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Abstract. This paper presents a reliable coin recognition system that
is based on a registration approach. To optimally align two coins we
search for a rotation in order to reach a maximal number of colinear
gradient vectors. The gradient magnitude is completely neglected. After
a quantization of the gradient directions the computation of the induced
similarity measure can be done efficiently in the Fourier domain. The clas-
sification is realized with a simple nearest neighbor classification scheme
followed by several rejection criteria to meet the demand of a low false
positive rate.

1 Introduction

The goal of a coin recognition system is to automatically sort and classify high
volumes of coins with high accuracy within a small amount of time. In 2003
ARC Seibersdorf research GmbH created the sorting device called Dagobert [1].
The recognition unit of Dagobert is able to discriminate between over 600 differ-
ent coin types based on over 2000 different coin faces. In 2006 ARC Seibersdorf
formulated together with the MUSCLE1 Network of Excellence and the PRIP,
Vienna University of Technology the Coin Image Seibersdorf (CIS) Competi-
tion 2006 2 to foster the development of robust coin recognition algorithms. The
present paper proposes the price winning algorithm.

The proposed system roughly follows the ideas in [1]. The similarity of two
coin images is computed by the use of registration techniques. In a first step the
translational pose of the coin is determined by a segmentation algorithm that
makes an estimate of the coin’s radius and its center. The comparison of two
coins is done by aligning them with respect to their rotational pose, i.e. we have
to optimize only one parameter, which makes the registration feasible. Having
defined a similarity measure any classification scheme may be used. Because of
the highly reliable embossing process for the coins we believe that a registration
technique is the first choice to reach good results. The only difficulty is to find
robust similarity measures that tolerate the, sometimes severe, abrasion and
fouling of the coins, but still give response for the reliable embossment which
determines the class membership. Additionally this similarity measure has to be

1 http://www.muscle-noe.org/
2 http://muscle.prip.tuwien.ac.at/index.php
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computable in a fast manner such that the resulting algorithm can cope with
large databases.

The article is organized as follows: In the following subsection we give a
short overview over related work. In Section 2 we present our algorithm for coin
segmentation that is based on the Hough transform. In Section 3 we present
the features that are used for alignment and similarity computation followed by
some implementation details. The classification scheme is presented in Section
4. Finally we show results on the CIS Benchmark datasets. In Section 6 we give
a conclusion and ideas for further improvement.

1.1 Previous Work

Recent approaches for coin recognition can roughly be divided in methods based
on rotational invariant features and methods based on registration. In [5, 6] in-
variant features are used to compare coins in a rotational invariant manner. In
[5] very high false positive rates are reported. In [1, 7] the similarity computation
is based on registration techniques. It seems possible that these approaches are
able to fulfill the reliability demanded in the benchmark specifications.

2 Coin Segmentation

In [1] a simple segmentation scheme is used which works by thresholding the
grayvalues. This approach is based on the assumption that the coins itself are
brighter than its background. Having a look at the benchmark database this
is mostly but not always the case. So, we have to search for another solution.
The Hough transform is known to be a very robust segmentation tool. We use
a generalized Hough transform (GHT) [2] to segment the coins. In [3] the same
method was used for a fast segmentation of cell-nuclei. We use a three dimen-
sional voting space, namely the two coordinates of the coin’s center and its radius
r. Let us call the gray-valued image function I : R2 7→ R and the voting function
P : R3 7→ R. The idea is to let each pixel cast a vote for possible circle centers at
particular radii. To keep the running time low the votes are performed only for
those points that are colinear with current gradient vector. Formally we search
maxima of the following function

P (x, r) =
∫

R2

(
δ
(
x + r ∇I(y)

||∇I(y)||

)
+ δ

(
x− r ∇I(y)

||∇I(y)||

))
||∇I(y)|| dy,

where δ is some indicator function giving contribution whenever its argument is
nearby zero, for example a gaussian or a rectangle-function. Each gradient in the
image votes for a possible center of the coin, where the hypothetical center has
to be along the gradient’s direction. Since we do not know whether the coin is
darker or brighter than the background we have to vote in positive and negative
direction.

Before starting to compute the integral we blur the image with a first-order
IIR-Filter to get smooth gradients. The computation of the integral is straight-
forward. Just run linearly over the image I and compute the gradient ∇I(y) and
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its magnitude. Now for every position y and for discrete radii values ri accumu-
late the voting function at positions y+ri

∇I(y)
||∇I(y)|| and y−ri

∇I(y)
||∇I(y)|| with weight

||∇I(y)||. The shape of the accumulation depends on the indicator function δ.
We just round the estimated coordinates to the nearest integers and accumu-
late the single pixels. After all accumulations are done the voting function P
is smoothed by an IIR-Filter. Hence, the indicator function is just the impulse
response of this filter.

Since we know that there is only one coin present in a image, we can use a
hierarchical voting scheme to get better estimates for the radius. For a first rough
estimate we take 16 different values for the radius covering the whole range of
possible coin sizes. After the determination of the first maximum we distribute
again 16 radius bins around the first rough estimate. Overall we repeat this
procedure four times resulting in an accurate estimate. On an Intel P4 2.8Ghz
the overall segmentation procedure needs less than one second for one image. In
Figure 1 we show three examples of segmented coins.

a) b) c)

Fig. 1. Coins segmented by our algorithm. Coin a) and b) have very bad contrast
conditions, however our algorithm is able to make a good segmentation. In c) a section
of a coin is shown where our algorithm makes a small mistake. Due to a strong circle-
like structure at the border of the coin the estimated radius is a little bit too small.
However, this is a systematical error, and if it happens for every coin from the specific
class it shall not confuse the classification algorithm.

3 Feature Extraction and Registration

Having a look at the benchmark database one can guess that the actual gray
values of the images are not very discriminative. In [1] a Canny Edge-Detector is
used to compute more reliable features. This is, of course, a much better idea than
working on the plain gray values, but it has still some disadvantages. At first,
the results depend heavily on the choice of the parameters of the edge-detector.
These parameters have to be chosen properly depending on the illumination
conditions and the quality of the images. And secondly, the orientation of the
edges are completely neglected. We want to follow a different approach. We want
to use solely the direction of the gradients in the image and totally neglect its
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magnitude. This has the advantage that we are independent of illumination and
contrast changes. One can argue that only considering the direction is a very
dirty approach, since we also compute gradient directions in homogeneous, flat
regions where theoretically the gradient has to be zero and hence no reliable
direction exists. But however, there are several reason to follow this idea. First,
if the direction in homogeneous regions can be assumed to be equidistributed
with respect to its angle, then the similarity measure can be designed such that
this regions give only a constant bias. Further, we do not need any threshold, i.e.
we never need to decide whether there is an edge or not. This advantage becomes
important considering Figure 2. Due to abrasion coins show typical patterns near
structural steps and edges. One can see several slight gradients near the edges. It
would be ignorant to neglect this information. An algorithm, which makes only
use of edges has problems to also incorporate this information.

Fig. 2. Abrasion effects. Due to abrasion several slight gradients are introduced near
the edges. Not only the edges contain structural information that may be considered,
also putative flat regions contain valuable structure. Our algorithm also uses this in-
formation for recognition.

During segmentation we determined the radius and center of the coin. From
now on we assume that the center is shifted to the origin and the radius is
normalized to 1. For convenience we represent the image I in polar coordinates
I(r, ϕ) with r ∈ [0, 1] and ϕ ∈ [0, 2π]. The basis for our features is the normalized
gradient image g = (gr, gϕ)T given by

gr(r, ϕ) =
∂rI

ε +
√

(∂rI)2 + (r∂ϕI)2
, gϕ(r, ϕ) =

r∂ϕI

ε +
√

(∂rI)2 + (r∂ϕI)2
,

where ε is a small positive constant avoiding division by zero. We choose the
radial and tangential derivatives because they do not change while rotating the
coin. A rotation of the coin just shifts the ϕ coordinate of g cyclically. Based on
the gradient image we compute the angle image a ∈ [0, π] given by

a(r, ϕ) = sign(gϕ(r, ϕ)) arcsin(gr(r, ϕ))

describing the angle to the tangent of the circle. The sign modification leads
to invariance against inverting the contrast. We found that it is not important
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whether an edge is descending or ascending, because, e.g. by dirt or abrasion of
the coin, the contrast conditions are sometimes inverted. So only one half of the
circle is represented by this function, the other half is mapped by point reflection
to the former. The function a is now used for comparing two coins. Let a and
a′ be two feature functions from two different coins, we define their correlation
function by

c(φ) =
∫ 2π

0

∫ 1

0

δ(a(r, ϕ)− a′(r, ϕ− φ)) drdϕ,

where δ is again some indicator function deciding whether two angles are different
or equal. It can be imagined as a delta distribution, for example. So c(φ) counts
how often the angles of the gradients of the two coins coincide at a specific
relative angle φ. The maximum value of c is defined as our similarity measure

k(a, a′) = max
φ∈[0,2π]

c(φ) (1)

It is well known that the computation of a cross correlation function which
is based on the scalar product can be efficiently done in the Fourier domain.
But c is not an ordinary scalar product; to get us into the position to apply
the Fourier transform we first have to rewrite our correlation function. For any
function g there exists the so called convolutional square root g1/2, which fulfills
the following relation

g(x− y) =
∫

R
g1/2(x− z)g1/2(z − y) dz.

Using this formula for our indicator function δ we can rewrite the correlation

c(φ) =
∫ 2π

0

∫ 1

0

∫
R

δ1/2(a(r, ϕ)− z)︸ ︷︷ ︸
f(r,φ,z)

δ1/2(z − a′(r, ϕ− φ))︸ ︷︷ ︸
f ′(r,ϕ−φ,z)

dzdrdϕ.

Indeed we introduced an additional integration but now c(φ) looks like an or-
dinary correlation of two functions f and f ′, which can efficiently be com-
puted in the Fourier domain. Let us call f(r, φ, z) our final feature function
and f̃(r, k, z) =

∫
f(r, ϕ, z)e−ikϕdϕ its Fourier transform with respect to the

angle parameter. The feature with respect the z-parameter can be interpreted
as a some kind of indicator function contributing whenever there is a gradient
with the specific angle z in the original image.

Using the Fourier features the Fourier representation of c(φ) looks then

c̃(k) =
∫ 1

0

∫
R

f̃∗(r, k, z)f̃ ′(r, k, z) drdz,

where ·∗ is the complex-conjugate. The last step is just to transform c̃(k) back
into the spatial domain and search for its maxima.



6 Reisert et al.

3.1 Implementation

Preprocessing and Gradient Computation Given the segmented image in carte-
sian coordinates we first applied a blur using the same IIR-filter used for segmen-
tation. To get the polar gradient image we directly sample the gradients from
the blurred image with 1024 steps in angular direction and 256 steps in radial
direction using bilinear interpolation. We used a stepsize of 1 pixel in the original
image for computing the finite differences for the gradient. In radial direction we
only sample from 0 to 0.9, i.e. we leave out the outer 10 percent of coin, because
it seems that it mostly contains useless information (see also [1]). Then we blur
the image again with the IIR-filter and downsample it to the desired size; for the
competition we use a size of 256 × 64. Finally we normalize the gradients and
compute the angles according to the equations from above.

Discretizing the Angles and Final Feature Computation The gradient angle pa-
rameter z is discretized in M steps, i.e. we have a stepwidth of ∆z = π/M . So
the final feature image consists of M binary images of size 256× 64. The binary
image with number i contains entries whenever a(r,ϕ)

∆z falls within the interval
[i, i+1] with 0 ≤ i < M . In Figure 3 we visualize the algorithm. Having a closer
look at the angle function a(r, ϕ) one can see that also regions with relatively
low gradient magnitude contain valuable information.

To become more robust against small gradient changes we additionally use
some kind of ’inverse’ bilinear interpolation (also called fuzzy histograms, see [4])
to generate the entries. For each entry the two nearest pixel get a contribution
depending linearly on the distance to the pixel’s center. We also conduct some
smoothing in radial direction to be robust against small shifts in radial direc-
tion. Such radial shifts usually come from small errors during the segmentation
process.

Finally the Fast Fourier Transform (FFT) of the feature function in ϕ direc-
tion can be precomputed to speed up the comparison later, i.e. we compute the
FFT of the rows of the binary feature images on the right of Figure 3.

4 Classification

For classification we use a very simple nearest neighbor scheme. This is mainly
due to complexity and memory considerations. For example, considering the
feature parameters used for the competition, one feature is of size 256 · 64 · 6 ·
sizeof(float) = 392KByte. The training database consists of over two thousand
different coin types, so we already need nearly one GigaByte storage. Although,
the training set provides a set of different samples per type, we only use one
sample for training. But still, a whole scan of those would take about 6 seconds
on a Pentium P4 2.8Ghz for just one side of the coin, while the benchmark
specifications only allowed about 5 seconds to classify one coin, which involves
the scan for both sides. To meet this goal we have to restrict to search only in a
subset of the two thousand training images. Since we have a good estimate of the
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Fig. 3. Sketch of the feature extraction process. After the computation of radial and
angular gradients the angle function a(r, ϕ) is computed. For clarity we only visualize
the yellow marked upper left corner of the image. In the a(r, ϕ) the arrow-tips are
omitted because the sign of the direction does not count anymore. One can see that
also regions with relatively low gradient magnitude contain valuable, structured infor-
mation. In the last step the directions are discretized in six discrete directions. Finally
one binary feature image is created for each direction.
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radius of the examined coin, the search is only performed in some neighborhood
of the estimated radius. We search in a range of 2∆ = 4mm around the estimated
radius. Mostly, the search includes around 200 comparison depending on the
coin’s radius, that is a speed up of a factor of 10 in comparison to an exhaustive
search. After the algorithm has determined the nearest neighbors within this
range it is checked whether the predicted labels for the front and backside of
the coin are consistent. If they do not, the coin is immediately rejected and
classified as unknown. Otherwise we compute a prediction confidence C which is
based on the similarity scores, thickness, radius and angle pose differences. First
we normalize the similarity scores. Imagine that two images are compared that
have totally random gradient orientation, then their similarity is expected to be
k = 256 ·64/6 ≈ 2730. Hence, we normalize the similarity score by k′ = k−2730.
We further compute the thickness differences ∆t1 and ∆t2 for the front and
backside of the coin to its matched partners from the training database. And we
do the same for the radius. Due to the construction of the coin acquisition system
front and backside of the coin should have a fixed rotational pose relation. We
found that the relation is slightly unreliable, but we also included it with a small
weight in our confidence score,

C = k′1k
′
2 exp

(
− (∆r1 + ∆r2)

0.17 mm
− (∆t1 + ∆t2)

0.07 mm
− (∆φ)

10◦

)
.

If this confidence is below 10−5 the coin is rejected. Additionally, we will make a
reject if the thickness difference is above 0.25mm or the ∆φ is above 70◦. Besides,
all this additional reject criteria do not have too much influence on the overall
performance, the most powerful rejection criteria is definitely the consistency of
the votes for the front and backside of the coin. In Figure 4 we give a rough
overview over the complete classification system.

5 Experiments

We conducted some experiments to get good settings for the parameters. We
found that for the angular/radial resolution 256× 64 is a good trade-off betwees
accuracy and speed of the classification. In general one can say that the higher
the resolution the better the results, while the ratio 256/64 = 4 seems to be
optimal and should be kept fix. As already mentioned we use 6 discritization
steps for the z-resolution.

In Table 5 we show the obtained results on the CIS benchmark dataset. The
system shows very good performance, classification rate are mostly above 97%
and the false positive rate is very low. In the first column results for tranche
1A with no additional reject criteria are shown. Obviously the additional crite-
ria improve the system; less false positives and only marginal shrinkage of the
classication rate can be observed, and hence also a higher assessment score is
obtained. Further we show results for tranches 1B and 1C with the additional
reject criteria. On all tranches, together 30000 coins, we have in total 7 coins
which are wrongly classified to be known, while they are labeled as unknown.
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Fig. 4. Complete workflow of the classification system. After segmentation of the coins
the features f̃(k, r, z) according to section 3 are computed. Then, nearest neighbors
are searched with respect to the similarity measure (1). The search is only performed
within a neighborhood of the estimated radius, not on the whole database. If the nearest
neighbors of both coin sides agree the coin is a possible candidate for acceptance,
otherwise it is immediately rejected. Finally additional rejection criteria are checked
and some classes get a special treatment.

Table 1. Experimental results for all three tranches (left) and the competetion re-
sults (right). RC is the number of classes which got at least one correct classification.
(T/F)(P/N) means True/False Positives/Negatives. TP+TN gives the total number of
correct classification. FN+TN is the total number of rejects, i.e. the number of coins
classified as unknown. FP gives the number of unknown coins, which are classified to
some known class and the number of known coins classified to a wrong known class.
The assessment score is calculated by score = RC*25 + TP+TN - 100*(FP).

Tranche 1A (no rej.) 1A 1B 1C

RC 322 320 309 398

TP+TN (%) 97.64 97.27 97.20 94.31

FN+TN (%) 5.20 5.64 5.94 9.42

FP (%) 0.06 0.02 0.02 0.03

Ass. Score 17211 17527 17245 19081

FR MA

339 278

97.24 67.31

5.18 32.50

0.0 2.21

18199 -8419
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Six of these coins are very similar to known coin classes or are wrongly labeled.
The results for the final competition results are also reported (details in [9]). Our
results (FR) are compared to an approach based on invariant features (MA) [8].

6 Conclusions

We presented a coin recognition system which is based on gradient directions
only. The results show that the directional information is enough to build a
reliable classification system while the system is very robust to illumination and
contrast changes. We have shown that the demand of a very low false positive rate
is possible to reach. There might be several improvements of the system. Further
fitting of the parameters like resolution, oversampling multiplier or smoothing
width may improve the accuracy of the system. More sophisticated reject criteria
and confidence values could also help to avoid false positives. Unfortunately the
test set sizes of ten thousand coins are still to small to validate false positive
rates of 0.01 percent.
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