
IMAGE ANALYSIS OF ARABIDOPSIS TRICHOME PATTERNING IN 4D CONFOCAL
DATASETS

R. Bensch1,5, O. Ronneberger1,5, B. Greese2,3, C. Fleck2, K. Wester4, M. Hülskamp4, H. Burkhardt1,5

1Institute of Computer Science, University of Freiburg,
Chair of Pattern Recognition and Image Processing, Georges-Köhler-Allee Geb. 052,
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ABSTRACT

In this article, we present an approach for the automated extraction
of quantitative information about trichome patterning on leaves of
Arabidopsis thaliana. Time series of growing rosette leaves (4D con-
focal datasets, 3D + time) are used for this work. At first, significant
anatomical structures, i.e. leaf surface and midplane are extracted
robustly. Using the extracted anatomical structures, a biological ref-
erence coordinate system is registered to the leaves. The performed
registration allows to determine intra- as well as inter-series spatio-
temporal correspondences. Trichomes are localized by first detect-
ing candidates using Hough transform. Then, local 3D invariants are
extracted and the candidates are validated using a Support Vector
Machine (SVM).

Index Terms— Arabidopsis trichome patterning, surface ex-
traction, registration, symmetry plane, trichome localization

1. INTRODUCTION

Motivation. Arabidopsis trichomes (leaf hairs) are an interest-
ing example to study cell differentiation [1] and are well suited cell
types for the functional analysis of de novo pattern formation. Dur-
ing cell growth, different processes provide for a regular spacing of
the trichomes. A close interplay between theoretical modelling and
experimental validations has been started to test the relevance of dif-
ferent models for trichome patterning. In this context, there is a need
of quantitative data, e.g. trichome positions, to allow the analysis of
these processes and their simulation with mathematical models.

State of the art. Lee et al. [2] and Kaminuma et al. [3] al-
ready performed a quantitative analysis of spatial distributions of
Arabidopsis leaf trichomes, including surface extraction and extrac-
tion of trichome positions. Optical projection tomography (OPT)
was used in [2] and micro X-ray computed tomography (μCT) was
used in [3] to acquire single channel 3D images. The marching-
cubes algorithm, i.e. a threshold-based method, was used in both [2]
and [3] to create a polygon model of the surface from the 3D im-
age at a specified isovalue. The extraction of trichomes is based on
the surface curvature, i.e. surface morphology, in both approaches.
The analysis is based on 3D recordings of a single time step for each
plant.

2. APPROACH

In contrast to [2] and [3], we intend to investigate the processes that
guide the development of trichomes. For this purpose, it was neces-
sary to record time series (4D data) of growing Arabidopsis leaves.
Trichomes are tagged with a trichome specific green fluorescent pro-
tein (GFP) marker, such that they can be detected in an early devel-
opmental state. Confocal laser scanning microscopy (CLSM) was
needed to obtain a higher resolution compared to OPT in [2] and to
allow for recordings of GFP markers in vivo, which is not possible
with μCT in [3]. Firstly, a chlorophyll channel (representing the leaf
volume) was recorded using its auto-fluorescence. Secondly, a GFP
channel was recorded to detect trichomes. Variations in the chloro-
phyll concentration and effects like absorption due to CLSM lead
to intensity gradients in the recorded images. Therefore, threshold-
based methods for surface extraction can not be used here. We intend
to investigate the development of trichomes starting from an early
developmental state, when they are not yet morphologically visible,
and thus our time series start with young leaves. In both [2] and [3]
the detection of trichomes is based on the morphology and there-
fore is not applicable here because early trichomes are not visible
morphologically.

Due to time-consuming reference labeling of trichomes, mainly
two time series were selected for this work, series A (7 time steps)
and series B (8 time steps). As an example, the dimensions of the
youngest and oldest time step of series A are given: t0 : 256×256×
52 voxels, t6: 521 × 404 × 158 voxels of size 1.465 × 1.465 ×
2.0μm3.

The proposed approach mainly consists of three parts. The first
part is the robust extraction of the leaf surface and midplane from
the chlorophyll channel. Local filtering based on gradient directions
and gradient magnitude is used to identify surface voxels. In addi-
tion voxels belonging to the midplane are identified similarly by us-
ing eigenvectors of the Hessian instead. Robustness is increased by
applying a scale-space approach and removing unstable responses.
The consideration of 4D data in our approach introduces the need
for image registration. Symmetry analysis, based on the extracted
surface, yields the symmetry plane of the leaf. It is used to robustly
detect the pose of the leaf and thus to register a biologically moti-
vated reference coordinate system. This allows for inter-subject reg-
istration of the leaves. Trichomes are localized in the GFP channel
by first detecting candidates using Hough transform, extracting local
3D invariants, and then validating the candidates using a SVM.
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3. EXTRACTION OF LEAF SURFACE

Leaf segmentation by thresholding is not appropriate here because
the chlorophyll intensities increase along the leaf rib continuously
towards the blade tip. An adequate approach to extract the leaf sur-
face, that does not operate directly on the gray values, is presented in
the following. Local non-linear filtering is applied to identify surface
voxels. The image X is convolved with a Gaussian kernel of width
σ. Then, gradient direction and gradient magnitude are calculated.
For each voxel four neighbouring voxels are determined. They are
located in mutual perpendicular directions on the plane that is per-
pendicular to the gradient direction and passes through the current
voxel. A voxel is identified as a surface voxel if it and all of its
four neighbours are local maxima of gradient magnitude along the
gradient direction, see Fig. 1. This filter serves as an edge detec-
tor that is robust to noise, since also the neighbours are required to
be local maxima. A similar technique was already successfully ap-
plied in [4]. Robustness to intra- as well as inter-subject variations
is achieved using a scale-space approach by applying the filter to
image X convolved with Gaussian kernels of widths in the range
of [6μm, . . . , 14μm]. All binary filter responses are combined by
adding them up, and only stable filter responses, occuring at least at
three scales, are conserved and stored in the 3D binary surface mask
M . The extracted surface itself is called S, consisting of all voxel
positions where mask M has a value of 1. With a similar approach
the midplane of the leaf is extracted. Instead of gradient direction the
Hessian is computed and the most negative eigenvalue λ0 and the
corresponding eigenvector are used. In the midplane region of the
leaf, this eigenvector points in a direction perpedicular to the mid-
plane. Additionally, gray values are used instead of gradient magni-
tude for local maxima calculation, and the range for the width of the
Gaussian kernel is set to [10μm, . . . , 26μm]. To achieve additional
robustness, the condition | λ0 | / (| λ0 | + | λ1 | + | λ2 |) > 0.7
ensures that the eigenvalue λ0 is dominant. From the extracted 3D
surfaces, 2D depth maps are calculated, and the 2D leaf edge results
from calculating the leaf contour in the 2D depth map.

4. REGISTRATION TO A BIOLOGICAL REFERENCE
COORDINATE SYSTEM

This section describes how a meaningful, plant-based reference co-
ordinate system is registered to the leaves, as depicted in Fig. 2. Us-
ing this coordinate system, trichome positions can be represented
in a biologically meaningful manner. By registering a common co-
ordinate system, inter-subject registration, within a single and also
between different time series, can be performed. To completely de-
fine the coordinate system, the orientation and position of the leaf
are detected automatically. Simply performing a principle compo-
nent analysis (PCA) on the distribution of the extracted surface vox-
els failed, because the main direction is attracted towards additional
plant material from the petiole, that is also included in the extracted
surface. A robust approach proposed here is to exploit the symmetry
property of the leaf to determine its orientation. For this purpose, the
symmetry plane is calculated from the extracted leaf surface. In the
literature, symmetry planes are used e.g. for brain registration in [5].
There, PCA is sufficient for the determination of the plane normal,
whereas the author also refers to the known deficiencies of the PCA
method. Here, the plane representation 〈n, x〉 = α is chosen, where
n is the plane normal, α the plane offset from the origin, and x a
point on the plane. The list of plane parameters is p = (ϕ, ψ, α),
where ϕ and ψ define n. In the following, the necessary steps for the
calculation of the symmetry plane are described.

Fig. 1. Filter kernel used for
surface extraction.

Fig. 2. Plant-based reference
coordinate system registered to
the leaf.

Symmetry metric. The symmetry metric assigns a value to a
specific position x that indicates its symmetry properties w.r.t. a spe-
cific plane with parameters p, given the surface S. For this purpose,
we calculate

mp(x) = mϕ,ψ,α(x) = x − 2 (〈x,nϕ,ψ〉 − α) · nϕ,ψ , (1)

which is the mirrored position of x, and m′
S,p(x), which is the nearest

position on the surface S from mp(x). Several continuous and binary
metrics based on distances to the surface and on surface normals
were evaluated. The metric

δS,p(x) = e
− 1

2

‖mp(x)−m′
S,p(x)‖2

σ2 = e
− 1

2

D2
S,p(x)

σ2 (2)

proved to have good properties in describing symmetry. It weights
the distance to the surface DS,p with a Gaussian to achieve values in
the range of [0, . . . , 1]. Here, σ = 9μm was chosen. A position that
falls directly on the surface by mirroring yields the highest symmetry
value of 1, while minor deviations still contribute to the score, which
allows us to capture imperfect symmetries. This transformation is
known as Gaussian Euclidean Distance Transform (GEDT) [6].

Symmetry score and symmetry plane. A symmetry score for
a potential symmetry plane is calculated by adding up the symmetry
values for all surface positions S (see sum in Eq. 3). The plane with
parameters p∗ that maximizes the symmetry score according to

p∗ = (ϕ∗, ψ∗, α∗) = argmax
p

X
x∈S

δS,p(x) (3)

is the optimal plane w.r.t. the defined metric.
Implementation. The distances required in Eq. 2 are precalcu-

lated efficiently by applying a distance transform (DT) to the surface
mask M . The DT stores for each volume position the distance to
the nearest surface position. A 3D parameter space is defined for
the plane parameters ϕ, ψ and α. Then, the symmetry score is cal-
culated for a range of potential planes and stored in the parameter
space. The position of the leaf tip xtip is estimated from the leaf
tip region of the extracted surface. For the parameters ϕ and ψ a
range of [−40◦, . . . , +40◦] is chosen. These two parameters define
n. An offset for α is calculated such that the plane with normal n
passes through the leaf tip. The parameter α is varied in the range
of [−80μm, . . . , +80μm] around the offset. To define the optimal
symmetry plane with parameters p∗, the local maximum with the
highest symmetry score in the parameter space is determined.

Remaining degrees of freedom. To determine the center and
the tilt angle of the leaf, the surface mask M is aligned in a way that
nϕ∗,ψ∗ coincides with the x-direction.
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The aligned mask M ′ is then projected in x-direction

P (y, z) =

Z
R

M ′(x, y, z) dx . (4)

Applying a PCA to this 2D grayscale projection reveals the center
and the tilt angle using the eigenvector with the largest eigenvalue.

5. LOCALIZATION OF TRICHOMES

In order to quantify experimental results, it is beneficial to automat-
ically detect trichome positions. This section descibes our corre-
sponding approach, that mainly consists of two steps.

5.1. Candidate Detection

Since the young trichome candidates are nearly spherical and the
base of old trichomes resembles a sphere, the idea is to detect spheres
in the trichome channel using a Hough transform [7]. This candidate
detection consists of four parts.

1. Selecting voting points. Firstly, noise is removed by convo-
lution with a Gaussian kernel. Then, an edge detection is performed
by searching for local maxima of gradient magnitude along gradient
direction. For the gradient magnitude, a threshold is defined heuris-
tically, and the gradient direction is restricted to enclose an angle in
the range of 90◦±45◦ with the leaf surface direction. This accounts
for the fact that trichomes are expected to stand approximately or-
thogonal to the leaf surface.

2. Voting (for a given radius r). For each voter, the accumu-
lator is incremented by one in the distance of r for both the positive
and negative gradient direction.

3. Post-processing. The raw accumulator is convolved with a
Gaussian kernel of width σr that is relative to the radius r to com-
pensate for imperfect spheres and to obtain smooth local maxima. In
addition to that, the accumulator is weighted according to the prox-
imity to the leaf surface. In this way, the fact that trichome bases are
located in the proximity of the leaf surface is incorporated.

4. Searching spheres. To detect spheres, local maxima in the
Hough space are identified.

The steps 2 to 4 are performed for radii in the range of
[3μm, . . . , 18μm]. The resulting list of candidates consists of
all of the found local maxima.

5.2. Candidate Validation

Feature extraction. To validate the candidates, local 3D invariants
are extracted at each candidate position q = (qx, qy, qz)

T . To gain
invariance, the Haar integration framework is used. Invariance can
be achieved by integration over the transformation group using a ker-
nel function, that is an arbitrary, non-linear combination of the gray
values in X . Here, two kernel functions have been chosen, firstly,

h1,i(X) =

∞Z
0

wi(r) · X(r, 0, 0) dr (5)

and secondly, h2,i, for which X is substituted by the gradient mag-
nitude ‖∇X‖. The triangular weighting function in Eq. 6

wi(r) =

(“
1 − |r−ri|

Δr

”
, |r−ri|

Δr
≤ 1

0 , |r−ri|
Δr

> 1
(6)

weights the values with a value of 1 at position ri, which is the radius
of an i-th spherical shell. The weighting factor decreases linearly to

a value of 0 for the width Δr in both positive and negative direc-
tion. To gain invariance, we integrate over the group of 3D rotations
around q in the sense of Haar integration and obtain the description
of two parts of our final feature vector, firstly,

f1,q,i(X) =
1

4πr2
i

Z
x∈R3

wi(‖x‖) · X(q + x) dx (7)

and secondly, f2,q,i. For f2,q,i we use the kernel function h2,i in-
stead, and thus X is substituted by ‖∇X‖. The feature vector f1,q
(f2,q) describes gray value (gradient magnitude) averages on spheri-
cal shells of radius ri around position q, where i is the index of the
feature. To gain invariance to linear gray value transformations, the
feature vectors are normalized to unit mean and are called f ′1,q and
f ′2,q in the following.

Implementation. Here, 20 indices have been chosen for
both f1,q and f2,q, where the last index corresponds to the radius
r = 1.8 · rq, and rq is the radius of a candidate at position q. In
this way, the indices of the features are normalized to the scale of
the candidates. The final feature vector is composed as follows:
fq = (rq, f

′
1,q, f

′
2,q). When averaging the gray values over too few

elements, noise is introduced. The number of elements we use to
average the gray values decreases when the radius of the shell, i.e.
the index of the feature, decreases. To limit the noise, we define a
minimum number of elements to average over. Hence, we calculate
a first valid index for which the minimum number of elements is
achieved and that depends on rq. The values for invalid indices are
set to 0, and normalization to unit mean is only performed for the
valid indices.

Classification. A Support Vector Machine (SVM) is trained and
used to classify the candidates as “trichome” or “no trichome”. For
SVM we use the implementation LIBSVMTL 1, perform grid-search
to optimize the parameters, whereas linear and RBF kernels are in-
vestigated. Candidates for the training set are extracted from time
series A, whereas time series B is used as a test set. After clas-
sification, overlapping candidates are removed based on the SVM
decision-value.

6. RESULTS

Extraction of Leaf Surface and Registration. Figure 3 shows re-
sults for the extraction of the surface and midplane for series A, t3.
Figures 4d and 4e compare the parameter space for the applied met-
ric GEDT and for mutual information (MI) applied to the raw gray
values. MI was chosen as comparison, because it performed best
among standard similarity measures like sum of absolute differences
(SAD), cross correlation and MI. Figures 4a and 4b show the result-
ing symmetry plane for the best local symmetry value in each case
(crosses in Fig. 4d and 4e). As the example shows, the GEDT metric
performs better than standard metrics like MI. The GEDT parameter
space is smoother, has only few local maxima (here MI even yields
246 maxima in the 3D parameter space compared to 2 maxima for
GEDT), and the best local symmetry value yields the expected sym-
metry plane, which is not the case for MI here. GEDT does not
directly depend on the gray values and thus is robust to gray value
transformations, as they e.g. appear for the reflected leaf part when
the leaf is tilted to the recording direction. Futhermore, the influence
of additional plant material is decreased if it is rejected by surface
extraction. GEDT is robust to imperfect symmetries and thus also to

1LIBSVMTL: http://lmb.informatik.uni-freiburg.de/lmbsoft/libsvmtl
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a) Raw chlorophyll b) Surface c) Midplane

Fig. 3. Extraction of leaf surface and midplane.

a) Symmetry plane for GEDT. b) Symmetry plane for MI. c) Unregistered series.

d) Parameter space for GEDT. e) Parameter space for MI. f) Registered series.

Fig. 4. Parameter space (d, e) and symmetry plane (a, b) for GEDT
and MI (Series A, t0). Unregistered and registered series A (c, f).

missing leaf parts. Besides robustness, our approach has a better run-
time since symmetry evaluation only has to iterate the surface voxels
and not all of the voxels as for standard metrics like MI. Due to the
smooth paramter space, our approach can be accelerated by applying
gradient ascent methods. The parameter space was evaluated com-
pletely here to investigate different symmetry metrics. Figures 4c
and 4f show the result of registering a complete time series.

Localization of Trichomes. Figure 5 shows results for the lo-
calization of trichomes. The recognition rates using a RBF kernel,
which performed best, are listed in table 1 for the complete series
B. A manual labeling was used as “ground truth”. The results ob-
tained so far are significantly better than earlier results achieved with
a threshold and morphology based approach.

7. CONCLUSION AND OUTLOOK

The proposed methods allow for a robust extraction of the leaf sur-
face and midplane. Symmetry analysis based on GEDT is used to
robustly detect the pose of the leaf. This method for pose estimation
may be applied to various biological structures. It further allows for
inter-subject registration. Localization of trichomes uses a detection
step, extraction of local 3D invariants and a classifcation step. For
the localization, first results are presented that are supposed to be

a) Trichomes on extracted surface. b) Detected trichomes (circles), references (crosses).

Fig. 5. Localization of trichomes. Detected trichome positions and
radii (circles), reference positions (crosses). (Series B, t7)

Step Recall / precision Step Recall / precision

t7 90% / 68.2% (45/5/21) t3 70.3% / 86.7% (26/11/4)

t6 93.9% / 83.6% (46/3/9) t2 65.5% / 86.4% (19/10/3)

t5 84.3% / 89.6% (43/8/5) t1 59.3% / 88.9% (16/11/2)

t4 78.3% / 94.7% (36/10/2) t0 61.9% / 50% (13/8/13)

Table 1. Localization results (RBF kernel) for series B. Re-
call/precision (hits/misses/false alarms). The tolerance for matching
detections against the reference is set to τ = 10μm.

improved by e.g. improving the local features, incorporating time
consistency, and training with examples from several series.

8. ACKNOWLEDGMENTS

This study was supported by the Excellence Initiative of the Ger-
man Federal and State Governments (EXC 294) and BMBF Project
FRISYS No. 0313921.

9. REFERENCES

[1] M. Hülskamp, “Plant trichomes: a model for cell differentia-
tion,” Nat Rev Mol Cell Biol, vol. 5, no. 6, pp. 471–480, 2004.

[2] K. Lee, J. Avondo, H. Morrison, L. Blot, M. Stark, J. Sharpe,
A. Bangham, and E. Coen, “Visualizing plant development and
gene expression in three dimensions using optical projection to-
mography,” Plant Cell, vol. 18, no. 9, pp. 2145–2156, 2006.

[3] E. Kaminuma, T. Yoshizumi, T. Wada, M. Matsui, and T. Toy-
oda, “Quantitative analysis of heterogeneous spatial distribu-
tion of arabidopsis leaf trichomes using micro x-ray computer
tomography,” Plant J., vol. 56, pp. 470–482(13), 2008.

[4] O. Ronneberger, Q. Wang, and H. Burkhardt, “Fast and robust
segmentation of spherical particles in volumetric data sets from
brightfield microscopy,” in Proc. of the ISBI, 2008, pp. 372–375.

[5] Xin Liu, C. Imielinska, A.F. Laine, and A. D’Ambrosio, “Sym-
metry based multi-modality registration of the brain imagery,”
in Proc. of the ISSPIT, Cairo, 2007, pp. 807–812.

[6] M. Kazhdan, B. Chazelle, D. Dobkin, T. Funkhouser, and
S. Rusinkiewicz, “A reflective symmetry descriptor for 3d mod-
els,” Algorithmica, vol. 38, pp. 201–225, 2003.

[7] D. H. Ballard, “Generalizing the hough transform to detect ar-
bitrary shapes,” Pattern Recogn, vol. 13, no. 2, pp. 111–122,
1981.

745


