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Application of Affine-Invariant Fourier Descriptors to 
Recognition of 3-D Objects 

KLAUS ARBTER, WESLEY E. SNYDER, SENIOR MEMBER, IEEE, HANS BURKHARDT, 
AND GERD 

Abstract-In this work, the method of Fourier descriptors has been 
extended to produce a set of normalized coefficients which are invari- 
ant under any affine transformation (translation, rotation, scaling, and 
shearing). The method is based on a parameterized boundary descrip- 
tion which is transformed to the Fourier domain and normalized there 
to eliminate dependencies on the affine transformation and on the start- 
ing point. 

Invariance to affine transforms allows considerable robustness when 
applied to images of objects which rotate in all three dimensions. This 
is demonstrated by processing silhouettes of aircraft as the aircraft 
maneuver in three-space. 

Zndex Terms-Affine transformation, features, Fourier descriptors, 
invariants, shape, 3-D parameter estimation, 2-D parameter determi- 
nation. 

I. INTRODUCTION AND BACKGROUND 
OURIER descriptors provide a means for representing F the boundary of a two-dimensional shape. The basic 

idea is: a closed curve may be represented by a periodic 
function of a continuous parameter, or alternatively, by a 
set of Fourier coefficients of this function. The coeffi- 
cients in this collection are referred to as “Fourier de- 
scriptors” (FD’s). To use these descriptors for pattern 
classification applications, the curve representation must 
be normalized with respect to a desired transformation 
class. If the normalization is exact, it will result in a set 
of FD’s which are invariant with respect to the specified 
class. Most of the research has been done to date assum- 
ing the class of similarity transforms, which allows trans- 
lation and rotation in the plane, and scaling. A free choice 
of the starting point for the parameterization is assumed 
as well. 

The early similarity-invariant FD’s were derived by 
normalizations performed in the original (spatial) domain 
completely [4] or partially [ 2 3 ] ,  using the invariant prop- 
erties of curvature and/or tangent angle. The calculation 
of these quantities implies the calculation of derivatives, 
which may be avoided by performing the normalization 
completely in the Fourier domain. Such Fourier-domain 
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HIRZINGER 

normalization was initially developed by Granlund [7] and 
later extended to address the issue of completeness [3], 

The class of affine transforms includes the similarity 
transforms, but in addition allows “shear. ” Under shear, 
the shape of the object boundary will no longer be pre- 
served, as illustrated in Fig. 1. Such shape distortion can 
typically arise if a planar object is observed by a camera 
under arbitrary orientations with respect to the plane. In 
this case, the perspective transformation would be the 
most appropriate, however, the affine transformation may 
be used as an approximation much closer [20] to the per- 
spective transformation than the similarity transformation 
would be. Miyatake, Matsuyama, and Nagao [13] pro- 
posed an optimizing procedure to produce invariance un- 
der affine transformations. An algebraic normalization 
with respect to affine transforms has recently been pub- 
lished [l]. That paper also contains extensions to the 
starting point normalization problem as well as algebraic 
formulae for the Fourier transformation of polygons (see 
Appendix), similar to those given in Persoon and Fu [ 171 
[ 161, but extended to discontinuities. 

Similarity-invariant FD’s have been widely used for 
recognition of 3-D objects by processing their silhouettes. 
In the tradition of research [19], [21], [8], [121, [2], 1111, 
[lo], we have also chosen to process silhouettes of air- 
craft. In doing so, the normalized FD’s will not be treated 
as invariant representations, but rather as features for rec- 
ognition. We applied a small subset of the affine-invariant 
Fourier descriptors [ 11 to silhouettes of aircraft which 
were maneuvering in three-space and compared the re- 
sulting clusters of features to those resulting from simi- 
larity-invariant FD’s of the same data. We found in- 
creased robustness of affine-invariant FD’s under such 
3-D motion. 

In this paper, we will cover the theory in sufficient de- 
tail to allow the reader to duplicate our results, but will 
not explore the concepts in depth, nor will we provide 
proofs herein. For more details, derivations, proofs, and 
extensions, the reader is referred to Arbter [I] .  

11. DATA REPRESENTATION 
In the following discussion, we will consider only 

boundaries of silhouettes. Therefore, it will be implied, 
where not stated, that all curves and representation are in 
the viewing plane of the camera. 

PI. 
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F 
Reference 

be discussed in a later section will compensate for both 

2) The parameterizing function must yield the same pa- 
rameterization independent of the initial representation of 
the contour. 

Two candidate parameterizations come to mind which 

a f f i n e  of these factors. 

Ir‘ 
not  a f f i n e  I ?  

U 

Fig. 1 .  Affine transformations appear as translation, rotation, and shear. 

satisfy these criteria: the first is the “affine length” 1141 

where x E ,  yE are the first and xEE, yEt  are the second deriv- 
atives of the components x ( 4 ) and y ( 4 ), and C is the path 
along the curve. We have difficulty with the affine length, 
since our boundary encoding will eventually be with 
polygons, and this parameterization involves a second de- 
rivative. Use of the second derivative would result in a 
parameterization which is zero along the sides of the pol- 

Any plane curve can be described in the real space 6t2 

Using these two representations, an affine transform 

(2.1 ) 

or in the complex plane C. 

may be written as 

x = Axo + b det ( A )  # 0 . ,  
ygon and infinite at the vertices. 

Instead, we use a first order form 

1 
2 c  

for x, xo E a2, A is a 2 x 2 matrix, b is a 2-vector, and 
x is the affine-transformed version of xo or, using the com- 
plex representation, 

t = - j ldet ( ~ ( 4 1 ,  q)I d t  
x = UXO + bxo* + c UU* - bb* # 0 (2.2) 

where x, xo, a ,  b,  c E C, and where ( * )  represents the 
complex conjugate operation. In most previous papers on 
Fourier descriptors, the complex representation has been 
used, probably because under a similarity transform, (2.2) 
reduces to x = axo + b, and it is easy to show that a can 
be eliminated in the Fourier domain by simple normal- 
izations. In our work, we will find it most practical to use 
the vector representation for the same reason-that it is 
easier to show the elimination of affine transformation pa- 
rameters using this notation. Thus, we may say that a con- 
tour is an ordered set of points in CR2, and we will use the 
term “affine contour” to mean a contour which has 
undergone an affine transformation. 

111. PARAMETERIZATION 
The familiar arc length parameterization transforms lin- 

early under any linear transformation up to the similarity 
transform. Translation and rotation do not affect the arc 
length, scaling scales the parameter by the same amount, 
and choice of a starting point introduces only a shift in 
the parameter. For these reasons, previous authors pre- 
ferred arc length parameterization. However, the arc 
length is nonlinearly transformed under an affine trans- 
formation. Thus, we introduce a new parameterization and 
require that such a parameterization have the following 
two properties: 

1) It must be linear under an affine transformation. That 
is, if t is the parameter used for the observation and to the 
parameter used for the reference, we require that for some 
constant, c ,  t = c ( t o  + 7). We require this because the 
Fourier transform preserves the linearity of the affine 
transformation if and only if the parameter transformation 
is linear. The Fourier-domain normalization which will 

This parameterization will not be invariant for the case b 
# 0 (2.1); that is, translation. We avoid this problem by 
initially moving the coordinate system to the area center, 
defined by 

2 + c x ( E )  det ( x ( E > ,  XE) dE 
x, = - ? P  . (3.3) 

The area center of an affine contour is the affine transform 
of the area center. This results from the fact that the affine 
transformation transforms areas with a constant scale 
det(A). 

Theorem 1: The parameterization given in (3.2) is lin- 
ear under an affine transform if b = 0. 

The parameterization of (3.2) may be interpreted geo- 
metrically as an area, as shown in Fig. 2. Because of the 
above-mentioned property of the affine transformation, we 
find that for a differential area d F ,  

dF = det ( A  ) dFo (3.4) 
is true, determining a proportional relationship between 
the parameter differentials of the two affine-related con- 
tours. 

We note that this parameterization allows discontinui- 
ties. For example, in Fig. 3, an instance is shown in which 
the coordinates undergo a finite change for zero change in 
subtended area. 

We will be taking the Fourier transform of the param- 
eterized boundary, and this type of discontinuity will have 
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Fig. 2. The enclosed area is I det [E %] 1 .  

n 

Fig. 3.  Rotating counterclockwise about the center of gravity, a disconti- 
nuity occurs in the parameterization if the boundary has a finite arc which 
aligns with the radius. 

an effect on our ability to reconstruct the boundary. In 
particular, a reconstruction of the boundary from the in- 
verse transform will exhibit Gibbs phenomenon (ripples) 
in the vicinity of the discontinuity [15]. However, the 
reader should keep in mind that our objective in this work 
is not image coding or reconstruction, but rather invariant 
matching, and such phenomena will cause us no problems 
in matching. 

(where x* represents the complex conjugate of x )  and we 
can discard all coefficients [ U,, vkIT for k < 0. 

V. CONSTRUCTION OF INVARIANTS FROM FOURIER 
COEFFICIENTS 

Our image matching problem now has seven parame- 
ters. Six come from the elements of A and b (2.1). The 
seventh is the starting point of the boundary encoding pro- 
cess. From the Fourier coefficients, we need to construct 
a description of the boundary which is independent of all 
of these parameters. We will initially ignore the starting 
point problem, and come back to it in the next section. 

We discard the pair [ U,, V0IT first since it contains no 
shape information, and second since it and only it depends 
on translation (shift). The remaining coefficients are shift 
invariant. 

First, we define “relative invariants,” that is, a set of 
numbers Ik, I k  E C which satisfy the following relations. 
Let I: represent the kth invariant measured on the refer- 
ence image, and let I k  represent the same invariant mea- 
sured on the observed image. If I k  is indeed a relative 
invariant, it will satisfy 

= PI:.  (5.1) 
Furthermore, p will be the same constant for all k. 

We can easily find a large set of such invariants as fol- 
lows: Let Xk represent the kth Fourier coefficient vector 
resulting from the transform of the observation. Simi- 
larly, let X,” represent the same coefficient from the trans- 
form of the reference. Now, if the observation did in fact 
result from the affine transform A applied to the reference, 
we have 

X k = A e  k # O  (5.2) 
since the Fourier transform is a linear operator. Choose 
any two coefficients, say k, and p, and construct the 2 x 
2 matrix 

L X k ,  x , l  * ( 5 . 3 )  

IV. FOURIER TRANSFORM Using such a matrix, we may write 

In the usual way, we encode the boundary as a function 
of the parameter, and take the Fourier transform of the 
resulting function. Since we are using a vector represen- 
tation for the boundary, we describe a point on the bound- 
ary by a vector function 

x = [3. 
The Fourier transform is then applied to the functions 

U ( t )  and z, ( t ) ,  resulting in a matrix of coefficients 

[ xk, x p ]  = A [xi, x,”]. (5.4) 

Taking determinants of both sides, we have 

det [xk, x,] = det ( A )  det [X,”,  X j ]  (5.5) 
and we have invariant scalars which obey the definition 
of (5. l ) ,  where p = det (A ). In fact, since we are free to 
use either the coefficient or its complex conjugate in (5 S ) ,  
we have 16m2 invariants, for m coefficients. 

To reduce the cardinality of this set (and also its redun- 
dancy), we fix p to some constant value, such that 

[ . . .  u1 ...I. 
vo’ VI 

p # 0 and X,, # 0 (5.6) 
and define the set of relative invariants A k  

(4.2) 

Ak = det [xk, x ; ] .  (5.7) Although these coefficients are complex, the functions 
U( t )  and U( t )  are real. Therefore, we have 

Theorem 2: The set of relative invariants given in (5.7) 
U-k = U,* v-k = v,* (4.3) is complete and minimal. 
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Here, we use the term “complete” to mean: two planar 
closed curves will have the same set of descriptors if and 
only if they are affine. 

We now derive absolute invariants from the relative in- 
variants of (5.7), eliminating the effects of p, by simply 
dividing all the invariants by Ap 

phase shift (allpass), which does not affect the signal con- 
tained in the Qk. The phases of the Qk will be multiplied 
by po. Therefore the phase information is reduced by the 
factor po ,  and unchanged if po = 1. In this last case, the 
invariants are also complete. The value of po depends on 
the index set k , ,  k2 ,  * * * , k, which have been chosen for 
performing the normalization. 

Q - 2 -  A Ixk ’ x*( - - ukv; - VkU; 
( 5 . 8 )  

For the orders 0 and 1, we get the z-invariants: 
k -  

Ap IX,’XP*I upv; - vpuP*‘ n = 0:Ik = I Q k I  
By using the complex conjugate, we get a 1 for the p th 
invariant and a 0 for the - p  th invariant. 

In the absence of noise, any p under the restrictions of 
(5.6) may be chosen. However, in the presence of noise, 
the signal-to-noise ratio should be as high as possible. 
Therefore, considering (5 .8 ) ,  one should choose a p for 
which I X,, Xp* 1 is as large as possible. 

VI. INVARIANCE TO STARTING POINT 
Recalling that xo(to) = [uo(to), u0(to)lT, in the ref- 

erence image is related to ~ ( t )  = [ u ( t ) ,  u( t ) lT  in the 
observation by 

~ ( t )  = &‘(to), (6.1) 
we now consider that the two parameterizations, t and to,  
are not necessarily identical, but may differ by a scale 
factor and a shift. Therefore, from elementary Fourier 
transform theory, we have that the kth coefficient of the 
observation is related to the kth coefficient of the refer- 
ence by 

where 
xk = ZkA$ (6.2) 

(6.3) = e-j2*r/P 

expresses the parameter shift 7 in the Fourier domain. To 
is the parameter period of the reference image. 

We now wish to normalize the sequence of Qk in such 
a way as to eliminate the starting point dependency z. We 
do this by phase normalization. We define phase terms 

(6.4) 

for a subset { Q k , ,  Qk2,  ’ * * , Qkn } where the Qki all have 
magnitudes different from zero. The sequence 

n 

I k  = I Q k (  qfl * ( k - p ) h i  k; 3 

i =  1 

k = f l ,  +2, * * , +m, (6.5) 

is z-invariant [ 11; where po is the greatest common divisor 
of the set { kl - p ,  k2 - p ,  , k, - p} and where the 
hi are integer solutions of the diophantine equation 

* 

n 

i =  1 
po + C X;(k; - p )  = 0 A; E 20. (6.6) 

This normalization preserves the magnitudes of the Qk.  
The product term may be interpreted as a frequency-linear 

n = 1 : I k  = \ Q k ( q $ - P q g - k  (6.7) 
where the first term eliminates all the phase information 
and the second preserves all the phase information pro- 
vided the fixed indexes q and p differ only by one. 

The choice of an index set { k l ,  k2,  - * . , k , }  has dif- 
ferent aspects. In the presence of noise, one should choose 
indexes for which the corresponding Qki have large mag- 
nitudes. For general completeness, the index set must lead 
to po = 1. For completeness relative to a particular ap- 
plication, one usually uses an order no higher than nec- 
essary. In the experiments presented below, we used in- 
variants of order zero. 

VII. APPLICATION TO 3-D MOTION 
In the tradition of research [2], [8], [12], [ l l ] ,  [lo], 

[19], [21], [22] in this field, we have also chosen to pro- 
cess silhouettes of aircraft. We emphasize that our objec- 
tive in this work is object recognition, and not boundary 
coding or reconstruction, and the experiments are biased 
toward that objective. 

An orthographic projection of a 3-D motion of a planar 
object can be exactly described by an affine transform. 
Therefore, in these experiments, our hypothesis was as 
follows: An orthographic projection of an object which is 
almost planar (e.g., an airplane), as it undergoes rigid 
body motions in three dimensions will be very close to an 
affine transform of some reference view of the object, as 
long as the motions are not so large as to cause major 
occlusions. Therefore, if we can describe the shape of the 
object using features which are affine-invariant, we should 
have considerable robustness in a recognizer. The exper- 
iments have borne out this hypothesis. 

In order to ensure that the experiments were well con- 
trolled, we synthesized the aircraft images using a quadric 
surface synthesis program, Qsyn [9]. Qsyn allows the user 
to specify an object constructed from the union of a num- 
ber of quadric surfaces, where each surface is defined by 
its ten quadric coefficients, constraints, and various three- 
space rigid body motions. The three aircraft illustrated in 
Fig. 4 were synthesized using an ellipsoid for the fuse- 
lage, planes for the wings and tail, and cylinders for the 
engine. In order to ensure that our algorithms work using 
shape and shape alone, all three aircraft had the same fu- 
selage and engines, and all three sets of wings subtended 
exactly the same area when viewed from above. 

Each aircraft was rotated about the x and y axes (pitch 
and yaw), varying in small uniform increments from 0 to 



~ 

644 IEEE TRANSACTIONS ON PATTERN ANALYSIS A N D  MACHINE INTELLIGENCE.  VOL.  12. NO.  7. J U L Y  1990 

Yaw = 0, Pitch = 0 Yaw = 0, Pitch = 50’ Yaw = SO0, Pitch = 0 yaw = 50°, Pitch = 500 

Aircraft “ P  

Fig. 4.  Example silhouettes of the images used in the experiments 

50 degrees. The contour of the resulting image was ex- 
tracted and the invariants computed. In Fig. 5 ,  a gray scale 
rendering of one of the images is presented. 

A .  Clustering of Data 

In Fig. 6, we plot the magnitudes of two of the invari- 
ants ( I - 3  and 12) versus each other, for each of the 50 
experiments per aircraft. Boxes represent aircraft A ,  stars 
represent aircraft F ,  and triangles represent aircraft P.  The 
data clearly clusters, using just these two coefficients. 
Therefore, standard statistical pattern recognition tech- 
niques will suffice to discriminate between the three 
classes. The lower portion of Fig. 6 duplicates the exper- 
iment illustrated in the upper portion, but using Fourier 
coefficients normalized in the more traditional manner, 

Fig. S .  One pose of aircraft F 

resulting in descriptors which are invariant to similarity 
transforms (rotations and translations in the viewing 
plane), but not to affine transforms. Although we still ob- 
serve clustering, the spread of the clusters is significantly f 

A’&. larger than in the upper portion of the figure, verifying 
that the affine-invariant descriptors provide more robust - I -  I .- 

descriptors. (a) 

B.  . Extent of Clustering 

In an attempt to quantify this comparative robustness, 
the following analysis of the data was undertaken. Five 
descriptors were chosen, IL3, I - 2 ,  12, 13, and Z4 ( I o  does 
not exist and because we chose p = 1, and I ,  have 
constant values of 0 and 1, respectively ) and organized 
into a vector I .  The scatter matrix of I was computed: (b) 

Fig. 6 .  Distribution of sample points as the three aircraft of Fig. 4 are 
rotated in small increments from 0 to SO degrees. (a) Affine-invariant 
descriptors. (b) Similarity-invariant descriptors. 

s = c I I T ,  

and the eigenvalues of s were found. ~h~ eigenvalues of 
s, A,, - . * , As, are monotonically related to the length 
of the major axes of the five-dimensional hyperellipsoid 
which describes the distribution of the data. The magni- 
tudes of the A’s thus measure the spread of the invariants. 

(These results are summarized in Table I.) Consistently, 
the eigenvalues corresponding to the affine-invariants are 
smaller than the corresponding eigenvalues for the simi- 
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TABLE I 
EIGENVALUES OF SCATTER MATRIX OF FIVE DESCRIPTORS FOR V A R I O U S  OBSERVATIONS O F  AIRCRAFT (a) A ,  

(b) F ,  (C) P ,  COMPARING AFFINE-INVARIANT DESCRIPTORS WITH SIMILARITY-INVARIANT 

Image A Eigenvalues Image F Eigenvalues Image P Eigenvalues 

Affine Similarity Affine Similarity Affine Similarity 

5.666224 6.262485 2.887337 3.557270 1.885456 2.461978 
0.058298 0. I96582 0.017920 0.086499 0.019434 0.055955 
0.021136 0.129334 0.006078 0.034761 0.003039 0.004550 
0.005054 0.015014 0.001871 0.012243 0.001315 0.002261 
0.001 792 0.000908 0.000981 0.000700 0.000342 o.ooin32 

(a) (b) (C) 

larity invariants, and therefore represent more densely 
packed clusters. 

C. Optimization of Clustering 
Fig. 6 compares the clustering results using only two 

of the invariants. Since any number of invariants may be 
considered, one may easily conceive of performing clus- 
ter analysis in higher dimensionality spaces, with the hope 
of increasing the discriminability . To test this capability, 
the following experiment was performed. The same five 
invariants as used in Section VII-B were chosen as fea- 
tures to be clustered. A projection of this data from the 
five-dimensional feature space onto a two-dimensional 
space was computed and the clustering observed. The 
projection used was one which optimized the normalized 
between-cluster distance of the projected data. Specifi- 
cally, one may define 

(7.1) 

as a criterion function to be maximized, where W is the 
unknown projection matrix; SB is the between-class scat- 
ter, which measures the expected distance between the 
cluster means; and Sw is the within-class scatter, which 
measures the expected variance from the particular cluster 
means to the individual data points in each cluster. Find- 
ing the matrix W which maximized J may be reduced to 
an eigenvalue problem [18, pp. 118-1201. 

This projection method was applied to the affine-invari- 
ants computed for the three aircraft, and the results were 
plotted. Those results are not included here because the 
resulting clustering was slightly worse than that shown in 
Fig. 6. Upon reflection, the reasons for this inferior per- 
formance are quite clear: first, most of the information is 
contained in the two non-trivial invariants with the low- 
est-indices, as is often the case in image analysis-most 
of the picture information is in the low-frequency terms. 
Second, the criterion function given in (7.1) will tend to 
find a projection which results in spherical clusters. Since 
the data is not spherical in five-space, forcing a spherical 
projection results in a 2-D distribution of points which is 
not representative. 

It is important to keep in mind that the fundamental 
assumptions underlying both the affine-invariant and the 
similarity-invariant descriptors have been violated. The 

observed images are neither affine nor similarity trans- 
forms of some reference. Had this been true, the distri- 
butions of Fig. 6 would be reduced to single points. (In 
fact, we have performed this experiment by rotating planar 
images of printed characters out of the viewing plane, and 
the distributions of the affine-invariant come very close to 
single points, even with real, noisy data.) In this experi- 
ment, we have shown that rotation of a 3-D object out of 
the viewing plane is closer to being an affine transfor- 
mation of its original image than to being a similarity 
transform, and therefore affine-invariance provides con- 
siderable robustness. It is, in fact, because the various 
aspects of the same object do not produce exact affine im- 
ages that we chose to use the least sensitive invariants: Zk 
= I Q k I .  

It is instructive to compare this work with others which 
perform similar recognition tasks. Mitchell [12] uses a 
library of 143 views to accommodate rotation out of the 
viewing plane. Thus 143 comparisons must be made for 
each reference. Of course, the 143 models Mitchell uses 
accommodates a full 90" of rotation in both pitch and yaw, 
while the work reported herein allows only 50". How- 
ever, only one model is used for that entire 50"! 

VIII. FUTURE WORK 

In this work, we have summarized the work of Arbter 
[ 11 and applied that work to three-dimensional applica- 
tions. The summary has shown that it is possible to con- 
struct a set of Fourier descriptors which are invariant to 
arbitrary affine transforms. Experimentally, we have 
shown that affine invariance is a property which is useful 
in applications in which image distortions occur which are 
nearly affine. Three-dimensional motion is one very prac- 
tical such application. 

Since the vector form for the coefficients could easily 
be extended to more than two dimensions, the method may 
be expanded to higher dimensional affine-invariant curve 
descriptions. For the 3-D-case, we have the correspon- 
dence: 
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and must, therefore, deal with 3 X 3 matrices 

U ( k )  U ( q )  U ( r )  

W )  V ( q )  V )  
W )  W q )  W )  

instead of the 2 X 2 matrices as above. However, as far 
as closed curves are concerned, we have the same basic 
concept. It would be interesting to explore the possibili- 
ties of further extensions, such as to surfaces rather than 
curves [6], or to partial shapes [ 121. 

APPENDIX 
CALCULATING THE FOURIER DESCRIPTORS OF POLYGONS 

Let U;, U ; :  i = 0, * - - , N - 1 be the coordinates of the 
N vertices of an oriented polygon in cR2, and ti their pa- 
rameter values. Furthermore ( uN, U , )  = ( uo, uo) and tN 
= to + T .  The Fourier transformation is given by 

T 1 f U i i 1  - ui\ (;) = 3 i = o  t;+1 - 

where 

and 

ui+ 1 +J-  c 
2 ~ k  i = o  

ak,; = exp { - j 2 a k t i / T }  

In contrast to the FFT this transformation takes the in- 
definite set of all the points on the polygon into account, 
does not need constant parameter intervals and allows the 
transformation of discontinuous functions. 

The area parameterization for polygons is given by 

i = 0 ,  1, 2 ,  * * , N - 1; T = tN,  

with 
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