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Network Visualizations

How Well do Feature Visualizations 

Support Causal Understanding of CNN 

Activations?
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1.1 One Possible Visualization

medium.com on Convolutional Neural Network(CNN) with Practical Implementation
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1.2 More Intuitive Visualizations

distill.pub: Feature Visualization –Olah et al.

distill.pub: Feature Visualization –Olah et al.
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• 1. Introduction

• 2. Image Synthesis by Activation Maximization

• 3. The Experiment

• 4. Results

• 5. Conclusion & Discussion

Outline
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2.2 Activation Maximization
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2.2 Activation Maximization
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2.2 Activation Maximization
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• Synthesizing images via gradient ascent alone is 

not enough!

• => Use of hand designed prior constraints is 

necessary

2.2 Activation Maximization
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Graphic by Nguyen et al. 2019 Understanding Neural Networks via Feature Visualization: A Survey
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• [Nguyen et al. „Understanding Neural Networks via 

Feature Visualization: A survey“ (2019)] Priors :

– Regularization term:

– Penalize high-intensity pixels

– Penalize high-frequency noise (i.e. smoothing)

– Penalize the high frequencies in the gradient image

– Encourage patch-level colour statistics to be more realistic

– Randomly jitter, rotate or scale the image before each 

update step 

– These regularizations help improve local statistics

2.2 Activation Maximization
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• Priors:

– Global coherence is even harder to achieve

• Diversity:

– Maximize with respect to different parts in the CNN [Olah 
et al. „Feature Visualization“, Distill (2017)]

– Cluster training set images and initialize from an average 

image computed from each cluster

– Maximize the distance between reference image and 

synthesized image

– Add noise to the image in every update

– Activate two neurons at the same time

2.2 Activation Maximization

10



Paul Kull

2.2 Activation Maximization
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Deep Generator Networks [Nguyen et Brox et al. 

„Synthesizing the preferred inputs for neurons in neural 

networks via deep generator networks“ (2016)]
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2.2 Activation Maximization

12Graphic by Nguyen et al. 2019 Understanding Neural Networks via Feature Visualization: A Survey
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• How Well do Feature 

Visualizations Support 

Causal Understanding of 

CNN Activations?

• 2021 Paper by Roland S. 

Zimmermann, Judy 

Borowski, Robert 

Geirhos, Matthias 

Bethge, Thomas S. A. 

Wallis and Wieland 

Brendel

3. The Experiment
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• 3.1 Technical Facts

3. The Experiment
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• Inception V1 Network

• Trained on ImageNet

• Query and Natural Images are selected from a 

random subset of 599.552 images from ImageNet 

ILSVRC 2012 dataset

• Units are sampled from 9 layers and 2 Inception 

module branches (3 × 3 and POOL)

3.1 Technical Facts
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Olah et al. “an overview of early vision in InceptionV1”
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• 3.1 Technical Facts

• 3.2 The Task 

3. The Experiment
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3.2 The Task
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Synthetic reference image class
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3.2 The Task
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Muhammad Atta Othman Ahmed: An efficient deep convolutional nn for visual 
image classification dogs
Pictures from ImageNet

Natural reference image classMixed reference image class
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3.2 The Task
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Images from focusedcollection.com and depositphotos.com, 
blurred with befunky online photo editor

Blur reference image classNone reference image class
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• 3.1 Technical Facts

• 3.2 The Task

• 3.3 The Setup

– 3.3.1 Experiment-Design

– 3.3.2 Ensuring High Quality Data

3. The Experiment
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3.3.1 The Experiment-Design
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For each class of reference images…

… data is collected from 50 MTurk participants.

These 50 each do:

An Instruction Trial

4 Practice Trials

18 Main Trials with 3 Catch Trials
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3.3.1 The Experiment-Design
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For the Next Class of Reference Images…

… Data is collected from a different Subject

…

Between-Subject Design
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• Exclusion Criteria:

– Time to read instructions

– Time for whole experiment

– Performance Threshold for Catch Trials

– Answer Variability

• Small financial compensation

• Participants only from English speaking countries to 

ensure that instructions are understood

3.3.2 Ensuring High Quality Data
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• 3.1 Technical Facts

• 3.2 The Task

• 3.3 The Execution Design

• 3.4 Baselines

3. The Experiment
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• 1. Expert Baseline

• 2. Center Baseline

• 3. Primary Object Baseline

• 4. Variance Baseline

• 5. Saliency Baseline

3.4 Baselines
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• 4.1 Reference Image Comparison

4. Results
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4.1 Reference Image Comparison 
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-> Sigificant difference between None-Group and the 

others

-> No significant performance difference between the 

different types of visualization
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• 4.1 Reference Image Comparison

• 4.3 Comparison with the Baselines

4. Results
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4.3 Comparison with the Baselines
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• 4.1 Reference Image Comparison

• 4.3 Comparison with the Baselines

• 4.4 Performance Variation

4. Results
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• Type of visualization not very important for 

performance

• Systematic performance difference across different 

units

4.4 Performance Variation
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• Type of visualization not very important for 

performance

• Systematic performance difference across different 

units

• Relative Activation-Difference seems to matter for 

performance (but more so in the Pooling Branch)

4.4 Performance Variation
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• Humans are better able to understand and predict 

behaviour of a CNN when provided visualization

• Images synthesized by Activation-Maximization are 

NOT more helpful than other kinds of visualizations

• Experiment is limited: e.g. fixed size and shape of 

occlusion patch

• More visualization methods could be added in the 

future

5. Conclusion

33
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• Olah et al. „Feature Visualization“

• Nguyen et al. „Understanding Neural Networks via 

Feature Visualization: A survey“

• Synthesizing the preferred inputs for neurons in 

neural networks via deep generator networks

Discussion

34

https://distill.pub/2017/feature-visualization/
https://arxiv.org/pdf/1904.08939.pdf
https://arxiv.org/pdf/1605.09304.pdf
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• Performance on average very similar to the 

performance of the experts

• 260 of 298 participants passed the Exclusion 

Criteria:

• Trial-by-Trial

Responses are more

similar than chance

would predict

• Reasonable Reaction

Time

High Quality Data!
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Comparison with the Baselines
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