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Learning strategies for neuronal nets -
the backpropagation algorithm

In contrast to the NNs with thresholds we handled until now NNs are the NNs 
with non-linear activation functions f(x). The most common function is the
sigmoid function ψ(x):
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It approxmiates with increasing a the
step function σ(x).
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The function ψ(x) is closely related to the tanh function. For a=1 applies:
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If the two parameter a and b are added, a more general form results:
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with a controlling the sheerness and with b controlling the position on the x-axis.

The non-linearity of the activation function is the core reason for the existence of 
the multi-layer perceptron; without this property the multi-layer perceptron
would coincide with a trivial linear one-layered network.

The differentiability of f(x) allows us to apply neccessary constraints (∂(·)/∂wi,j) 
for optimization of the weight coefficients wi,j.

The first derivate of the sigmoid function can be ascribed to itself:
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Figure of the extended weight matrix

[ ]

1,0 1 1,1 1,2 1,

2,0 2 2,1 2,2 1,

3,0 3 3,1 3,2 1,

,0 ,1 ,2 ,

,

N

N

N

M M M M M N

w b w w w
w b w w w
w b w w w

w b w w w

=⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥′ == =
⎢ ⎥
⎢ ⎥
⎢ ⎥=⎣ ⎦

W b W

…
…
…

# # # # #
…



ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 4

The neural net with H layers
The multi-layer NN with H layers has a peculiar weight matrix W´i in every

layer, but identical sigmoid-functions:
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The learning is based on adjustment of the weight matrices with minimization of 
a square error criterion between target value y and approximation ŷ by the net
(supervised learning) in mind. The expected value has to be formed by the
available training ensemble of {ŷj,xj}:

Note: The one-layer nn and the linear polynom classifier are identical, if the
activation function is set to ψ≡1 .
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Relations to the concept of function approximation by a 
linear combination of base functions

The first layer creates the base functions in form of a hidden vector y1
and the second layer forms a linear combination of these base
functions.

Therefore the coefficient matrix W´1 of the first layer controls the
appearance of the base functions, while the weight matrix W´2 of the
second layer contains the coefficients of the linear combination.
Additionally the matrix is weighted through the activation function. 
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Reaction of a neuron with two inputs and a 
threshold function σ
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Reaction of a neuron with two inputs and a 
sigmoid function ψ
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Overlapping two neurons with two inputs
each and a sigmoid function
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Reaction of a neuron in the second layer to two neurons
of first layer after valuation by sigmoid function
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The backpropagation learning algorithm
• The class map is done by a multi-layer perceptron, which produces a 1 on the

output in the regions of x, that are populated by the samples of the according
class, and produces a 0 in the areas allocated by other classes. In the areas in-
between and outside an interpolation resp. extrapolation is done. 

{ }2
ˆ ( , )iJ E ′ ′= −y W x y

• This term is non-linear both in the elements of the input-vector x´, and in 
the weight coefficients {w´ij

h}.

• The network ist trained based on the optimization of the squared quality factor: 
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• From insertion of the function map of the multi-layer perceptron results:
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• The iteration terminates, when the gradient disappears at a (local or even
global) minimum.

• A proper choice of α is difficult. Small values increase the number of required
iterations. High values reduce the probabilty of running into a local minimum, 
risking the method to diverge and not finding the minimum (or giving rise to 
oscillations).

• Sought is the global minimum. It is not clear whether such an element exists or
how many local minima exist.
The backpropagation algorithm solves the problem iteratively with a gradient
algorithm. One iterates according to:
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• The iteration has only linear convergence (gradient algorithm). 

• The error caused by a sample results in: 
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• The expected value E{...} of the gradient has to be approximated by a mean
value of all sample gradients:
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• Calculating the gradient:
For determination of the composed function

• the chain rule is needed. 
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– and cumulative learning (batch learning), based on

• Partial derivations for one layer:
For the r-th layer applies:
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• We have to distinguish between
– individual learning based on the last sample
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Definition of the variables of two layers for
the backpropagation algorithm
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• First of all we calculate the effect of the last hidden layer on the starting layer
r=H. 
Using partial derivations of the quality function J (actually Jj, but j is omitted
for simplification reasons) and applying the chain rule results:

• and thus for update of weights:
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• For all other hidden layers r <H the thoughts behind are a litte more complex. 
Due to dependencies amongst each other, the values of sj

r-1 have an effect on all 
elements sk

r of the following layer. Using the chain rule results in:
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• i.e. the errors “backpropagate” from the starting layer to lower layers!
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• All learning samples are crossed without any changes of the weight
coefficients, and the gradient ∇J results by forming the mean value of the ∇Jj. 
Both values can be used for update of the parameter matrix W´ of the
perceptron: 
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• The gradients ∇J and ∇Jj differ. The latter is the mean value of the first (∇J = 
E{∇ Jj}), or: the first value is random value of the latter.  
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The whole individual learning procedure consists of these steps:
• Choose interim values for the coefficient matrices W1,W2, ... ,WH of all layers
• Given a new observation [x´j, ŷj] 
• Calculate the discrimination function ŷj from the given observation x´j and  the

current weight matrices (forward calculation)
• Calculate the error between estimation ŷ and target vector y:

∆y= ŷ-y
• Calculate the gradient ∇J regarding to all perceptron weights (error

backpropagation). To do so calculate first δj
H of the starting layer according to:
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• (Parallely) correct all perceptron weights according to:
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• For individual learning the weights {w´nm
h} are corrected with ∇J for every

sample, while for batch learning all learning samples have to be considered, in 
order to determine the averaged gradient ∇J from the sequence {∇J}, before the
weights can be corrected according to:
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• considering the first derivate of the sigmoid function f(s)=ψ(s): 
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Backpropagation algorithm for matrices
• Choose interim values for the coefficient matrices W1,W2, ... ,WH of all layers
• Given a new observation [x´j, ŷj] 
• Calculate the discrimination function ŷj from the given observation x´j and  the

current weight matrices (forward calculation). Store all values of  yr and sr in all 
layers inbetween r = 1,2,…,H.

• Calculate the error between estimation ŷ and target vector y on the output:
∆y= ŷ-y

• Calculate the gradient ∇J regarding all perceptron weights (error
backpropagation). To do so first calculate δH of the starting layer according to:
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• and calculate from this backwards all values of the lower layers according to:
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• Individual leraning: (parallely) correct all perceptron weight matrices with ∇J
for every sample according to:  
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Tr r r r r
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• Cumulative learning: all samples have to be considered, in order to determine
the averaged value ∇J from the sequence of the {∇J}, before the weights can be
corrected according to:
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• considering the first derivate of the sigmoid function f(s)=ψ(s): 
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Properties:
• The backpropagation algorithm is simple to implement, but very complex

especially for large coefficient matrices, which causes the number of samples to 
be large as well. The dependency of the method on the starting values of the
weights, the correction factor α, and the order of processing the samples have
also an adverse effect.

• Linear dependencies remain unconsidered, just like for recursive training of the
polynom classifier.

• The gradient algorithm has the advantage that it can be used for very large 
problems.

• The dimension of the coefficient matrix W results from the dimensions of the
input vector, the masked layers, and the output vector (N,N 1,..., NH-1,K) as:

1 0
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H
h h H

h

T N N N N N K

N
K

−

=

= = + = =

=
=

∑W

x
y



ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 23

Dimensioning the net
• The considerations for designing the multi-layer perceptron with threshold

function (σ resp. sign) gives quite a good idea how many hidden-layers and 
how many neurons should be used for a MLPC for backpropagation
learning (assumed one has a certain idea of distribution of clusters).

• The net is to be chosen as simple as possible. The higher the dimension the
higher the risk of overfitting, accompanied by a loss of ability to generalize. 
Also higher dimension allows a lot of local maximas, which can cause the
algorithm to get stuck!

epochs

training

testing
er

ro
r• For a given number of samples, the

learning phase should be stopped at 
a certain point. If not stopped the
net is overfitted to the existing data
and looses its ablility to generalize.
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Complexity of backpropagation algorithm

• For T=dim(W) number of weights and bias terms, linear complexity in the
number of weights can be easily understood, since O(T) computation steps are
needed for forward simulation, O(T) steps are needed for backpropagation of 
the error and also O(T) operations for correction of weights, altogether: O(T).

• If gradients would be determined experimentally by finite differences (on order 
to do so, one would have to increment each weight and determine the effect on 
the quality criterion by forward calculation) by calculating a differential 
quotient according to (i.e. no analytical evaluation):

• T forward calculations of complexity O(T) would result and therefore a overall
(?) complexity of O(T2)

( ) ( )
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r r
ji ji

r
ji
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Backpropagation for training a two-layer network for
function approximation

(Matlab demo: „Backpropagation Calculation)
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Backpropagation for training a two-layer network for
function approximation

2 2 1 2 2
1,      and         for   1,2j jw y b jαδ αδ∆ = ∆ = =

• Backpropagation: For output layer or second layer with linear activation
function results due to f ´=1:

2 ˆ( )y yδ = −

• Correction of weights in the output layer:

• Backpropagation: For first layer with sigmoid function results:

1 1 2 2 1 1 2 2
1, 1,( ) (1 )     for   1,2j j j j j jf s w y y w jδ δ δ′ ′⎡ ⎤ ⎡ ⎤= = − =⎣ ⎦ ⎣ ⎦

• Correction of weights in the input layer:

1 1 1 1
,1      and         for   1, 2j j j jw x b jαδ αδ∆ = ∆ = =
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Starting Matlab demo
matlab-BPC.bat
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Backpropagation for training a two-layer network for
function approximation
(Matlab demo: „Function Approximation)

4( ) 1 sin( )   for   2 2y x i x xπ= + ⋅ − ≤ ≤

• Sought is an approximation of the function

• With increasing value of i (difficulty index) the MLPC network
requirements increase. The approximation based on the sigmoid function
needs more and more layers in order to depict several periods of the sinus
function.

• Problem: Convergence to local minima, even when the network is big
enough to represent the function
– The network is too small, so that approximation is poor, i.e. the global minimum can

be reached, but approximation quality is poor (i=8 and network 1-3-1)
– The network is big enough, so that approximation is good, but it converges towards a 

local minimum (i=4 and network 1-3-1)
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Starting Matlab demo
matlab-FA.bat
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Model big enough but only local minimum
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Generalization ability of the network

• Assuming that the network is trained for 11 
samples

{ } { } { }1 1 2 2 11 11, , , , ,y x y x y x…

• How well does the network approximate the function for samples
not learned depending on the complexity of the network?

• Rule: The network should have fewer parameters than the
available input/output pairs

Starting Matlab demo (Hagan 11-21)
matlab-GENERAL.bat
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Improving the ability to generalize of a net
by adding noise

• If only few samples are available, the generalization ability of a 
nn can be improved by extending the number of samples e.g. by
normally distributed noise. i.e. adding further samples, which can
be found in the nearest neighbourhood with high probablity.

• In doing so the intra class areas are broadened and the borders
between classes are sharpened. 

class 1

class 2
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Interpolation by overlapping of normal 
distributions

( ) ( )i i iy x f x tα= −∑
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Interpolation by overlapping of 
normal distributions
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Character recognition task for
26 letters of size 7×5

• with gradually increasing additive noise:
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y2= ψ(W2 ψ(W1x+b1)+b2)

Two-layer neural net for symbol recognition with 35 input
values (pixel), 10 neurons in the hidden layer and 26 neurons

in the output layer

ψ+

W1

b11

x
N×1

S1×N=
10 ×35

S1×1=
10×1

S1×1=
10 × 1

s1

y1=f1(W1x+b1)

first layer

N=35

ψ+

W2

b21

y1

S1×1=
10 × 1 S2×S1=

26 × 10

S2×1=
26 × 1

s2

y2=f2(W2y1+b2)

second layer

y2

S2×1=
26 × 1

S2×1=
26 × 1

S2×1=
26 × 1

S1×1=
10×1
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Demo with MATLAB

• Opening Matlab
– Demo in Toolbox Neural Networks
– „Character recognition“ (command line)
– Two networks are trained

• network 1 without noise
• network 2 with noise

– Network 2 has better results than network 1 
considering an independent set of test data

Starting Matlab demo
matlab-CR.bat
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Possibilites to accelerate the adaption

Adaption of NN is simply a general parameter optimization
problem. Accordingly a variety of other optimization methods
from numerical mathematics could be applied in principle. This
can lead to significant improvements (convergence speed, 
convergence area, stability, complexity). 

In general conclusions cannot be made easily, since the events can
differ a lot and compromises have to be made! 

• Heuristic improvements of the gradient algorithm (increment
control)

– gradient algorithm (steepest descent) with momentum term (update of 
weights depends not only on gradient but also on former update)

– using an adaptive learning factor
• Conjugate gradient algorithm
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• Newton and Semi-Newton-algorithms (using the second derivatives of the
error function, e.g. in form of Hesse mtrix or its estimation)

– Quickprop
– Levenberg-Marquardt-algorithm

• Pruning techniques. Starting with a sufficiently big network, neurons, that
have no or little effect on the quality function, are taken off the net, which
can reduce overfitting of data. 

1
2

2

Taylor expansion of quality function in :
( ) ( ) terms of higher order

with:                      gradient vector

and:             Hesse matrix

T T

i j

J J
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J
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Demo with MATLAB
(Demo of Theodoridis)

• C:\...\matlab\PR\startdemo
• Example 2 (XOR) with (2-2-1 and 2-5-5-1)
• Example 3 with three-layer network [5,5] 

(3000 epochs, learning rate 0,7, momentum 0,5)
Start der Matlab-Demo
matlab-theodoridis.bat

Two solutions of the XOR-problem:

Convex area implemented with two-layer
net (2-2-1). Possible mal-classification
for variance:

Union of 2 convex areas implemented with a 
three-layer net (2-5-5-1). Possible mal-
classification for variance:

1
4 2 0,35> ≈n 0,5>n

2-2-2-1 does not
converge!
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XOR with high noise in order to activate 
second solution! With two lines a error-free 
(exact) combination cannot be reached and 
the gradient is still different from 0!
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Demo with MATLAB 
(Klassifikationgui.m)

• Opening Matlab
– first invoke setmypath.m, then
– C:\Home\ppt\Lehre\ME_2002\matlab\KlassifikatorEntwurf-

WinXX\Klassifikationgui
– set of data: load Samples/xor2.mat 

Setting: 500 epochs, learning rate 0.7
– load weight matrices: models/xor-trivial.mat
– load weight matrices : models/xor-3.mat 

• Two-class problem with banana shape
– load set of data Samples/banana_test_samples.mat
– load presetting from: models/MLP_7_3_2_banana.mat 

Starting Matlab-Demo
matlab-Klassifikation_gui.bat
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Solution of the XOR-problem with two-layer nn
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Solution of the XOR-problem with two-layer nn
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Solution of the XOR-problem with three-layer nn
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Solution of the XOR-problem with three-layer nn
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Convergence behaviour of 
backpropagation algorithm

• Backpropagation with common gradient descent
(steepest descent)

Starting Matlab demo
matlab-BP-gradient.bat

• Backpropagation with conjugate gradient descent
(conjugate gradient) – significantly better convergence!

Starting Matlab demo
matlab-BP-CGgradient.bat
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NN and their properties
• „Quick and Dirty“. A nn design is simple to implement and results in 

solutions are by all means usable (a suboptimal solution is better than just any
solution).

• Particularly large problems can be solved. 
• All strategies only use “local” optimization functions and generally do not

reach a global optimum, which is a big draw back for using neural nets. 
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Using a NN for iterative calculation of Principal
Component Analysis (KLT)

• Instead of solving the KLT explicitely by finding Eigen values, a nn can be
used for iterative calculation.

• A two-layer perceptron is used. The output of the hidden layer w is the
feature vector sought. 

1

N

1
M

1

N

x̂x

TA

w

A

• The first layer calculates the feature vector as:
T=w A x
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• Supposing a linear activation function is used. The second layer
implements the reconstruction of x with the transposed weight matrix of the
first layer

• BM is a N× M-matrix of the M dominant Eigenvectors of E{xxT} and T a 
orthonormal M× M–matrix, which causes a rotation of the coordinate
system, within the space that is spanned by the M dominant Eigenvectors of 
E{xxT}. 

M=A B T

ˆ =x Aw
• Target of optimization is to minimize:

{ } { } { }22 2ˆ TJ E E E= − = − = −x x Aw x AA x x

• The following learning rule:

( ) Tα α← − − = − ∇A A Aw x w A J

• leads to a coefficient matrix A, which can be written as a product of two
matrices (without proof!):
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• The learning strategy does not include translation. i.e. this strategy
calculates the Eigenvectors of the moment matrix E{xxT} and not of the
covariance matrix K = E{(x-µx)(x- µx)T}. This can be implemented by
subtracting a recursively estimated expected value µx = E{x} before starting
the recursive estimation of the feature vector. The same effect can be
retrieved by using an extended observation vector:

1
   instead of    

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x x
x

�
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