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ABSTRACT

An iterative algorithm to estimate simultaneously rotation
and translation parameters of moving planar rigid bodies in grey-
scale image sequences is developed and discussed. The advantage
of the algorithm is the combination of very good performance fea-
tures as large stability region and high image-bandwidth-adaptive
convergence rate of at least second order near the optimum with
a minimum of numeric expense within each iteration step. Fur-
thermore the algorithm does not require knowledge of any point
correspondence but uses the normal grey-scale images within an
area of interest.

Two modifications of the algorithm using clipped signals are
given and results testing the algorithm and its modifications using
real image data are presented.

L INTRODUCTION

This paper is concerned with the joint estimation of rota-
tion and translation parameters of moving rigid planar objects in
image sequences. The problem of motion estimation has become
of great interest in several areas of image processing as motion
compensated image coding, remote sensing by satellites, robotics
and biology. Details are given in the surveys of Nagel {1,2] and
the book of Huang [3]. It may be observed that a lot of dif-
ferent algorithms to estimate pure translatoric displacement have
been published and discussed in detail. These algorithms may not
straightforwardly be extended to the problem of a joint estima-
tion of rotation and translation because rotation and translation
are not independet and therefore do not commute. Only a few
papers [4,5,6,7,8] discuss this problem in detail or give an efficient
parameter estimation algorithm based on ordinary grey-scale im-
ages without using special features as corresponding points.

This paper describes a new fast converging algorithm to es-
timate rotation and translation simultaneously in a few iterative
steps. The advaniages of the algorithm are manifold. First it
has a high, image-bandwidth-adaptive convergence rate near the
optimum which is suitable for tracking problems as the motion
leads only into a near neighbourhood. The convergence rate of
the estimate is at least of second order [9]. Second the method
has a large region of stability which is very useful when only little
a priori knowledge of the motion vector is available. Furthermore
the algorithm is specially designed to keep the numeric complexity
within each iteration step as low as poesible. Therefore the algo-
rithm seems to be suitable also for near real-time applications.
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-4 THE ALGORITHM

The model adaptive parameter estimation algorithm is based
on a simplified signal model. The two grey-scale images I; (x) and
I2(x) describe the motion of a rigid planar object S(x) in front of
a uniform background where no occlusion effects occur:

Li(x) = $(x) = S(z,y) )
I(x) = S(zcos$ — ysing — dy, zsin ¢ + ycos  — dz).
L(x) results from I;(x) by rotation ¢ and translation d;,ds. To
get an appropriate estimate T = (§,d;,d>)T of the parameters
T = (¢,d1,d2)T the motion is modelled by

Im(va) = S(zcm$ - y’in$ - Jl)zsin$+yc°’$_ JQ)) (2)

and the parameter vector 1' is changed until the image differ-
ence ¢(T) between I,,(x, T) and I>(x) and thus an error criterion
J{e(T)} reaches a minimum. The error criterion is chosen to be
the expectation value of the squared image difference e

He(D)) = E{e?} = E{(In(x, 1) - B(x))?) (3)

which is assumed to be twice differentiable. For ill conditioned
images where the error criterion has no dominant parabolic shape
near the optimum appropriate filtering may be used.

For stationary stochastic signals J{e(1)} equals twice the
negative cross-correlation function of I, (x, 1) and Ix(x) plus an
additive constant. A direct solution for the minimization of the
error criterion J {egz; is given by a global search for the optimal
parameter vector * resulting in the calculation of the three-
dimensional cross-correlation function R(¢,d,d2) in conjunction
with a tremendous numerical complexity.

We use instead an iterative minimizing strategy changing
the parameter vector ' well-directed until J {e('l‘ﬁyia a mini-
mum. This algorithm is an extension of a one-dimensional mod-
ified Newton-Raphson-algorithm {10] to estimate several parame-
ters based on two-dimensional signals. The main structure of the
algorithm is given by the iteration

PEH = K _H-1(1 = 1 = T). g(1), ()

with the Hessian H as the second derivative and the ient
vector g as the first derivative of the error criterion J{¢(T)} with
respect to the parameter vector I. Note that the Hessian is always
used at the optimum T = T* = T and not at the actual iteration
point X as in the original Newton-Raphson-algorithm. Based on
that the Hessian has to be computed only once which can be done
before starting the iteration. This leads to several advantages
which will be discussed in detail below.
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Because of the fact that rotation and translation are not in-
dependent and therefore do not commute eq.(4) has to be slightly
modified to preserve the advantages of the al’g(orithm. Therefore
we introduce a running coordinate system {xX} = {zX,yK} and
TKH = (§K+1,di+1 J5+H1)T a8 an additional motion vector de-
scribing the estimate of the K-+1-th iteration on the basis of the
coordinate system {xX} of the K-th iteration.

Thus the relation between the model image I,,, (x) of the K-th
iteration step and the model image I, (x) of the K+1-th iteration
step is introduced as following

In(%, " F) = I, (x, 2%, FE+1) = §(xK+)
= 5(2X cos gKH — yK sin gKH1 _ JfH, )
= S(zcos pK+1 — ygin gK+1 — JK+1 )

(5)

Thus the innovation TX+! is given in the transformed coordinates
{x} and only indirectly in the coordinates {x}. Further details
are given in [9]. Now the correct two-dimensional extension of the
one-dimensional modified Newton-Raphson-algorithm is given by

DK+ = AKHGK 4 TR+ = AKHAK _ ff-1 ,g(ﬁ-" ). (6)

The slightly modified Hessian;l at the optimum and the slightly
modified gradient vector §S’i‘ ) can be expressed by the deriva-
tives of the two images I;(x) and I,(x) with respect to the coordi-
nates {x}. Finally with the abbreviation 8/3¢ = y-3/0z—z-8/dy
and the operator 3 = (3,82,33)T = (8/8¢,3/3z,3/3y)T we get

.ﬁ,',‘ =2 E{a.-I,(x)a,-I;(x)} (7)
Gi(PF) =2 2 B E{(In(o 1) - B(x))3;5(x)}. (8)

4,7 =123

The weighting matrices
AKX = ((1) cosoéx - smj") (9)
0 singX cosgX
and
BK o ((l) J{‘sin.}:;—&x cos $K J{‘coe{"gfﬁsin&“
0 sin gK cos pK

0
describe the interrelation of rotation and translation. )

A special property of the algorithm of eq.(6) is the fact that
the Hessian is always taken at the optimum and not at the ac-
tual iteration point. This has two impacts. First the perfor-
mance is improved, i.e. the algorithm combines the advantages
of the gradient-technique (large region of stability) with those of
the normal Newton-Raphson-technique (good signal adaptive con-
vergence property near the optimum which is independent of the
image bandwidth). The convergence rate of an adequate error
norm ¢ =|| X —'T || is at least of second order [9]. Second the
algorithmic expense keeps quite small as will be discussed in the
following.

As mentioned before the Hessian taken at the optimum has
to be galculated only once before starting the iteration, because
according to the special model structure the Hessian at the opti-
mum (eq.(7)) can be expressed only by derivatives of the image
I1(x) with respect to the coordinates {x}. These derivatives are
independent of the actual parameter vector 4" and can therefore be
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computed off-line. The only high-dimensional data dependent ex-
pression to be updated within the iteration is the gradient vector
ﬁ(TK) given in eq.(8). Therefore four main steps are necessary.
First the new model image I(x, TK) = §(xK) has to be gener-
ated either from I; (x) by rotating and translating with the param-
eter vector T'K or from the preceeding model image 5 (x, 51
by rotating and translating with the parameter vector TX. In a
second step () has to be subtracted from I (x,T*); i.. the
image difference has to be built. Third this image difference has
to be multiplied by the partial derivatives of Ix(x) according to
eq.(8). Note that these derivatives - like the Hessian - can be
calculated at the beginning of the iteration because they are also
independent of the actual parameter vector T. In a fourth step
the expectation values have to be computed, which can be done
either directly by summing up the calculated values over a region
of interest or indirectly by using the histogram of the calculated
values. The rotation and translation of the images may be real-
ized either internally by a digital signal processor or externally
by moving the camera. Under the assumption that a dedicated
hardware is available especially for the rotation of image frames at
TV-rate one iteration step could be implemented in 8 TV-cycles,
namely one cycle to generate I, (x,'i‘ ), one cycle for the sub-
traction, two cycles for multiplication and expectation operation
for each component using the histogram analyzer. Therefore ap-
proximately 320 msec are necessary for one iteration step.

3. MODIFICATIONS OF THE ALGORITHM

There are several possibilities to reduce the complexity of the
identification algorithm furthermore. It may be observed that in
many applications the off-diagonal elements of the Hessian may
be negligible. Therefore instead of six elements only the three
diagonal elements have to be calculated and the inversion is trivial.
Nevertheless because of the possibility to calculate the Hessian
before starting the iteration no significant computational savings
within the iteration are attained.

Another possibility to simplify the algorithm is to process
only the sign of the dc-free images. If only one image is quan-
tized we get relais-correlation, if both signals are quantized we
get polarity-correlation. Basis for relais-correlation is the fact
that - at least for gaussian signals - the relais-correlation func-
tion R,yn(u),v(7) is proportional to the normal correlation func-
tion R,,,.(r; 11

Bonioo(r) = Blogntle+ 1)o@} = E L Reslr). - @)

Because of the monotone relation between the normal and
the relais-correlation function, maximizing Ry,.(7) or Regn(u),(7)
leeds to the same estimate of the motion parameters. The same
holds for the polarity- correlation Rygn(u),sgn(v)(7) [11]

Rus(u),un(v)(f) = E{‘gn(“(t + r))’y"(v(t))}

= 2 arcsin B o(7) (12)
T Ouly

The prerequisite of gaussian distributed grey-scale images is
too strong for many applications. It is sufficient that R,,;, “),,,21;
and R,gq(u),e9n(v)(7) 2re arbitrary monotone functions of ji‘.,,, T
so that the maxima of these functions are achieved at the same
parameter value 7. With these assumptions the following simpli-
fications of the algorithm of eq. (6) are possible.




Relais case;
PEH = AKHAK _ 171 . §o(1K) (13)
with the modified Hessian H g
. 921,
Hp;;=-2E {-3;:—‘13(3;)89"(11 (x))} (14)

and the modified gradient vector gr(TX) = BXK . gp(TK),
gr:(TX) = —2E {(’yn(S(X")) ~ sgn(B(x))) 2%’9} (15)

where S(x) and I;(x) are assumed to have a zero mean value.
The main advantage of this algorithm is the fact that within the
iteration loop the image difference of the clipped signals may only
assume the three values -2, 0, +2. Therefore no full realization of
the multiplication is necessary, it is sufficient to realize polarity
controlled addition and subtraction.
Polarity-case:

A further reduction of the numeric complexity is possible with

K+ — AK+IBK _ ﬁ;n .ﬁp(i"()

with the modified gradient vector gp(TK) = BX - gp(1K),

(16)

oh(x
api(1%) = <25 {(som(S(xK)) - agn(1s) g ('f'irl)“}n
and the Hessian Hp which has to be expressed by differentiating
the gradient vector gp; with respect to T

Hpij = -.é%w {(son(56x, 7)) - sgn(s(x)))

(12}

Calculating Hp directly from the derivatives of the images is not
possible because clipping as a nonlinear operation and differenti-
ating do not commute.

The realization of this algorithm is quite simple. Because of
the fact that the image difference in eq.(18) may assume only the
three values -2, 0, +2 and the derivatives only the two values -1
and +1 calculating gp(1'X) reduces to simple up/down-counting.

Comparing the three algorithms (eq.(6), eq.(13), eq.(16)) we
may observe a similar structure. The characteristic performance
as well as the large stability region and the signal adaptive con-
vergence rate remain unchanged. The difference between the al-
gorithms consists in the complexity of the arithmetic operations
and in a simplified, namely binary image memory. Above that
there might be an additional impact on the characteristics of the
error functions.

4. EXPERIMENTS WITH REAL IMAGE DATA

The algorithms (eq.(6), eq.(13), eq.(16)) have been tested
with real image data. Image 1 and 2 show two typical scenes digi-
tized by 512 x 512 pixels which were used as I;(x). The figures 1,
2 and 3 give the result of characteristic experiments. The images
were translated and rotated in the computer by definite motion

(18)

=0
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vectors T to generate Jo(x) using bilinear interpolation. The ro-
tation always was around the centre of the marked areas and the
smallest of these areas (51 x 51 pixels) were used as region of in-
terest to calculate the expectation values within the identification
of the given motion vectors T.

Image 2: Picture of a woman digitized by 512 x 512 pixels
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Fig. 1: Estimation of T = (5°,5,5)T using image 1
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Fig. 2: Estimation of T = (20°,4,2)7 using image 2

The first and second figure show a joint identification of rota-
tion and translation using the normal modified Newton- Raphson-
algorithm. In the first example using image 1 the motion vector to
be identified was T = (5°,5,5)7. In the second example image 2
was used with the motion vector T = (20°,4,2)T. The estimated
values § in degrees and dy, d> in pixels are plotted versus the itera-
tion number K. Both examples show that the given motion vector
could be identified in a few iterative steps. Furthermore near the
optimum the innovations are large and the estimation vector
converges very fast to the true value T which states the good con-
vergence property near the optimum. Especially example 2 shows
the large region of stability up to more than 20° in this scene.

K
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6 d
‘2' d, original algorithm (eq.(6))
K

relais-case (eq.(13))

d, polarity-case (eq(16))

K

1234
Fig. 3: Estimation of T = (0°,5,3)T using image 1
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The third example using image 1 compares the three algo-
rithms (eq.(6), eq.(13), eq.(16)) in the case that only translation
is present. The given vector T = (0°,5,3)T is always identified
in a few steps. There are no great differences between the normal
algorithm, the relais- and polarity-case. Note that the innovations
in contrast to the former examples are always in multiples of full
pixels because here no subpixel interpolation was used and the
estimated values were rounded.

5. CONCLUSIONS

A fast converging algorithm to jointly estimate rotation and
translation in image sequences has been presented and tested us-
ing real image data. Thespecialfeatumofthenlsoﬁthm, the

igh, image bandwidth adaptive convergence rate, the large re-
gion of stability and a low numeric complexity of the algorithm
could be verified . An extension of the algorithm to
estimate affine transform parameters is given in [9].
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