
ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 1

Learning strategies for neuronal nets -
the backpropagation algorithm

In contrast to the NNs with thresholds we handled until now NNs are the NNs
with non-linear activation functions f(x). The most common function is the
sigmoid function ψ(x):

1() ()
1 axf x x

e
ψ −= =

+

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

It approxmiates with increasing a the
step function σ(x).

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 2

The function ψ(x) is closely related to the tanh function. For a=1 applies:

2

2tanh() 1 2 (2) 1
1 xx x

e
ψ−= − = −

+
If the two parameter a and b are added, a more general form results:

()

1() 1
1g a x bx

e
ψ − −= −

+

2

1 1 1(1) (1) ()(1 ())
(1) 1 1

x
x x x

d e x x
dx e e e
ψ ψ ψ−

− − −

−
= − = − = −

+ + +

with a controlling the sheerness and with b controlling the position on the x-axis.

The non-linearity of the activation function is the core reason for the existence of
the multi-layer perceptron; without this property the multi-layer perceptron
would coincide with a trivial linear one-layered network.

The differentiability of f(x) allows us to apply neccessary constraints (∂(·)/∂wi,j)
for optimization of the weight coefficients wi,j.

The first derivate of the sigmoid function can be ascribed to itself:

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 3

Figure of the extended weight matrix

[]

1,0 1 1,1 1,2 1,

2,0 2 2,1 2,2 1,

3,0 3 3,1 3,2 1,

,0 ,1 ,2 ,

,

N

N

N

M M M M M N

w b w w w
w b w w w
w b w w w

w b w w w

=⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥′ == =
⎢ ⎥
⎢ ⎥
⎢ ⎥=⎣ ⎦

W b W

…
…
…

#
…

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 4

The neural net with H layers
The multi-layer NN with H layers has a peculiar weight matrix W´i in every

layer, but identical sigmoid-functions:

{ } { }22ˆmin min
i i

HJ E E
′ ′

= − = −
W W

y y y y

W´1 W´2y1
W´HyH-1y2 yHx´

2 1((()))H H′ ′ ′ ′=y ψ W ψ W ψ W x… …
The learning is based on adjustment of the weight matrices with minimization of
a square error criterion between target value y and approximation ŷ by the net
(supervised learning) in mind. The expected value has to be formed by the
available training ensemble of {ŷj,xj}:

Note: The one-layer nn and the linear polynom classifier are identical, if the
activation function is set to ψ≡1 .

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 5

Relations to the concept of function approximation by a
linear combination of base functions

The first layer creates the base functions in form of a hidden vector y1
and the second layer forms a linear combination of these base
functions.

Therefore the coefficient matrix W´1 of the first layer controls the
appearance of the base functions, while the weight matrix W´2 of the
second layer contains the coefficients of the linear combination.
Additionally the matrix is weighted through the activation function.

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 6

Reaction of a neuron with two inputs and a
threshold function σ

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 7

Reaction of a neuron with two inputs and a
sigmoid function ψ

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 8

Overlapping two neurons with two inputs
each and a sigmoid function

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 9

Reaction of a neuron in the second layer to two neurons
of first layer after valuation by sigmoid function

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 10

The backpropagation learning algorithm
• The class map is done by a multi-layer perceptron, which produces a 1 on the

output in the regions of x, that are populated by the samples of the according
class, and produces a 0 in the areas allocated by other classes. In the areas in-
between and outside an interpolation resp. extrapolation is done.

{ }2
ˆ (,)iJ E ′ ′= −y W x y

• This term is non-linear both in the elements of the input-vector x´, and in
the weight coefficients {w´ij

h}.

• The network ist trained based on the optimization of the squared quality factor:

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 11

• From insertion of the function map of the multi-layer perceptron results:

2 1

ˆ

2

((()))HJ E
⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪

′

⎩

′ ′ −

⎭

′
⎪y

ψ W ψ W ψ W x y… …������	�����

• The iteration terminates, when the gradient disappears at a (local or even
global) minimum.

• A proper choice of α is difficult. Small values increase the number of required
iterations. High values reduce the probabilty of running into a local minimum,
risking the method to diverge and not finding the minimum (or giving rise to
oscillations).

• Sought is the global minimum. It is not clear whether such an element exists or
how many local minima exist.
The backpropagation algorithm solves the problem iteratively with a gradient
algorithm. One iterates according to:

{ }1 2 with: , , ,

and the gradients:

H

h
nm

J J
w

α′ ′ ′ ′ ′ ′← − ∇ =

⎧ ⎫∂ ∂
∇ = = ⎨ ⎬′ ′∂ ∂⎩ ⎭

W W J W W W W

J
W

…

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 12

• The iteration has only linear convergence (gradient algorithm).

• The error caused by a sample results in:

2 1((()))ˆ () H′ ′′ ′= ′ψ W ψ Wy ψ W xx … …

2 21 1
2 2

1

ˆ ˆ() (() ())
HN

j j j k k
k

J y j y j
=

= − = −∑y x y

• The expected value E{...} of the gradient has to be approximated by a mean
value of all sample gradients:

1

1

n

jn
j=

∇ = ∇∑J J

• Calculating the gradient:
For determination of the composed function

• the chain rule is needed.

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 13

– and cumulative learning (batch learning), based on

• Partial derivations for one layer:
For the r-th layer applies:

1

1

n

jn
j=

∇ = ∇∑J J

• We have to distinguish between
– individual learning based on the last sample

,j j j⎡ ⎤ ⇒∇⎣ ⎦x y J

0

()

 n-th input of layer r

 m-th output of layer r

rN
r r r r
m m nm n

n

r
n

r
m

y s w x

x

y

ψ ψ
=

⎛ ⎞
′ ′= = ⎜ ⎟

⎝ ⎠
′

∑

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 14

Definition of the variables of two layers for
the backpropagation algorithm

+

+

+

f

f

f +

+

+

f

f

f

1r
ky −

layer r-1 layer r

r
jkw′

r
js r

jy

1r
ks −

r
jδ

1r
kδ
−

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 15

N
1H

m

H H
Hn n
nH H H H

nm n nm nm

y

J J s s
w s w w

δ

−=

∂ ∂ ∂ ∂
= ⋅ = −

′ ′ ′∂ ∂ ∂ ∂

• First of all we calculate the effect of the last hidden layer on the starting layer
r=H.
Using partial derivations of the quality function J (actually Jj, but j is omitted
for simplification reasons) and applying the chain rule results:

• and thus for update of weights:

1 1

 with

ˆ() ()

neu alt

H H H H H
nm n m n n n m

Jw w w w
w

w y y y f s y

α

αδ α− −

∂
= + ∆ ∆ = −

∂
′ ′∆ = − = − −

• introducing the sensibility of cell n

n
n

J
s

δ ∂
= −

∂

• results:

21
2

1

ˆ())

ˆ

ˆ ˆ() ()
ˆ

HN

k k
k

n

H
H Hn
n n n nH H H

n n n

y y

y

yJ J y y f s
s y s

δ

=

⎛ ⎞
⎜ ⎟∂ −⎜ ⎟⎜ ⎟
⎝ ⎠

∂

∂∂ ∂ ′= − = − ⋅ = −
∂ ∂ ∂

∑

��	�

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 16

• With

N N
1

1 1

rr
kj

r
k

r r r
kj k j

sJ J
s s s

δδ −

− −

∂∂ ∂
=

∂ ∂ ∂∑

• For all other hidden layers r <H the thoughts behind are a litte more complex.
Due to dependencies amongst each other, the values of sj

r-1 have an effect on all
elements sk

r of the following layer. Using the chain rule results in:

• results:
1 1()r r r r

j j kj k
k

f s wδ δ− − ⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦
∑

P1()

1

1
1 1 ()

r
mf s

r r
km m

mr
r rk

kj jr r
j j

w y
s w f s

s s

−

−

−
− −

⎛ ⎞
⎜ ⎟′∂ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ′ ′= =

∂ ∂

∑

• i.e. the errors “backpropagate” from the starting layer to lower layers!

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 17

• All learning samples are crossed without any changes of the weight
coefficients, and the gradient ∇J results by forming the mean value of the ∇Jj.
Both values can be used for update of the parameter matrix W´ of the
perceptron:

1

1

 individual learning

 batch learning
k k j

k k

α

α
+

+

′ ′= − ∇

′ ′= − ∇

W W J

W W J

• The gradients ∇J and ∇Jj differ. The latter is the mean value of the first (∇J =
E{∇ Jj}), or: the first value is random value of the latter.

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 18

The whole individual learning procedure consists of these steps:
• Choose interim values for the coefficient matrices W1,W2, ... ,WH of all layers
• Given a new observation [x´j, ŷj]
• Calculate the discrimination function ŷj from the given observation x´j and the

current weight matrices (forward calculation)
• Calculate the error between estimation ŷ and target vector y:

∆y= ŷ-y
• Calculate the gradient ∇J regarding to all perceptron weights (error

backpropagation). To do so calculate first δj
H of the starting layer according to:

1 1() für , 1, , 2r r r r
j j kj k

k
f s w r H Hδ δ− − ⎡ ⎤′ ′= = −⎢ ⎥⎣ ⎦

∑ …

• and calculate from this backwards all values of the lower layers according to:

ˆ ˆ() ()
ˆ

H
H Hn
j j j jH H H

n n n

J J y y y f s
s y s

δ ∂ ∂ ∂ ′= − = − ⋅ = −
∂ ∂ ∂

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 19

• (Parallely) correct all perceptron weights according to:

1

1,2,
= für 1, 2,

1, 2,

r r r r r H
nm nm nm n mr

nm H

r H
Jw w w y n N

w
m M

α αδ −

= …
∂′ ′ ′← − − = …
′∂

= …

• For individual learning the weights {w´nm
h} are corrected with ∇J for every

sample, while for batch learning all learning samples have to be considered, in
order to determine the averaged gradient ∇J from the sequence {∇J}, before the
weights can be corrected according to:

1

1,2,
() () für 1, 2,

1, 2,

r r r r H
nm nm n m

i H

r H
w w i y i n N

m M
αδ −

= …
′ ′← − = …

= …
∑

• considering the first derivate of the sigmoid function f(s)=ψ(s):

()() ()(1 ()) (1)d sf s s s y y
ds
ψ ψ ψ′ = = − = −

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 20

Backpropagation algorithm for matrices
• Choose interim values for the coefficient matrices W1,W2, ... ,WH of all layers
• Given a new observation [x´j, ŷj]
• Calculate the discrimination function ŷj from the given observation x´j and the

current weight matrices (forward calculation). Store all values of yr and sr in all
layers inbetween r = 1,2,…,H.

• Calculate the error between estimation ŷ and target vector y on the output:
∆y= ŷ-y

• Calculate the gradient ∇J regarding all perceptron weights (error
backpropagation). To do so first calculate δH of the starting layer according to:

ˆ ˆ() ()
ˆ

H
H H

H H H

J J f∂ ∂ ∂ ′= − = − ⋅ = −
∂ ∂ ∂

yδ y y s
s y s

D

• and calculate from this backwards all values of the lower layers according to:

1 1 1() () für , 1, , 2
Tr r rf r H H− −′= =′ −δ s δWD …

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 21

• Individual leraning: (parallely) correct all perceptron weight matrices with ∇J
for every sample according to:

(1)= für 1, 2,
Tr r r r r

r

J r Hα α −∂′ ′ ′← − − = …
′∂

W W W δ y
W

• Cumulative learning: all samples have to be considered, in order to determine
the averaged value ∇J from the sequence of the {∇J}, before the weights can be
corrected according to:

(1) für 1,2,
Tr r r r

j j
j

r Hα −′ ′← − = …∑W W δ y

• considering the first derivate of the sigmoid function f(s)=ψ(s):

()() ()(1 ()) (1)d sf s s s y y
ds
ψ ψ ψ′ = = − = −

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 22

Properties:
• The backpropagation algorithm is simple to implement, but very complex

especially for large coefficient matrices, which causes the number of samples to
be large as well. The dependency of the method on the starting values of the
weights, the correction factor α, and the order of processing the samples have
also an adverse effect.

• Linear dependencies remain unconsidered, just like for recursive training of the
polynom classifier.

• The gradient algorithm has the advantage that it can be used for very large
problems.

• The dimension of the coefficient matrix W results from the dimensions of the
input vector, the masked layers, and the output vector (N,N 1,..., NH-1,K) as:

1 0

1

dim() (1) with and

dim() feature space
ˆdim() number of classes

H
h h H

h

T N N N N N K

N
K

−

=

= = + = =

=
=

∑W

x
y

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 23

Dimensioning the net
• The considerations for designing the multi-layer perceptron with threshold

function (σ resp. sign) gives quite a good idea how many hidden-layers and
how many neurons should be used for a MLPC for backpropagation
learning (assumed one has a certain idea of distribution of clusters).

• The net is to be chosen as simple as possible. The higher the dimension the
higher the risk of overfitting, accompanied by a loss of ability to generalize.
Also higher dimension allows a lot of local maximas, which can cause the
algorithm to get stuck!

epochs

training

testing
er

ro
r• For a given number of samples, the

learning phase should be stopped at
a certain point. If not stopped the
net is overfitted to the existing data
and looses its ablility to generalize.

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 24

Complexity of backpropagation algorithm

• For T=dim(W) number of weights and bias terms, linear complexity in the
number of weights can be easily understood, since O(T) computation steps are
needed for forward simulation, O(T) steps are needed for backpropagation of
the error and also O(T) operations for correction of weights, altogether: O(T).

• If gradients would be determined experimentally by finite differences (on order
to do so, one would have to increment each weight and determine the effect on
the quality criterion by forward calculation) by calculating a differential
quotient according to (i.e. no analytical evaluation):

• T forward calculations of complexity O(T) would result and therefore a overall
(?) complexity of O(T2)

() ()
()

r r
ji ji

r
ji

J w J wJ O
w

ε
ε

ε
+ −∂

= +
∂

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 25

Backpropagation for training a two-layer network for
function approximation

(Matlab demo: „Backpropagation Calculation)

1 1 1 1 1 1

1 1
1,11 1 1
1 1
2,1 2

() () ()

mit: und

x

w b
w b

′ ′= + = =

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

y ψ W b ψ W x ψ s

W b

2 2 1 2

2 2 2
1,1 1,2

ˆ ()

mit:

y y b

w w

= = +

⎡ ⎤= ⎣ ⎦

W y

W

4() 1 sin() for 2 2y x x xπ= + − ≤ ≤

• Sought is an approximation of the function

+

+

1x +
2 ˆy y=

1

1
1,1w

1
2,1w

1
2s

1
1s

1
1y

1
2y

1
1b

1
2b

2b

2
1,1w

2
1,2w

2s

1

2δ
1
1δ

1
2δ

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 26

Backpropagation for training a two-layer network for
function approximation

2 2 1 2 2
1, and for 1,2j jw y b jαδ αδ∆ = ∆ = =

• Backpropagation: For output layer or second layer with linear activation
function results due to f ´=1:

2 ˆ()y yδ = −

• Correction of weights in the output layer:

• Backpropagation: For first layer with sigmoid function results:

1 1 2 2 1 1 2 2
1, 1,() (1) for 1,2j j j j j jf s w y y w jδ δ δ′ ′⎡ ⎤ ⎡ ⎤= = − =⎣ ⎦ ⎣ ⎦

• Correction of weights in the input layer:

1 1 1 1
,1 and for 1, 2j j j jw x b jαδ αδ∆ = ∆ = =

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 27

Starting Matlab demo
matlab-BPC.bat

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 28

Backpropagation for training a two-layer network for
function approximation
(Matlab demo: „Function Approximation)

4() 1 sin() for 2 2y x i x xπ= + ⋅ − ≤ ≤

• Sought is an approximation of the function

• With increasing value of i (difficulty index) the MLPC network
requirements increase. The approximation based on the sigmoid function
needs more and more layers in order to depict several periods of the sinus
function.

• Problem: Convergence to local minima, even when the network is big
enough to represent the function
– The network is too small, so that approximation is poor, i.e. the global minimum can

be reached, but approximation quality is poor (i=8 and network 1-3-1)
– The network is big enough, so that approximation is good, but it converges towards a

local minimum (i=4 and network 1-3-1)

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 29

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 30

Starting Matlab demo
matlab-FA.bat

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 31

Model big enough but only local minimum

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 32

Generalization ability of the network

• Assuming that the network is trained for 11
samples

{ } { } { }1 1 2 2 11 11, , , , ,y x y x y x…

• How well does the network approximate the function for samples
not learned depending on the complexity of the network?

• Rule: The network should have fewer parameters than the
available input/output pairs

Starting Matlab demo (Hagan 11-21)
matlab-GENERAL.bat

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 33

Improving the ability to generalize of a net
by adding noise

• If only few samples are available, the generalization ability of a
nn can be improved by extending the number of samples e.g. by
normally distributed noise. i.e. adding further samples, which can
be found in the nearest neighbourhood with high probablity.

• In doing so the intra class areas are broadened and the borders
between classes are sharpened.

class 1

class 2

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 34

Interpolation by overlapping of normal
distributions

() ()i i iy x f x tα= −∑

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
W eighted Sum of Radial Basis Transfer Functions

I t

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 35

Interpolation by overlapping of
normal distributions

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 36

Character recognition task for
26 letters of size 7×5

• with gradually increasing additive noise:

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 37

y2= ψ(W2 ψ(W1x+b1)+b2)

Two-layer neural net for symbol recognition with 35 input
values (pixel), 10 neurons in the hidden layer and 26 neurons

in the output layer

ψ+

W1

b11

x
N×1

S1×N=
10 ×35

S1×1=
10×1

S1×1=
10 × 1

s1

y1=f1(W1x+b1)

first layer

N=35

ψ+

W2

b21

y1

S1×1=
10 × 1 S2×S1=

26 × 10

S2×1=
26 × 1

s2

y2=f2(W2y1+b2)

second layer

y2

S2×1=
26 × 1

S2×1=
26 × 1

S2×1=
26 × 1

S1×1=
10×1

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 38

Demo with MATLAB

• Opening Matlab
– Demo in Toolbox Neural Networks
– „Character recognition“ (command line)
– Two networks are trained

• network 1 without noise
• network 2 with noise

– Network 2 has better results than network 1
considering an independent set of test data

Starting Matlab demo
matlab-CR.bat

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 39

Possibilites to accelerate the adaption

Adaption of NN is simply a general parameter optimization
problem. Accordingly a variety of other optimization methods
from numerical mathematics could be applied in principle. This
can lead to significant improvements (convergence speed,
convergence area, stability, complexity).

In general conclusions cannot be made easily, since the events can
differ a lot and compromises have to be made!

• Heuristic improvements of the gradient algorithm (increment
control)

– gradient algorithm (steepest descent) with momentum term (update of
weights depends not only on gradient but also on former update)

– using an adaptive learning factor
• Conjugate gradient algorithm

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 40

• Newton and Semi-Newton-algorithms (using the second derivatives of the
error function, e.g. in form of Hesse mtrix or its estimation)

– Quickprop
– Levenberg-Marquardt-algorithm

• Pruning techniques. Starting with a sufficiently big network, neurons, that
have no or little effect on the quality function, are taken off the net, which
can reduce overfitting of data.

1
2

2

Taylor expansion of quality function in :
() () terms of higher order

with: gradient vector

and: Hesse matrix

T T

i j

J J
J

J
w w

+ ∆ = +∇ ∆ + ∆ ∆ +

∂
∇ =

∂
⎧ ⎫∂⎪ ⎪= ⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭

w
w w w J w w H w

J
w

H

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 41

Demo with MATLAB
(Demo of Theodoridis)

• C:\...\matlab\PR\startdemo
• Example 2 (XOR) with (2-2-1 and 2-5-5-1)
• Example 3 with three-layer network [5,5]

(3000 epochs, learning rate 0,7, momentum 0,5)
Start der Matlab-Demo
matlab-theodoridis.bat

Two solutions of the XOR-problem:

Convex area implemented with two-layer
net (2-2-1). Possible mal-classification
for variance:

Union of 2 convex areas implemented with a
three-layer net (2-5-5-1). Possible mal-
classification for variance:

1
4 2 0,35> ≈n 0,5>n

2-2-2-1 does not
converge!

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 42

XOR with high noise in order to activate
second solution! With two lines a error-free
(exact) combination cannot be reached and
the gradient is still different from 0!

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 43

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 44

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 45

Demo with MATLAB
(Klassifikationgui.m)

• Opening Matlab
– first invoke setmypath.m, then
– C:\Home\ppt\Lehre\ME_2002\matlab\KlassifikatorEntwurf-

WinXX\Klassifikationgui
– set of data: load Samples/xor2.mat

Setting: 500 epochs, learning rate 0.7
– load weight matrices: models/xor-trivial.mat
– load weight matrices : models/xor-3.mat

• Two-class problem with banana shape
– load set of data Samples/banana_test_samples.mat
– load presetting from: models/MLP_7_3_2_banana.mat

Starting Matlab-Demo
matlab-Klassifikation_gui.bat

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 46

Solution of the XOR-problem with two-layer nn

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 47

Solution of the XOR-problem with two-layer nn

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 48

Solution of the XOR-problem with three-layer nn

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 49

Solution of the XOR-problem with three-layer nn

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 50

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 51

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 52

Convergence behaviour of
backpropagation algorithm

• Backpropagation with common gradient descent
(steepest descent)

Starting Matlab demo
matlab-BP-gradient.bat

• Backpropagation with conjugate gradient descent
(conjugate gradient) – significantly better convergence!

Starting Matlab demo
matlab-BP-CGgradient.bat

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 53

NN and their properties
• „Quick and Dirty“. A nn design is simple to implement and results in

solutions are by all means usable (a suboptimal solution is better than just any
solution).

• Particularly large problems can be solved.
• All strategies only use “local” optimization functions and generally do not

reach a global optimum, which is a big draw back for using neural nets.

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 54

Using a NN for iterative calculation of Principal
Component Analysis (KLT)

• Instead of solving the KLT explicitely by finding Eigen values, a nn can be
used for iterative calculation.

• A two-layer perceptron is used. The output of the hidden layer w is the
feature vector sought.

1

N

1
M

1

N

x̂x

TA

w

A

• The first layer calculates the feature vector as:
T=w A x

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 55

• Supposing a linear activation function is used. The second layer
implements the reconstruction of x with the transposed weight matrix of the
first layer

• BM is a N× M-matrix of the M dominant Eigenvectors of E{xxT} and T a
orthonormal M× M–matrix, which causes a rotation of the coordinate
system, within the space that is spanned by the M dominant Eigenvectors of
E{xxT}.

M=A B T

ˆ =x Aw
• Target of optimization is to minimize:

{ } { } { }22 2ˆ TJ E E E= − = − = −x x Aw x AA x x

• The following learning rule:

() Tα α← − − = − ∇A A Aw x w A J

• leads to a coefficient matrix A, which can be written as a product of two
matrices (without proof!):

ME II Kap 8bH Burkhardt Institut für Informatik Universität Freiburg 56

• The learning strategy does not include translation. i.e. this strategy
calculates the Eigenvectors of the moment matrix E{xxT} and not of the
covariance matrix K = E{(x-µx)(x- µx)T}. This can be implemented by
subtracting a recursively estimated expected value µx = E{x} before starting
the recursive estimation of the feature vector. The same effect can be
retrieved by using an extended observation vector:

1
 instead of

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x x
x

�

	Learning strategies for neuronal nets -the backpropagation algorithm
	Figure of the extended weight matrix
	The neural net with H layers
	Relations to the concept of function approximation by a linear combination of base functions
	Reaction of a neuron with two inputs and a threshold function 
	Reaction of a neuron with two inputs and a sigmoid function 
	Overlapping two neurons with two inputs each and a sigmoid function
	Reaction of a neuron in the second layer to two neurons of first layer after valuation by sigmoid function
	The backpropagation learning algorithm
	Definition of the variables of two layers for the backpropagation algorithm
	Dimensioning the net
	Complexity of backpropagation algorithm
	Backpropagation for training a two-layer network for function approximation(Matlab demo: „Backpropagation Calculation)
	Backpropagation for training a two-layer network for function approximation
	Backpropagation for training a two-layer network for function approximation (Matlab demo: „Function Approximation)
	Model big enough but only local minimum
	Generalization ability of the network
	Improving the ability to generalize of a net by adding noise
	Interpolation by overlapping of normal distributions
	Interpolation by overlapping of normal distributions
	Character recognition task for26 letters of size 75
	Two-layer neural net for symbol recognition with 35 input values (pixel), 10 neurons in the hidden layer and 26 neurons in the
	Demo with MATLAB
	Possibilites to accelerate the adaption
	Demo with MATLAB(Demo of Theodoridis)
	Demo with MATLAB (Klassifikationgui.m)
	Solution of the XOR-problem with two-layer nn
	Solution of the XOR-problem with two-layer nn
	Solution of the XOR-problem with three-layer nn
	Solution of the XOR-problem with three-layer nn
	
	
	Convergence behaviour of backpropagation algorithm
	NN and their properties
	Using a NN for iterative calculation of Principal Component Analysis (KLT)

