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Abstract. In this paper, we present two novel speed-up techniques for
deterministic inference on Markov random fields (MRF) via generalized
belief propagation (GBP). Both methods require the MRF to have a
grid-like graph structure, as it is generally encountered in 2D and 3D
image processing applications, e.g. in image filtering, restoration or seg-
mentation. First, we propose a caching method that significantly reduces
the number of multiplications during GBP inference. And second, we in-
troduce a speed-up for computing the MAP estimate of GBP cluster
messages by presorting its factors and limiting the number of possible
combinations. Experimental results suggest that the first technique im-
proves the GBP complexity by roughly factor 10, whereas the accelera-
tion for the second technique is linear in the number of possible labels.
Both techniques can be used simultaneously.

1 Introduction

Markov random fields [1] have become popular as probabilistic graphical models
for representing images in image processing and pattern recognition applications,
such as image filtering, restoration or segmentation. While an MRF provides a
sound theoretical model for a wide range of problems and is easy to implement,
inference on MRFs is still an issue. It is an NP hard problem [2] to explore all
possible pixel combinations, and thus we have to resort to approximate inference
algorithms, such as Monte Carlo chain methods (MCMC), or message passing
algorithms. For a long time MCMC methods have been the common choice
for inferring on MRFs, although they are non-deterministic and converge very
slowly. But since the proclamation of message passing algorithms like Pearl’s
belief propagation (BP), they are no longer state-of-the-art. The BP algorithm
has the advantage of being deterministic, fast and precise on many MRFs, espe-
cially if they are tree-structured [3]. However, BP proves to be inaccurate and
unstable on graphs with many cycles, preventing its application to many image
processing problems that are based on grid-like graphs. A more refined variant
that generalizes the idea of the BP algorithm has been introduced by Yedidia
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Fig. 1. A Markov random field with pairwise potential functions

et al. [4]. It is called generalized belief propagation and is far more stable and
accurate. Yet, it is also computationally expensive, which limits its use to small
graphs. In this paper, we present two techniques that accelerate the GBP al-
gorithm on grid-like MRFs making GBP more suitable for 2D and 3D image
processing tasks.

Related Work. In the literature, we have spotted only two papers, [5] and
[6], that focus on speed-up techniques for the GBP algorithm, and both are
guided by the same idea: Several edge potentials (see section 2) in an MRF
can be divided into compatible pairs of labels whose values are label-dependent
and incompatible pairs of labels that all have the same value. As the number
of compatible pairs of labels nc is usually much smaller than the number of
incompatible labels ni, we gain a speed-up of nc/ni by not computing redun-
dant incompatible labels. Shental et al. [5] suggests this approach for the Ising
model, and Kumar et al. [6] for the more general robust truncated model, com-
prising the piecewise constant prior and the piecewise smooth prior [7]. Thus,
both techniques require a beneficial structure of the edge potentials for sparing
redundant label configurations. In contrast, both our techniques accelerate the
GBP algorithm on grid-like MRFs with arbitrary potential functions.

2 Belief Propagation and Its Generalization

The belief propagation (BP) algorithm is a message passing method that iter-
atively computes the marginal probabilities of a Markov random field (MRF).
An MRF is defined as a random vector X = (Xs)s∈S on the probability space
(X, P ) with respect to a neighborhood system ∂ such that P is strictly positive
and fulfills the local Markov property. In this paper, we concentrate on pairwise
MRFs, i.e. s ∈ ∂{t} if and only if t ∈ ∂{s} for two sites s, t ∈ S. For a given
labeling problem, we have to divide the MRF nodes into two sets: The observed
image nodes are denoted by ys, whereas the hidden label nodes of the image
are referred to as xs. Figure 1 shows a pairwise MRF where ys is depicted by a
filled circle and xs is indicated by an empty circle. Connections between a filled
and an empty circle are weighted by node potentials to encode the similarity
between the observed image and the hidden labeling. Connections among empty
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circles correspond to edge potentials which capture the similarity of neighboring
hidden nodes, or more general prior knowledge about the image. According to
the Hammersley-Clifford theorem the joint probability function of this MRF is
given by

P (x) =
1
Z

∏

s

φs(xs)
∏

st

ψst(xs, xt) (1)

where Z denotes a partition function, φs(xs) a node potential, and ψst(xs, xt)
an edge potential. Note that we use shorthand notation φs(xs) for φs(xs, ys),
since the observed image can be regarded as fixed.

In the BP algorithm [3], messages are iteratively passed along the edges of the
hidden image until their rate of change falls below a pre-set threshold. A message
mst(xt) from node s to node t is a one-dimensional vector that propagates the
likeliest label probabilities for t from the view of s. Once the message values have
converged, we can compute the beliefs for the hidden nodes, i.e. approximations
for the marginal probabilities of the MRF.

The BP algorithm features many attractive properties, such as exact estimates
in trees or fast execution time. On many loopy graphs, however, it shows poor
convergence and delivers inaccurate estimates. The source of error is the circu-
lar message flow that distorts good message approximations by self-dependent
probability values. Yedidia et al. [4] propose a generalization of the BP algorithm
called generalized belief propagation (GBP) which alleviates this undesired be-
havior. The basic idea is to compute more informative messages between groups
of nodes in addition to messages between single nodes. We obtain an algorithm
that demonstrates improved convergence behavior and delivers accurate approx-
imations to the exact estimates. It no longer tends to the stationary points of
the Bethe energy but is proven to approximate the fixed points of the more pre-
cise Kikuchi energy [3]. The GBP algorithm can be formulated in different ways
[8]; in this paper we refer to the parent-to-child variant in max-product form for
calculating the MAP estimate on grid graphs. For two-dimensional grid graphs,
we obtain the following formulas from [3] (see figures 2 and 3). The formula for
computing single-node beliefs is given by

bs(xs) = kφsmasmbsmcsmds (2)

where we use shorthand notation mas ≡ mas(xs) and φs = φs(xs). The variables
a, b, c and d denote the neighbors of s. If we compute the formula at the border
of the grid and a neighbor lies outside the grid, we can neglect corresponding
factors or set them to 1. The message update rule for edge messages, i.e. messages
between two single nodes, evaluates to

msu(xu) = max
xs

(φsψsumasmbsmcsmbdsumcesu) (3)

where we abbreviate ψsx = ψsx(xs, xu). The message update rule for cluster
messages, i.e. messages between two pairs of nodes, unfolds as

mstuv(xu, xv) =
maxxsxt (φsφtψstψsuψtvmasmcsmbtmdtmabstmcesumdftv)

msumtv
(4)
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Fig. 2. LEFT: A diagram of the messages that influence the single-node belief at site
s in a two-dimensional grid. CENTER and RIGHT: All edge messages (double-lined
arrows) that are contained in the same two-node belief region R = {s, u} (gray nodes).
Note that the cluster messages from edges to edges are identical in both figures.
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Fig. 3. A diagram of all cluster messages (double-lined arrows) that are contained in
the same four-node belief region R = {s, t, u, v} (gray nodes). Solid (blue) edges on the
grid lines stand for edge messages in the nominator, whereas dashed edges are those in
the denominator of the corresponding message update rule. (Green) messages in the
centre of grid cells denote cluster messages that influence the value of the (double-lined)
cluster message. We can observe that the same messages appear within several figures.
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Fig. 4. LEFT: A diagram of the messages that influence the single-node belief at site s
in a three dimensional grid. CENTER: The messages that influence the edge message
from site s to site u. RIGHT: All messages that influence the (double-lined) cluster
message from edge st to edge uv.

On three dimensional grid-graphs, the formulas for the GBP algorithm evaluate
to (see figure 4):

bs(xs) = kφsmasmbsmcsmdsmesmfs (5)

msu(xu) = max
xs

(φsψsumasmcsmdsmesmismabsumdfsumegsumijsu) (6)
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mstuv(xu, xv) = (msumtv)−1 max
xsxt

(φsφtψstψsuψtvM1M2) (7)

where
M1 = masmesmgsmmsmbtmftmhtmnt

M2 = mabstmefstmmnstmacsumgisummosumbdtvmhjtvmnptv

3 Caching and Multiplication

Analyzing the messages that are computed within the same two- or four-node
region, we notice that some messages appear repeatedly. As shown in figure 3,
each cluster message computation involves four of the eight surrounding edge
messages and three of the four surrounding cluster messages. Remarkably, the
selection of the messages is not arbitrary but follows a simple pattern. In a
cluster message mstuv for instance, where s and t are its source nodes, and u
and v are its target nodes, node potentials φ are only defined for the source
nodes, while edge potentials ψ necessitate at least one involved node is a source
node. Similarly, incoming edge messages lead from outside the basic cluster to a
source node of mstuv, while incoming cluster messages demand that at least one
of its source nodes has to be a source node of mstuv.

Also in edge messages, source nodes depend on data potentials and incom-
ing edge messages, whereas pairwise node regions rely on edge potentials and
incoming cluster messages. We subsume related factors of the message update
rules into cache products and benefit in two ways:

1. Caching: Some cache products appear in several message update rules. We
gain a speed-up if we pre-compute (cache) and use them for multiple message
computations (see figure 2).

2. Multiplication Order : The multiplication order of the potentials and incom-
ing messages plays a vital role. Node potentials and edge messages are
represented by k-dimensional vectors, whereas edge potentials and cluster
messages correspond to k × k matrices. Cache products comprise factors of
either vector or matrix form which means that we need less computations
than in the original formula where vectors and matrices are interleaved.

3.1 Caching and Multiplication in 2D

Edge Messages in 2D. If we subsume all edge message factors that depend
on the same source node s into a cache product Ps, we obtain

Ps = φsmasmbsmcs, (8)

whereas edge message factors that depend on two nodes s and u can be summa-
rized as a cache product Psu

Psu = ψsumbdsumcesu. (9)
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Combining both cache products, we can rewrite (3) as

msu(xu) = max
xs

PsPsu. (10)

Cluster Messages in 2D. In analogy to the case of edge messages, we can
define cache products within the message update rule for cluster messages. If
we for instance compute the message update rule for the first cluster message of
figure 3, the required cache products for source nodes are given by

Ps = φsmasmcs, Pt = φtmbtmdt. (11)

and the cache products for pairs of nodes can be written as

Pst = ψstmabst, Psu = ψsumcesu, Ptv = ψtvmdftv. (12)

Substituting these expressions into (4), we obtain

mstuv(xu, xv) = (msumtv)−1 max
xs,xt

PsPtPstPsuPtv. (13)

3.2 Caching and Multiplication in 3D

We can extend the caching and multiplication technique to three-dimensional
grids with a six-connected neighborhood system. The only difference is that the
products of nodes and edges involve more terms than in the two-dimensional
case, thereby increasing the speed-up.

Edge Messages in 3D. The cache product over the source variable of edge
messages is computed by

Ps = φsmasmcsmdsmesmis (14)

and the corresponding product over the pairs of nodes is described by

Psu = ψsumabsumdfsumegsumijsu (15)

Using these definitions of the cache products, (6) takes the same form as in the
2D case (see formula (10)).

Cluster Messages in 3D. For cluster messages, we define the cache products
for the source nodes as

Ps = φsmasmesmgsmms (16)

and the cache products on pairs of nodes as

Pst = ψstmabstmefstmmnst. (17)

The explicit formula (7) transforms to the same formula as in the 2D case (see
formula (13)).
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4 Accelerating MAP Estimation

According to (13) the GBP algorithm grows with the power of four in the number
of labels, as a cluster message computation involves the traversal of all label
combinations of xs and xt for each combination of xu and xv. Compared to edge
messages that require quadratic computation time (see (10)), the update rule for
cluster messages consumes most of the time for inference problems with multiple
labels. In this section, we therefore pursue the question if it is necessary to explore
all possible label combinations of xs and xt for determining the maximum.
In the spirit of [9] [6] [10], we sort the terms of (13) by source variables xs and
xt, yielding

mstuv(xu, xv) = (msumtv)
−1 max

xs,xt

(PstMsuMtv) (18)

where we define
Msu = PsPsu, Mtv = PtPtv.

We observe that the maximum message value is likely to consist of relatively
large factors Pst,Msu and Mtv. Thus, for each combination of xu and xv the
basic idea is to start at the maximum values of Msu and Mtv in the respective
columns and then systematically decrease the factors until the product of both
entries and the corresponding value in Pst is assured to be maximal. Thus, we
have to answer two questions: (1) How do we traverse the label combinations for
xs and xt such that the product of Msu and Mtv monotonically decreases? (2)
Under which conditions can we terminate the search for the maximum?

Traversal Order. We have to proceed for each combination of xu and xv in
separation. Assume we set xu = u and xv = v. Then we obtain the maximum
product of the first two factors in (18) by determining the maximum entry smax

in the u-th column of Msu and the maximum entry tmax in the v-th column of
Mtv. We multiply this product with the entry at position (smax, tmax) in Pst and
store the result as the first temporary maximum product value rmax. Suppose
that the entry (smax, tmax) is the ileft biggest value of all entries in Pst. Then all
combinations of xs and xt, whose entry in Pst is smaller than the ileft biggest
value of Pst, are not eligible to be the final maximum product value. For this
reason we can save time by solely computing the products for combinations of
xs and xt with a bigger value than the ileft biggest value of Pst.

Unfortunately, our speed-up is relatively small if ileft is large. For decreasing
ileft, we examime which label combination of xs and xt leads to the next biggest
product of Msu and Mtv. We sort Msu and Mtv column by column and refer
to them as Ssu and Stv. Then smax and tmax correspond to the positions (1, u)
in Ssu and (1, v) in Stv, and the candidates for the next biggest combination
have to be either (1, u) in Ssu and (2, v) in Stv or (2, u) in Ssu and (1, v) in
Stv. We compute both products and take the bigger one. In general, the set of
candidates for the next biggest product value of Msu and Mtv constitutes from
label combinations for xs and xt that are adjacent to the already visited ones.
Compare figure 5 where sS and tS refer to the row positions in Ssu and Stv.
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Fig. 5. A graphical depiction of the candidates for the next combination of sS and
sT . Visited combinations are marked with a tick on dark gray background. The light
gray fields with a c denote possible candidates for the maximal unvisited combination.
White fields are unvisited and are not eligible as the next possible combination.

Thus, we gradually determine the next biggest products of Msu and Mtv and
multiply it with the corresponding entry of s and t in Pst. We compare the result
with the temporary maximum product value rmax and replace it if the new value
is bigger. In this case we also update ileft. This pattern is repeated until ileft is
considerably small, i.e. smaller than a pre-set threshold β. Once ileft falls below
β, we can trigger the traversal of less than ileft combinations whose entries in Pst

are bigger than the entry of the current maximum product value (smax, tmax).

Termination Conditions. We have found the maximum product if any of the
following two conditions is satisfied:

1. We have visited all entries in Pst that are bigger than the entry at position
(smax, tmax) in Pst.

2. The product of Msu and Mtv, multiplied with the maximal unvisited entry
in Pst, is smaller than rmax.

5 Experiments

In our experiments on two-dimensional images, the caching and multiplication
technique improves on the standard implementation by roughly factor 10. Sev-
eral optimizations contribute to this result. First, we gain most of the speed-up
by exploiting cache products that inherently use a beneficial multiplication or-
der. Second, compared to the standard form of the message update rule in [8],
the direct evaluation of the message update rules avoids the initial recursive
traversal of the region graph for determining all incoming messages in the for-
mulas. And finally, we do not have to evaluate the variable order of factors before
multiplication. An additional benefit of the caching and multiplication technique
is that we can reduce the storage costs, since we do not have to store references
from a message to its dependent messages. On three-dimensional images, we can
expect even higher speed-ups, as the cache products consist of more factors.
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� Labels Standard [s] MAP accelerated [s] Speed-up

8 0.03 0.05 0.61
16 0.15 0.15 1.03
32 1.21 0.59 2.05
64 15.43 2.92 5.28

128 243.03 19.29 12.60
256 4845.19 183.36 26.42

Fig. 6. The average iteration time of the standard and the accelerated MAP imple-
mentation for various label sizes
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Fig. 7. LEFT: Running time as a function of the number of labels k. RIGHT: Ratio
of standard GBP to MAP accelerated GBP as a function of k.

We estimate the effect of the accelerated MAP computation with two exper-
iments1: First, we measure the speed-up for different numbers of labels on a
8 × 8 grid-like MRF, where we use the Potts model2 for the edge potentials. In
figure 6, we contrast how the average running time per iteration varies between
the standard implementation and our technique. Note that the running time
in the first iterations is often much higher than in later iterations. The reason
could be that the message values contain more candidate maxima, which have to
be evaluated in our optimized algorithm. After several iterations edge messages
seem to attribute relatively high probabilities to a small number of labels.

And second, we demonstrate the effectiveness of our technique for other po-
tentials by computing the average running time of 100 random edge potentials
for various sizes of k (see figure 7). Opposed to the first experiment, we do
not evaluate the computation cost of the whole GBP algorithm, but solely the
elapsed time for computing the MAP estimate for cluster messages. Figure 7
shows the ratio of these running times. We can observe that the speed-up of our
implementation grows almost linear.

While we always benefit from using cache products, we recommend to use the
second optimization technique solely for label sizes bigger than 15. For smaller

1 All experiments are conducted on a 3 GHz CPU with 2 GB RAM. The caching and
multiplication technique is enabled.

2 The Potts model [1] is the generalization of the Ising model and is used for various
image processing tasks.
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labels sizes, the computational overhead per combination outweighs the reduced
number of visited combinations.

6 Summary and Conclusion

In this paper, we have presented two novel techniques for reducing the computa-
tional complexity of the GBP algorithm on grid-like graphs without losing any
precision. Both techniques are independent on the values of the potentials and
can be used simultaneously. Thus, our accelerated GBP algorithm may solve an
inference problem on a 2D grid-like MRF with 256 labels more than 250 times
faster than the standard version. In the future, we are going to investigate how
to generalize these techniques for other MRFs, and how we can integrate them
with other acceleration techniques that are currently under development.
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