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Abstract. It is well known that linear filters are not powerful enough
for many low-level image processing tasks. But it is also very difficult
to design robust non-linear filters that respond exclusively to features
of interest and that are at the same time equivariant with respect to
translation and rotation. This paper proposes a new class of rotation-
equivariant non-linear filters that is based on the principle of group in-
tergration. These filters become efficiently computable by an iterative
scheme based on repeated differentiation of products and summations of
the intermediate results. Our experiments show that the proposed filter
detects pollen porates with only half as many errors than alternative
approches, when high localization accuracy is required.

1 Introduction

In image processing the term ’filter’ is mostly related to the special class of image
transformations that is characterized by the fact that they are equivariant with
respect to the group of translations. If F is an image transformation, then it is
said to be equivariant with respect to a mathematical group G, if gF(x) = F(gx)
holds for all images x and all g ∈ G. Here the expression gx denotes the action of
the group on the image x. If F is linear in x and G is the group of translations, it
is just a convolution of the image with some kernel function known as the impulse
response. For nonlinear image transformation this concept is generalized by the
so called Volterra filters.

In this work we develop image transformations that are not only equivariant
with respect to translations but also with respect to rotations in the image
plane. That is, we consider the special Euclidean group of motion SE(2) as the
equivariance group. For linear filters the generalization is straight-forward, the
only further restriction to an ordinary linear filter is that the impulse response
has to be rotationally symmetric. For nonlinear transformation the answer is not
quite as simple. We need some kind of generalization of Volterra’s principle to
SE(2). It will turn out that the concept of group integration gives us such a tool
by hand.

Complex calculus provides powerful mathematical concepts for the analysis
of 2D rotation. For a fast and cheap computation of our filter we propose a spe-
cial type of kernel function, which has its origin in complex calculus. Basically,
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it is a Gaussian-windowed holomorphic function. The Gaussian controls the lo-
cality and scale of the filter, while the holomorphic part determines the filter
characteristics.

The paper is organized as follows: in the following subsection we give ref-
erences to work that is related to ours. In Section 2 we present the holomor-
phic filter and show an efficient way of implementation together with a training
scheme for the filter parameters. Section 3 presents experiments on microscopi-
cal images. The task is to detect so called porates, which are small pores on the
surface of pollen grains.

1.1 Related Work

The idea of group integration (GI) to obtain invariants has its origin in classical
invariant theory. In pattern recognition it is widely used to obtain invariants
that can be used for indexing large image or shape databases for fast retrieval.
For an introduction to GI in the field of pattern recognition see [2]. Applications
for shape retrieval can be found, e.g., in [9] or [10]. We will use GI to project
a nonlinear image transformation onto a rotation- and translation equivariant
transformation (see [11]).

Volterra filters are nonlinear transformations that are equivariant with re-
spect to translations. They are widely used in the signal processing community
and also find applications in image processing tasks (e.g. [14, 6]).

Steerable filters, introduced in [3], are a common tool in early vision and im-
age analysis. For 2D rotations steerable filters get a very simple form in complex
notation and are closely related to complex filters [12].

The generalized Hough transform (GHT) [1] is a major tool for the detection
of arbitrary shapes. Many modern approaches [5, 4] for object detection and
recognition are based on this idea that local parts of the object cast votes for
the putative center of the object. If the proposed filter algorithm is used in
the context of object detection, it may be interpreted as some kind of voting
procedure for the object center. This interpretation will later help us to design
the scale parameters of the filter.

2 Holomorphic Filters

The image function is represented by a square integrable complex function de-
fined on the complex plane C. It is denoted by x, an element of L2(C). The
’pixels’ of x, i.e. its function values are written in unbold face x(z) = (x)(z),
where z = u + iv and (u, v) are the cartesian pixel coordinates. The complex
conjugate is denoted by z̄ = u − iv. The area measure in the complex plane
is denoted by dzz̄, which is in ordinary cartesian dzz̄ = du dv. For further in-
troduction in complex analysis see, e.g., [13]. By calligraphic letters, e.g. A, we
denote image transformations, i.e. mappings from L2(C) into itself. The special
Euclidean group usually acts on the image function by

(gx)(z) := x(e−iφ(z − t)), (1)
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where φ is a rotation angle and t a translational shift. We use a small g for
denoting the group representation to distinguish it formally from the naturally
induced group action on an image transformation A which is given by

(TgA)[x] := gA[g−1x].

By this definition the fixpoint property TgA = A is identical to the equivariance
of the image transformation A[gx] = gA[x].

The natural extension of a linear image transformation to a non-linear, ho-
mogeneous transformation of nth order is given by

(A[x])(z0) =
∫

Cn

x(z1) . . . x(zn)a(z0, z1, . . . , zn)dz1z̄1 . . . dznz̄n

The function a, the kernel, completely describes the transformation. We propose
to use kernels of the following form

a(z0, . . . , zn) = h(z0, . . . , zn)e−
Pn

k=0 λk|zk|2

where λk ∈ R and h is anti-holomorphic in zk for k < p and holomorphic for
k ≥ p, i.e. we can write h as follows

h(z0, z1, . . . , zn) =
∑

i0,...,in

αi0,...,in
z̄i0
0 . . . z̄

ip−1
p−1 zip

p . . . zin
n ,

where the sum is (n+1)-fold with indices ik ≥ 0 that are bounded by some finite
cutoff index m. The αi0,...,in ∈ C are some expansion coefficients which have to
be learned. The natural parameter p will later help us to design the rotation
equivariance condition more freely. The choice of the above kernel is driven by
the following observation. In [8] Perona introduced the concept of computing
optimal steerable approximations of certain image templates. He computed a
bank of optimal filters for an elongated edge template. In fact, this bank is very
similar to the kernels zie−λ0|z0−t|2 for i = 0, . . . , n. As edges are one of the most
important image features it seems reasonable to choose such functions as the
basis for our kernel function. Additionally, this type of kernel can be computed
very quickly by the use of complex derivatives as we will see below.

To make the image transformation A equivariant with respect to the Eu-
clidean motion we use the principle of group integration. We integrate the basis
image transformation A over all possible group actions, i.e.

H[x] =
∫

SE(2)

(TgA)[x] dg =
∫

SE(2)

gA[g−1x] dg .

It is easy to show that, if H converges then it is a SE(2)-equivariant transfor-
mation. After inserting all the definitions from above we obtain

(H[x])(z0) =
∑

i0+..+ip−1=
ip+..+in

αi0,...,in
(−1)i0 g(i0)

0 ∗

(
n∏

k=1

(x ∗ g(ik)
k )

)
, (2)
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where ∗ denotes a convolution and (g(i)
k )(z) = z̄ie−λk|z|2 for k < p and (g(i)

k )(z) =
zie−λk|z|2 for k ≥ p (for a detailed derivation see [11]). At first several feature
images x∗g(i)

k are computed. They act like some kind of neighborhood descriptors
of each pixel. The larger the Gaussians in g(i)

k the larger the corresponding
neighborhood. According to the constraint i0+. . .+ip−1 = ip+. . .+in, all possible
point-wise products of such descriptor images are computed. This constraint
achieves the rotation equivariance of the filter. Note, that for p = 0 the condition
is unsatisfiable. Finally, everything is summed up weighted by the parameters
αi0,...,in .

2.1 Differential Formulation

The convolutions with the functions g(i)
k are computationally expensive, even if

we use a fast Fourier transform or a decomposition into separable filters to speed
it up. We will use complex differential calculus to figure out a more efficient way.
Actually the function g(i)

k is proportional to the ith order complex derivative of
a Gaussian gk := g(0)

k , that is

∂

∂z̄

(
z(i−1)e−λk|z|2

)
= −λkzie−λk|z|2 ,

where the partial derivative with respect to z̄ is defined by ∂
∂z̄ = 1

2 ( ∂
∂x + i ∂

∂y ).
Correspondingly, the z-derivative is defined by ∂

∂z = 1
2 ( ∂

∂x − i ∂
∂y ). Inserting this

relation into equation (2) and using the fact that convolutions and derivations
commute on an unbounded domain gives

(H[x])(z) = g0 ∗

 m∑
i0=0

∂i0

∂zi0

∑
i0+..+ip−1=

ip+..+in

βi0,...,in

n∏
k=1

(x(ik)
k )(z)

 ,

where we used the abbreviation x(i)
k = ∂i

∂zi (x ∗ gk)(z) for k < p and x(i)
k =

∂i

∂z̄i (x ∗ gk)(z) for k ≥ p. The parameters βi0,...,in
are related to the former by

βi0,...,in := (−1)i0αi0,...,in

∏n
k=0(−λk)−ik . For a detailed derivation see [11]. We

only have to compute n + 1 convolutions with Gaussians, the remaining steps
are computations of derivatives which can be performed quickly by the use of
finite difference schemes. The computation is sketched in Algorithm 1.

After the initial convolutions with the Gaussians, we have to compute m deriva-
tives. By an iterative scheme the number of outer z-derivatives can be reduced
to m. The number of multiplications is at most of order mn. Of course there is
much space for optimization by making use of intermediate results.

To further reduce the number of convolutions we assume that λ1 = . . . = λn.
So, we have to compute the derivatives only for one blurred image x1. In Figure
1 a workflow graph of a filter with order n = 2 and p = 1 and m = 3 is shown.
One can see that we only need to keep the m ’derivative’-images in memory. The
rest can be accomplished in place.
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Algorithm 1 Filter Algorithm y = H[x]
Input: x
Output: y
1: Initialize filter output y := 0
2: Convolve xk := gk ∗ x for k = 1, . . . , n.
3: Compute derivatives x

(i)
k for k = 1, . . . , n and i = 1, . . . , m.

4: for i0 = m : −1 : 1 do
5:

y := y +
∂

∂z

X
P

i0+..+ip−1=
ip+..+in

βi0,...,in

nY
k=1

x
(ik)
k

6: end for
7: Let y := y + β0,...,0x1

8: Convolve y := g0 ∗ y

2.2 The Training of the Filter Parameters

As the filter is linear in the parameters β = (βi0,...,in) a simple linear regression
scheme can be applied to adapt the parameters. For a given input image x and
a desired output image y we have to minimize J(β) = ||Hβ [x]− y||2, which can
be accomplished by solving the normal equations (for details see [11]).

3 Experiments

Before starting with the experiments let us clarify some details of the imple-
mentation. For speed reasons, we use the FFT to perform the initial and final
convolutions (line 2 and line 8 in Algorithm 1). As already pointed out we want
to approximate the differentiation (line 3 and 4) by a finite difference scheme.
Higher order derivatives are obtained by multiple applications of the first order
derivative. This approach is rather crude and inaccurate, because the approxima-
tion errors are accumulated by multiple applications of the rough approximation.
But it helps to speed up the algorithm and for low orders the effect is not too
hazardous. The important issue is that the errors behave ’isotropically’, such
that the rotation behavior and hence the rotation equivariance is not destroyed.
In Figure 2 we try to illustrate the errors which occur when the expansion degree
gets too high. We compute the function g(8)

0 in three different ways. First it is
computed by the direct use of the formula z8e−λ0|z|2 in an ’accurate’ way. Then
we iteratively apply a first order finite difference operator ∆1 or alternatively a
second order operator ∆2 on the plain gaussian g0

0. The difference operators are
given by

∆1=

0BB@
0 i 0
1 0 −1
0 −i 0

1CCA ∆2=

0BBBBBBBB@

0 0 −i
8 0 0

0 0 i 0 0
−1
8 1 0 −1 1

8
0 0 −i 0 0
0 0 i

8 0 0

1CCCCCCCCA
.
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Fig. 1. The workflow of a second order-filter (n = 2, p = 1). The holomorphic func-
tion is expanded up to a degree of m = 3. The star ’*’ in the circle is indicating a
convolution of the two incoming images. The dot ’·’ or the plus ’+’ indicate the point
wise multiplications or addition of the incoming images, and a squared dot a multi-
plication of the input with itself. The labels at the arrows indicate a multiplication or
differentiation, respectively.

Figure 2 shows that the approximations obviously produce artefacts around the
origin. These artefacts are not compliant with the original rotation behavior
anymore. The accurate version in Figure 2 a) has a rotation symmetry of degree
8, the error introduced by the first order scheme has a rotation symmetry of
degree 4, i.e. the rotation equivariance of the filter is partially destroyed. One
can see that the second order scheme substantially reduces this error, while
doubling the computationally load. In the experiments we exclusively used the
first-order approximations. We found that, despite the high errors even for low
degrees, it makes no difference in practice wether we use ∆1 or ∆2 up to degrees
of about 8.

a) b) c)

Fig. 2. The real part of the function g
(8)
0 in a 32 × 32 grid is shown. In image a) it is

computed explicitly, in b) by a crude approximation with finite difference operator ∆1

of first order. Image c) shows a approximation with second order finite differences by
the use of ∆2.



Lecture Notes in Computer Science 7

All experiments are performed on a Pentium 4, 2.8Ghz with MATLAB. The
time consuming parts are implemented in C + + using the MEX -interface.

3.1 Analyzing Pollen Grains

Analysis techniques for data acquired by microscopy typically demand for a ro-
tation and translation invariant treatment. The microscopical images of particles
like cells, pollen grains or spores have usually no predetermined orientation. In
this experiment we use the holomorphic filter for the analysis of pollen grains.

Palynology, the study and analysis of pollen, is an interesting topic with very
diverse applications like pollen-forecasts or in forensics. An important feature of
certain types of pollen grain are the so called porates that are small pores on the
surface of the grain. Their relative configuration is crucial for the determination
of the species. We want to use the proposed filter to detect such porates. The
input images are acquired by transmitted light microscopy, i.e. there may be
varying illumination and contrast conditions. Such changes should not have an
impact on the detection results. To make the filter invariant against additive
change of the gray values the filter must not depend on zero degree x(0)

1 expres-
sions because they carry the information about the local mean of the images.
The contrast changes affect the images by a scaling of the gray values. As the
local maxima of the filter response will serve as detection hypotheses, a gray
scale change will not affect the detection results, because we use a homogeneous
filter.

A third order filter (n = 3) with degree m = 5 is used. We choose p = 2, i.e.
we search for monomes that fulfill i0 + i1 = i2 + i3. We found 55 monoms fulfill-
ing this selection rule, while not violating the gray value invariance constraint
from above. One example is (i0, i1, i2, i3) = (4, 1, 3, 2). Besides, finding all non-
redundant monoms under certain constraints is not a trivial task. The choice
of λ0 and λ1 = λ2 = λ3 is motivated by interpreting the filter as some kind of
generalized Hough transform [1]. Imagine that the object, in our case the porate,
consists of several parts (just for imagination, the parts are actually the pixels of
the object). Each part performs some kind of ’voting’ for the putative center of
the object. The part at position z is described by the derivatives (x(i)

1 )(z), which
serve as the local descriptors. The size of such hypothetical parts is determined
by the width of the input gaussian g1. The filter maps these local descriptiors of
the parts onto a ’voting’ function for the object center. The size of the impact
of the voting function depends on the parameter λ0. It has to be chosen, such
that also the parts at the outer border have an influence on the decision for the
object center. Hence, the width of the output Gaussian should be at least half
of the diameter of the object. The images we use in this experiment are of size
about 200 × 200. A porate has an approximate diameter of 40 pixels (compare
to Figure 3). So we used an output Gaussian with λ0 = 1

202 . The input gaussian
has a size of about λ1 = 1

22 .
For the design of filter parameters β we used eight betula (birch) pollen, four

of them are shown on the left of Figure 3. Each pollen grain possess 3 porates.
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Fig. 3. Example for the porate detection. On the left you see the original input image.
On the right the output of the filter. For visualization filter responses below zero are
set to zero. The local maxima of the filter output are marked in the left image by red
circles.

The target output image is just an indicator image for the porate center. It
contains everywhere zeros except at the object center location where the pixel
is set to one. The object centers were manually labeled.

3.2 Results

The filter response for the training image is shown on the left of Figure 3. The
computation time for this filter is just under 200ms. The local maxima of the
filter response are marked in the original image by red circles. We only show
up those local maxima that are above a certain threshold. Obviously, the filter
performs very well for the test image and also for an unknown image on the right
of Figure 3.

To measure the performance of our system we collected a test set of 150
segmented pollen grains with about 500 porates at all. The pollen in the dataset
are sometimes impurified with dust and dirt particles, which may cause false
positive detections. All porate centers were manually labeled. As the porates are
not always in the equatorial pose it is sometimes difficult to define an objective
ground truth.

We define a detection to be successful if the local maxima of the filter re-
sponse is at most 10(20) pixels apart from the labeled center (a porate has a
diameter of about 40 pixels). All local maxima of the filter responses are col-
lected as detection hypotheses. The filter strength at the putative detection sites
are assigned to each hypothesis as a confidence value.

We compared our approach with two different methods. In a first approach
we extract SIFT-features at DoG-interest points (following [5]). For compactifi-
cation of the features we used a PCA. Based on the SIFT(PCASIFT)-features
we perform a GHT-like probabilistic voting procedure as done in the ISM model
[4]. To achieve rotation invariance we steered the features at the gradient’s main
orientation and cast votes relative to the orientation as it is done in [7]. For
training we used agglomerative clustering to obtain local appearance clusters.
The training set is the same as for the holomorphic filter. As the porate dataset
does not require a scale invariant treatment the Hough voting map is only two
dimensional, just the location of the object. Local maxima of the smoothed vot-
ing map serve as detection hypotheses, the absolute values of the maxima as a
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detect prec. HOLO SIFT PCASIFT INVFEAT

10 px 27% 48% 46% 49%
20 px 22% 26% 22% 48%
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Fig. 4. Equal error rates and 1-Precision/Recall graphs for the porate test set. Left
graph: with high detection accuracy of 10 pixels. Right graph: with low detection
accuracy of 20 pixels.

confidence value. We also tried to use a three dimensional voting map of object
position times orientation, but we found that it mostly performed worse, because
we got a lot of spurious local maxima and the final localization of the objects
was very poor. Secondly, we used an approach (INVFEAT) which extracts a set
of rotation invariant features for each pixel and classifies them wether they are
an object center or not. As features we use multiple complex derivatives, that
is fk,j = dk+jx1

dzkdz̄j , up to an order of 8 resulting in 8 · 9/2 = 36 features per pixel.
Rotation invariance is obtained by just taking the absolute value of the feature
images |fk,j | as it was done in [12]. To keep the running times comparable to
our approach we used a linear classifier for classification and the same training
procedure as for our approach.

In Figure 4 we give equal error rates and 1-Precision/Recall graphs for the
considered dataset. We made two runs with 10 and 20 pixels detection accuracy.
In comparison to our approach (HOLO) the localizations of SIFT and PCASIFT
detections are much more imprecise. This might be explained by the imprecise
localization of the keypoints which are the basis for the subsequent voting. Our
approach does not have such problems because all pixels are taken under con-
sideration. For a low detection precision of 20 pixels, PCASIFT can slightly
outperform HOLO in a certain threshold area. Only INVFEAT is able to finally
detect nearly all porates by the cost of very high false positive rates.

4 Conclusion

We propose a rotation and translation equivariant image transformation. The
output of the holomorphic filter is polynomial in terms of the individual filter
responses of a special kind of steerable filter. Thereby the monoms are chosen
such that the rotation equivariance is fulfilled.
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The filter is applied for rotation invariant detection of objects in microscop-
ical images. Compared to a GHT-based approach relying on SIFT features our
approach is competitive for microscopical data. The holomorphic filter provides
a much more precise localization of the object, because it does not rely on an
intermediate representation by uncertain localized keypoints. Another drawback
of the keypoint based approach is that in fuzzy regions of low contrast no key-
points are detected and hence a detection becomes impossible. The holomorphic
filter does not have such problems because all pixels are taken into account. Of
course, for more complex vision problems the non-parametric GHT-based ap-
proaches will outperform the holomorphic filter, because the model complexity
of the filter is very limited. But otherwise, due to the small number of parame-
ters, the filter is able to show better generalization ability for certain data.
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