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Abstract 
 
In many restoration problems, the a-priori 

knowledge of a finite number of pixel amplitudes of 
the original image is available (e.g. blurred black-
and-white images). It is shown how to incorporate 
this information into optimal image reconstruction. 
The degradation of a discrete image is modeled as a 
two-dimensional, finite-state Markov process. Dy-
namic programming is then applied to get an op-
timal estimate of the state sequence of that process 
observed in memoryless noise, a technique which is 
known as Viterbi algorithm. This leads to a nonli-
near recursive filter providing superior performance 
over optimal linear filtering. Examples are given in 
comparison with inverse filtering.  

 
Introduction 

 
In many papers and textbooks on image 

processing, one can find the restoration of degraded 
binary images with linear filters as the ultimate 
solution. However, it can easily be shown that li-
near filtering is non-optimal for this task because 
the a-priori knowledge of the binary valued original 
image cannot be incorporated into the solution. 

 

 
 

Fig. 1: Degradation model 
 
The degradation of images can often be inter-

preted from the viewpoint of communication theory 
as sending source information in form of the origi-
nal image X over a channel with spatial dispersion 
and additive noise (Fig. 1). If this source informa-
tion belongs to a finite set of discrete signals 

 
 
 

then we talk about digital communication. In the 
case of pulse-amplitude-modulation (PAM), for 
example, discrete-time and discrete-valued se-
quences are sent through analog channels. The 
signal detector has to cope with problems like inter-
symbol interference, closure of eye-patterns, and 

ill-conditioned or singular transfer functions. The 
application of linear filters (like optimal transversal 
or KaIman filters) gives a poor performance im-
provement for channels with severe distortions. 
Linear equalization shows a clear trade-off between 
signal improvement and noise enhancement due to 
nulls in the channel transfer function. 

 
The Viterbi algorithm (VA) [1] utilizes the 

principle of dynamic programming to achieve max-
imum-a-posteriori (MAP) detection of a symbol 
sequence with a finite symbol alphabet passing 
through a channel with known transfer characteris-
tic. The resulting nonlinear recursive filter shows a 
superior performance over linear techniques at the 
expense of an increased detector complexity. Other 
applications are in the field of convolutional cod-
ing, speech and text recognition [1]. 

 
It is the objective of this paper to extend those 

findings in communication theory to the two-
dimen-sional problem of image restoration. 

 
An Image Degradation Model in Form of a 

Discrete Markov Process 
 
The aim of this chapter is to derive a causal 

Markov model for the two-dimensional spatial 
dispersion. 

 
The underlying model for the VA is a finite 

state Markov process [1]. The probability of being 
in state xk+1 at time instant k+1 given all states from 
the past depends only on the previous state xk : 

 
 
 

As in [1] we define a transition  ξk at time k as a 
pair of states 

 
 
 
The process is assumed to be observed in me-

moryless noise, namely there is a sequence Z of 
observations Z := [z1, z2,…, zN-n+1] in which zk 
depends probabilistically only on the transitions ξk: 
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This is a very general model which includes, for 
example, time varying and nonlinear characteristics. 

 
In this paper, however, we limit our description 

to a rather conservative model in order to clarify the 
main idea. The degradation model is assumed to be 
discrete. Topics dealing with the approximation of 
the continuous model through digitizing and sensor 
influences will not be considered in this paper. 

 

 
 

Fig . 2: Degradation example of a binary image 
 
As shown in Fig. 2, the original image X of 

dimension M×N is distorted by a deterministic 
transfer function H with a finite dispersion length of 
m×n which results in a uniquely defined distorted 
image Y of dimension (M-m+1)×(N-n+l). The 
memoryless noise R is assumed to be additive: 

 
 
 

To get a causal model we define the states xk as 
sections of the original image X:= [x0, x1,…, xN-n+1] 
of dimension M×N as: 

 
 
 
 
 
 
 

 
and a transition as: 

 
 
 
 
 
 
 
 
 
 
See for example Fig. 3 for the binary case with 

m=2, n=2, M=2, N=8. The pixel amplitudes are 
assumed to be elements of a finite alphabet of B 
admissible gray levels. 

 

 
Fig. 3. The definition of a causal state se-

quence for the example of a low-
dimensional binary image with spatial 
dispersion. 

 
Under these assumptions, the degradation 

model may be described as M parallel shift registers 
with the states {xk} as input and columns of the 
distorted image {yk} as output sequence, corrupted 
by an additive noise sequence {rk}. 

 
Maximum-A-Posteriori Estimation Algorithm 
 
The problem of optimal restoration may now 

be stated as: 
Given a sequence of observations in form of 
sampled columns of the degraded image  
Z = {zk}, find the state sequence X = {xk} 
which maximizes the a-posteriori probability 
 
 

It should be stressed that this criterion tries to opti-
mally restore the whole image and not individual 
pixels. 

 
Due to the Markov and memoryless properties 

the logarithm of this performance criterion may be 
decomposed into sums and the problem is equiva-
lent to finding the shortest path through a decision 
tree with weights proportional to [l]: 

 
 
 
The VA now tracks the minimal path along a 

decision trellis with B(n-1)·M states and BM transi-
tions per state and hence a total of the order of  
(N-n+1)⋅Bn·M ≈·N⋅Bn·M probability computations. 

 
The VA may also be interpreted as an efficient 

technique to classify a degraded image in compari-
son with the exponentially growing number of all 
BM·N possible images out of X in the observation 
space Z. Fig. 4 shows a decision trellis with 16 
states and 4 transitions per state which can also be 
described as a nonlinear fast base-4 algorithm of 
dimension 16 [2]. 

 
If all original images in X are equally likely, 

the MAP criterion is equivalent to the maximum 
likelihood criterion. 
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The detection or classification performance in 
the observation space Z is dominated by the mini-
mum distance between all possible signals in rela-
tion to the noise level, a problem which also turns 
out to be nonlinear. Ref. [2] shows how to calculate 
the minimum distance with the VA itself and an 
increased basis. 

 
The path metric in Eq. (3.2) results in a simple 

Euclidean metric if white Gaussian noise is as-
sumed. It is possible to take into account nonwhite 
noise by using a prewhitening filter [1] or by 
changing the metric [3]. 

 
Fig. 4. Decision trellis, derived from the ex-

ample in Fig. 3 with a base-4 algo-
rithm and 16 possible states 

 
The possibility to include constraints into the 

detector is shown in [2] for the case of code restric-
tions. This idea could also be used to incorporate 
given constraints of the original image into the 
restoration algorithm. 

 
Examples 

 
Typical examples for images with a-priori 

available amplitudes in form of a binary alphabet 
are facsimile pictures like weather charts or printed 
matter. The following two examples show restora-
tion results for degraded binary test images with a 
one- and two-dimensional linear distortions respec-
tively and white Gaussian noise of unknown inten-
sity. The signal to noise ratio is related to the ampli-
tude of a white pixel in the original image. As a 

comparison the results of linear inverse filtering 
using the pseudoinverse [4] are given. 

 
Fig. 5 shows the restoration of an image de-

graded by a uniform motion blur over 7 pixels with 
the following one-dimensional pulse response: 

 
 
 
In this case the rows are decoupled and conse-

quently a less complex one-dimensional base-2 
algorithm with 26 = 64 states could be used. It is 
worth mentioning that the algorithm was started in 
state zero. 

Fig. 6 contains the filtering results for a two-
dimensional pulse response of dimension 2x2 in the 
following form: 

 
 
 
 
The size of the original image is of dimension 

(M=9)×(N=11). The algorithm contains 29 = 512 
possible states with 512 transitions per state. It 
should be mentioned that some additional savings 
can be found for the calculation of all transition 
metrics within one layer. 

 
A complete closure of the eye diagram in both 

examples makes it impossible to restore the images 
using local decisions in form of simple amplitude 
clippings. 

 
The figure ·of the second example also shows 

the clipped inverse filtering results. This nonlinear 
postfiltering is given as a comparison and could be 
interpreted as a simple way to take into account the 
a-priori knowledge of binary valued originals. 

 
Conclusion 

 
The application of the Viterbi algorithm to im-

age restoration subject to the constraint of a finite 
amplitude alphabet of the original image gives 
substantial improvements compared to linear filter-
ing. The application to high-dimensional images 
and a wide spread function can be a problem with 
respect to the computational complexity. To alle-
viate this difficulty it can be feasible to apply the 
algorithm to subsections of the image with an ex-
pected null gap at the boundary such as sufficient 
blank lines in text etc. It appeals to extend the pro-
posed solution to more complicated models. A 
nonlinear spread function may be considered 
straightforwardly without affecting the principle 
solution (see [5]). 

 
  

h=1/7[1,1,1,1,1,1,1] .                  (4.1)

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

0.5 0.2
H=  .           (4.2)

0.2 0.1



  4 

Acknowledgement 
 

The first mentioned author would like to thank 
Jon Mandeville at the IBM Research Lab., San 
Jose, Ca., for bringing his attention to this problem 
and for helpful discussions. 

 

 
 

Fig. 5: Restoration of motion blur 
I:   Distorted Images 
II:  Result of pseudoinverse filtering 
III: Restoration with Viterbi algorithm 
a) no noise, b) SNR = 33, c) SNR = 15 

 
 
 
 
 
 

 
 

Fig. 6: Restoration of a two-dimensional dispersion 
A: Original image and pulse response 
1: Distorted images 
2: Pseudoinverse filtering 
3: Pseudoinverse filtering clipped 
4: Viterbi algorithm 
B: no noise 
C: SNR 30 
D: SNR 15 
E: SNR 10 
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