) a spherical har-

monic base component.

2.2 Feature Calculation

In order to obtain local features ̂Dr(l, m) which encode the spherical neighbor-
hood of each voxel at different consecutive radii r, we restrict the harmonic
expansion to the surface of spheres Sr smoothed by a Gaussian filter G.

̂Dr(l, m) = (Y m
l (θ, φ) · (Sr ∗ G)) ∗ D (5)

Once the original volume data is transformed to the harmonic domain, there are
different ways of calculating a rotational invariant representation. The simplest
and well known approach is to take the band-wise absolute value of the harmonic
coefficients, also known as harmonic descriptors, which for example have been
used in [8] for 3D object recognition. However, this method yields a major draw-
back: by taking the absolute values one totally neglects the the relations between
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Fig. 2. Spherical harmonics on a sphere surface from 1st to 5th band.



the bands of the harmonic representation. This leads to ambiguous features with
decreased separability.
For the Haar-Integration features the rotation invariance is achieved by integra-
tion over all possible rotations (in terms of convolutions in the harmonic domain).
Here the band relations are implicitly conserved, but as mentioned before, the
integration inhibits a gray-scale invariance. As the name ”phase-based” features
suggests, our new method uses only the relation of the harmonic bands as fea-
ture representation. This approach is motivated by results known from Fourier
transform, which showed that the characteristic information is dominant in the
phase of a signal’s spectrum rather than in the pure magnitude of it’s coeffi-
cients. Following this strategy has the nice side-effect that the overall gray-value
intensity is only encoded in the amplitude, making a phase-only method directly
gray-scale invariant.
Phase: In this paper, the phase of a local harmonic expansion in band l a
radius r is denoted by the orientation of the vector Pl,r, containing the l har-
monic coefficient components of the band-wise local expansion (Equ. 6). Since
the coefficients are changing when the underlying data is rotated, the phase itself
is not a rotational invariant feature.

Pl,r(m) := ̂Dr(l, m)/‖D̂r‖ (6)

Due to the orthogonality of the harmonic base, the rotation of a spherical neigh-
borhood can be calculated in the harmonic domain via a band-wise matrix mul-
tiplication of a symmetric and orthogonal rotation matrix Rl of size l × l with
the harmonic coefficients in the l-th band. Unfortunately it turns out, that the
actual calculation of this rotation matrix is getting more and more complicated
and time consuming for higher bands. This would make it very expensive to
achieve rotation invariance of the phase via pre-alignment.
But, there is another way to realize rotational invariant phase-only features:
since we are interested in encoding the neighborhood at many consecutive radii,
we can take advantage of this additional information and construct a phase-only
rotational invariant feature based on the band-wise relations of phases between
the different concentric harmonic series.
Fig. (3) illustrates the basic idea: the relation (angle) between phases of harmonic
expansions at different radii, but in the same harmonic band, are invariant to-
wards rotation around the center of the expansion. Intuitively phases in the
same harmonic band undergo the same changes under rotation of the underly-
ing data, keeping the angle between the phases of different radii constant. We
encode this angle in terms of the dot product of band-wise spherical harmonic
expansions. The resulting phase-only features can be interpreted as a description
of the change in the 3D data texture, when moving from one spherical neigh-
borhood to the next concentric neighborhood. We use this texture encoding
property in the next section to find discriminatory texture elements for classes
of 3D anisotropic volumetric objects. The formalization of the band-wise phase
based feature vector T [fl] calculation is given as the dot product between two
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Fig. 3. Schematic example of the phase based feature calculation. Left: representation
of the original data as combination of the 3D base functions of an expansion in the 1st
band at radius r1. Center: representation at radius r2. Right: the feature is encoding
the 1st band phase angle α between the two concentric harmonic expansions.

band-wise expansions at radii r1 and r2 :

T [fl] :=< Plr1
, Plr2

> (7)

Proof of rotational invariance is rather straight forward basic linear algebra:
Since the phases of both radii are in the same band, a rotation of the underlying
data can now be expressed in terms of matrix multiplications with the same
orthogonal rotation matrix Rl:

T ′[fl] =< RlPlr1
,RlPlr2

>

= (RlPlr1
)T (RlPlr2

) rewrite as matrix multiplication

= (Plr1
)T (Rl)

T (RlPlr2
) resove transposition

= (Plr1
)T (RT

l Rl)(Plr2
) comutativity

= (Plr1
)T (RT

l Rl)︸ ︷︷ ︸
=I

(Plr2
) use orthogonality of Rl

= (PT
lr1

Plr2
)

=< Plr1
, Plr2

>

= T [fl] ⊓⊔

(8)

Since the rotational invariance is achieved band wise, the approximation of the
original data via harmonic expansion can be cut off at an arbitrary band, en-
coding just the level of detail needed for the application.
Computational complexity: compared to the Haar-Features the calcula-
tion of a single phase based feature has about the same computational complex-
ity, both include expansions of two different neighborhoods in harmonics and
their dot-product. However, a significant speedup can be achieved by the usage
of phase based features. Our experiments showed, that due to the higher dis-
crimination cability, the number of needed features is significant lower compared
to the usage of Haar-Features.



3 Data driven Features

- ery1 ery2 epithel1 endothel1

raw

D̂
r1,2

1

D̂
r6,8

4

D̂
r8,2

3

D̂
r2,4

5

D̂
r5,6

4

Fig. 4. Distinguishing feature response of different cell nuclei. D̂
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in band 1 encoding the phase change from radius 1 to 2.

As Fig. (4) shows an example of how different 3D textures (of nuclei types) lead
to distinguishable representations in feature space. Fine, high frequency textures
have an large impact on features in higher bands and at small radii while a more
raw textured object is predominantly represented in the lower bands and larger
radii. In order to determine the most distinguishable features, we apply a strong
gauss filter to the features. This way the very local but strong texture responses
are distributed to the local neighborhood. Then we apply the maximum marginal
diversity algorithm [9] to calculate to most separating features. Since the phase
based features are independent for every band, the data representation can be



reduced to arbitrary band and radii combinations without a full transformation
to the harmonic domain.

4 Experiments

To verify our new method, we conducted some first experiments on a database
of 3D laser-scanning microscope (LSM) recordings from cell nuclei in tissue.
Data: The database consists of 236 nuclei samples divided in 5 different classes
(erythrocyte, endothelia cells, pericyte, fibroblast and macrophage). The sam-
ples were recored from tissue probes of the chicken chorioallantoic membrane
which were treated as described in [10]. Human experts manually segmented
and labeled the sample nuclei recordings as ground truth.
Methods: We extracted 16 features involving 8 different radii and expan-

Fig. 5. Slice of a sample 3D database entry (erythrocyte). Left: YoPro stained channel.
Center: SNAAlexa stained channel. Right: ground truth segmentation and label.

sions up to the 6th band. All features were selected from a larger number of
initial features by the data driven selection method. Two reference models were
trained on two small disjunct subsets of the database, containing samples from
two different recording depths. The different depths cause shifts in the gray val-
ues of the recordings, as described in section 1. The remaining samples were also
split into two sets, according to the recording depths, and were then classified
with both models.
Results: We compared non gray-scale invariant 3-point Haar-Integral (gsi)
features (as described in [3]) and the new, gray-scale invariant, phase based fea-
tures. While the gsi features performed very well for constant gray-scales (94.53
%), the classification rate dropped to poor 46.2% for the subsets from a different
recording depth. The phase based features on the other hand performed slightly
worse on constant gray-scales (91,58%), but delivered stable results for varying
gray values: 90.1%.

5 Conclusion and Outlook

In this paper we presented a novel approach of calculating rotational and gray-
scale invariant 3D texture features based on the phase information of a spherical



harmonic expansion of the original data. Our first experiments showed promising
results and pointed out the strengths of these new features, especially concerning
gray-scale changes in 3D textures as well as the possibility to construct data
driven features in comparison to Haar-Integration features.
For future work, we will continue to focus on methods for data driven features.
Seeking for ways of learning the most discriminative features for larger local
areas, moving towards a 3D patch based approach.
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