Learning strategies for neuronal nets -
the backpropagation algorithm

In contrast to the NNs with thresholds we handled until now NNs are the NNs
with non-linear activation functions f(x). The most common function is the
sigmoid function y(x):

| .
f(X)=p(X)=—=—
1+e

[t approxmiates with increasing a the
step function o(X).
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The function yA(X) is closely related to the tanh function. For a=1 applies:

2
tanh(X) = - —1=2p(2X) -1
l1+e
If the two parameter a and b are added, a more general form results:
1

¥, (X) = 1+ 20b) -1

with a controlling the sheerness and with b controlling the position on the X-axis.

The non-linearity of the activation function is the core reason for the existence of
the multi-layer perceptron; without this property the multi-layer perceptron
would coincide with a trivial linear one-layered network.

The differentiability of f(x) allows us to apply neccessary constraints (0(-)/0w; ;)
for optimization of the weight coefticients w; ;.

The first derivate of the sigmoid function can be ascribed to itself:
dy —1 1

o R N )
dx  (1+e™) (=he" == (== =) =y ()l =y ()
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Figure of the extended weight matrix
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The neural net with H layers

The multi-layer NN with H layers has a peculiar weight matrix W'! in every
layer, but 1dentical sigmoid-functions:

y2 yH-1 yH

_— W'l yl W’Z -~ > eeee — W'H - »

\ 4

vy =y(W Ny (.. Wy(W'X)..))

The learning is based on adjustment of the weight matrices with minimization of
a square error criterion between target value y and approximation y by the net
(supervised learning) in mind. The expected value has to be formed by the
available training ensemble of {y;,x;}:

J =min E{ 9—3’“2} = min E{HyH _yH2}
w" W

Note: The one-layer nn and the linear polynom classifier are identical, if the
activation function is set to y=I .
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Relations to the concept of function approximation by a
linear combination of base functions

The first layer creates the base functions in form of a hidden vector y,
and the second layer forms a linear combination of these base
functions.

Therefore the coefficient matrix W' of the first layer controls the
appearance of the base functions, while the weight matrix W2 of the
second layer contains the coefficients of the linear combination.
Additionally the matrix 1s weighted through the activation function.
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Reaction of a neuron with two inputs and a
threshold function &
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Reaction of a neuron with two inputs and a
sigmoid function y




Overlapping two neurons with two 1nputs

each and a sigmoid function
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Reaction of a neuron in the second layer to two neurons
of first layer after valuation by sigmoid function
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The backpropagation learning algorithm

The class map 1s done by a multi-layer perceptron, which produces a 1 on the
output in the regions of x, that are populated by the samples of the according
class, and produces a 0 in the areas allocated by other classes. In the areas in-
between and outside an interpolation resp. extrapolation 1s done.

The network ist trained based on the optimization of the squared quality factor:

J:E{

. 2
y(wrl ’ X’) o YH }

This term 1s non-linear both in the elements of the input-vector x”, and in
the weight coefficients {w";"}.
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From insertion of the function map of the multi-layer perceptron results:
e 2

J=E- }V(W'H ...\|I(W’2\|I(W'1X’)...)2—y >

y

\ J
* Sought is the global minimum. It is not clear whether such an element exists or

how many local minima exist.
The backpropagation algorithm solves the problem iteratively with a gradient
algorithm. One iterates according to:

W <« W —aVl] with:W’={W’1,W'2,...,W'H}

and the gradients: VJ = o) = &]h
oW’ |ow
The iteration terminates, when the gradient disappears at a (local or even
global) minimum.

A proper choice of a 1s difficult. Small values increase the number of required
iterations. High values reduce the probabilty of running into a local minimum,
risking the method to diverge and not finding the minimum (or giving rise to
oscillations).
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The iteration has only linear convergence (gradient algorithm).

Calculating the gradient:
For determination of the composed function

Y(x) =y (W y(Wr(W'X)..))

the chain rule 1s needed.

The error caused by a sample results in:

— 1
J, =1

¥(x) -y G-y ()

The expected value E{...} of the gradient has to be approximated by a mean
value of all sample gradients:

VI=13>'vJ,
j=1
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* We have to distinguish between

— 1individual learning based on the last sample

[x Y ] = VI,
— and cumulative learning (batch learning), based on
n
VIi=1%'vJ.
j=1

« Partial derivations for one layer:
For the r-th layer applies:

Nr
Yo =W (S)=w| > Wi X'
n=0

rr
n

X" n-th input of layer r

r

y.  m-th output of layer r
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Definition of the variables of two layers for
the backpropagation algorithm

layer r-1
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First of all we calculate the effect of the last hidden layer on the starting layer
r=H.

Using partial derivations of the quality function J (actually J;, but J is omitted
for simplification reasons) and applying the chain rule results:

H — AcH  AnsH 0 9n 'H
ow . 0SS OW,, oW -
—_—

0 a) os S os

_LH-1
introducing the sensibility of cell n o
-
0S,
A oJ oy,
H n A rioH
results: 5n — T A~ H ~rH ~H (yn_yn) f (Sn )
0S, oy, 08, —
a[; <9kyk>>2J
k=1
and thus for update of weights: ¥,

Wneu — Wa|t + AW Wlth AW = - ﬂ
oW

AW =—ad Y =—a(y, = 9,) f'(sHyn
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For all other hidden layers r <H the thoughts behind are a litte more complex.
Due to dependencies amongst each other, the values of ;! have an effect on all
elements S," of the following layer. Using the chain rule results in:

asr ! _Zﬁs 85“ -l
i 5k
With [ f(sr;l)\

a Z ka ym

68[’—1 = asr—l _ij f (Sr 1)

J J

—f(Sr 1)|:Z rr ri|

results:

1.e. the errors “backpropagate” from the starting layer to lower layers!
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« All learning samples are crossed without any changes of the weight
coefficients, and the gradient VJ results by forming the mean value of the VJ;.
Both values can be used for update of the parameter matrix W’ of the
perceptron:

Wi =W, —aVJ, individual learning
W.., =W, —aVJ  batch learning

* The gradients VJ and VJ; differ. The latter is the mean value of the first (VJ =
E{V Jj}), or: the first value is random value of the latter.
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The whole individual learning procedure consists of these steps:

Choose interim values for the coefficient matrices W, W2, ... 'WH of all layers

Given a new observation [X', ¥;]

Calculate the discrimination function ¥; from the given observation x’; and the

current weight matrices (forward calculation)

Calculate the error between estimation y and target vector y:
Ay=y-y

Calculate the gradient VJ regarding to all perceptron weights (error

J

backpropagation). To do so calculate first 3;~ of the starting layer according to:

S RGA ..
s ~ o T g e Vi (s;')

and calculate from this backwards all values of the lower layers according to:

5 = f'(sgl){zk:wm} fir r=H,H-1,...,2
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 considering the first derivate of the sigmoid function f(s)=yAs):

dy(s)
ds

t'(s) = =y (s) I~y (s))=yd-y)

e (Parallely) correct all perceptron weights according to:

. r=12,...H
W W —a——=W, —ady, fir n=12,...N"
" m=12,..M"

« For individual learning the weights {w"__I} are corrected with VJ for every
sample, while for batch learning all learning samples have to be considered, in
order to determine the averaged gradient VJ from the sequence {VJ}, before the
weights can be corrected according to:

r=12,...H
W W = > ad()yn (i) fir n=1,2,...N"
! m=1,2,...M"
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Backpropagation algorithm for matrices

Choose interim values for the coefficient matrices W, W2, ... 'WH of all layers
Given a new observation [x'j, ¥j]

Calculate the discrimination function §; from the given observation x’; and the
current weight matrices (forward calculation). Store all values of y* and s' in all

layers inbetween r=1,2,...,H.

Calculate the error between estimation y and target vector y on the output:
Ay=§-y

Calculate the gradient VJ regarding all perceptron weights (error

backpropagation). To do so first calculate 6" of the starting layer according to:

si__ 0 &

] — B of’ H
s o o (Y—y)eoT(s")

and calculate from this backwards all values of the lower layers according to:

5 =f'(s")o(W'"8") fir r=H,H-1,...,2
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considering the first derivate of the sigmoid function f(S)=yAS):

dy(s)
ds

t'(s) = =y (s) I~y (s))=yd-y)

Individual leraning: (parallely) correct all perceptron weight matrices with VJ
for every sample according to:

0J

—=W"' —Otﬁry”‘l)T fur r=1,2,...H
OW'

W'« W' —q

Cumulative learning: all samples have to be considered, in order to determine
the averaged value VJ from the sequence of the {VJ}, before the weights can be
corrected according to:

WeW —aY 8y  fir r=12,...H
J
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Properties:

* The backpropagation algorithm is simple to implement, but very complex
especially for large coefficient matrices, which causes the number of samples to
be large as well. The dependency of the method on the starting values of the
weights, the correction factor a, and the order of processing the samples have
also an adverse effect.

* Linear dependencies remain unconsidered, just like for recursive training of the
polynom classifier.

* The gradient algorithm has the advantage that it can be used for very large
problems. a

 The dimension of the coefficient matrix W results from the dimensions of the
input vector, the masked layers, and the output vector (N,N 1,..., NH-1 K) as:

H
T=dim(W)=> (N +DN" with N°=N and N" =K

h=1
N =dim(x) feature space

K =dim(y) number of classes
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Dimensioning the net

* The considerations for designing the multi-layer perceptron with threshold
function (o resp. sign) gives quite a good idea how many hidden-layers and
how many neurons should be used for a MLPC for backpropagation
learning (assumed one has a certain i1dea of distribution of clusters).

* The net is to be chosen as simple as possible. The higher the dimension the
higher the risk of overfitting, accompanied by a loss of ability to generalize.
Also higher dimension allows a lot of local maximas, which can cause the
algorithm to get stuck!

* For a given number of samples, the

—
learning phase should be stopped at £
a certain point. If not stopped the 0
net is overfitted to the existing data
and looses its ablility to generalize. testing

training

»

epoch;
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Complexity of backpropagation algorithm

* For T=dim(W) number of weights and bias terms, linear complexity in the
number of weights can be easily understood, since O(T) computation steps are
needed for forward simulation, O(T) steps are needed for backpropagation of
the error and also O(T) operations for correction of weights, altogether: O(T).

« If gradients would be determined experimentally by finite differences (on order
to do so, one would have to increment each weight and determine the effect on
the quality criterion by forward calculation) by calculating a differential
quotient according to (i.e. no analytical evaluation):

J(W +&)—J (W
&]r _JWj+6)—J( J')+0(g)
8Wji g

» T forward calculations of complexity O(T) would result and therefore a overall
(?) complexity of O(T?)
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Backpropagation for training a two-layer network for

function approximation
(Matlab demo: ,,Backpropagation Calculation)

yl — \|I(W1X +b1) — \l’(wllxll) — \I’(Sl) S\/ — y2 — (W2yl + bZ)

Wl bl ... 2 _ 2 2
mit: W1={ 1’1} und bl={ 1} mit: W [WU Wlsz]

1 1
W2,1 2

e Sought 1s an approximation of the function

y(X)=1+sin(£Xx) for —-2<Xx<2
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Backpropagation for training a two-layer network for
function approximation

« Backpropagation: For output layer or second layer with linear activation
function results due to f '=1:

57 =(y-Y)

» Backpropagation: For first layer with sigmoid function results:

S = f'(s})[w;jaz] =yl (1- y})[wﬁjaz] for j=1,2

« Correction of weights in the output layer:
Ale,j :aézy} and Ab°=ad®> for j=1,2

* Correction of weights in the mput layer:

Aw;, =ad;x  and Ab;=as;, for j=1,2
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<} nnd11bc

File Edit “iew Inzert Toolz “Window Help

Neuwral Network DESIGN Backpropagation Calculation
0.480 | b1{1) s1{1)
e
W1{1,1) i W2(1,1) s2
ni{1) al(l)
0.270
p
0.410
n1{2) al(2)
W1{2,1) it . W2{1,2) 0.480 | b2 t
0.130 | b1(2) s1(2) Last Error:  2.27
Input: p = | 1.0 _
Target: t = l+sin{p*pid) = 1.707 |
Simulate: al = logsig(W1*p+b1) = [0.321; 0.368] Fleset
az = purelinW2*al+b2) = 0.446
e = ta2 = 1.261 Fiandom
Backpropagate: s2 = 2dpurelin{n2)/dn2*e = 2.522 Contents
sl = dlogsig{n1)/dn1T"W2"s2 = [0.049;0.100]
Update: W1 = Wi1r's1*p’ = [0.265;.0.420] Close
) b1 = b1r's1 = [0.475;0.140]
Chapter 11
Starting Matlab demo W2 = W2dr's2*at’ = [0.171:0.077] P
b2 = b2-Ir's2 = 0.732
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Backpropagation for training a two-layer network for
function approximation

(Matlab demo: ,,Function Approximation)

« Sought 1s an approximation of the function
y(X)=1+sin(i-£x) for —2<x<2

 With increasing value of 1 (difficulty index) the MLPC network
requirements increase. The approximation based on the sigmoid function
needs more and more layers in order to depict several periods of the sinus
function.

* Problem: Convergence to local minima, even when the network 1s big
enough to represent the function

— The network is too small, so that approximation is poor, i.e. the global minimum can
be reached, but approximation quality 1s poor (i=8 and network 1-3-1)

— The network is big enough, so that approximation is good, but it converges towards a
local minimum (1=4 and network 1-3-1)
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<} nnd11fa
File Edit Wiew |nget Toolz “Window Help

Neural Network DESIGN Function Approximation

o4

Click the [Train]
button to train the
log=ig-linear
netwark on the
function at left.

Function Approximation

s

se the slide bars
to choose the
number of neurons
in the hidden layer
and the difficulty
of the function.

q? -1.5 1 Train
Input
NMumber of Hidden Neurons S1: 4 Contents
4 | i
) Cloze

1 Starting Matlab demo 9
Difficulty Index: 5
j | j Chapter 11
1 9 .
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Model big enough but only local minimum

J nnd11fa |._| |E|
File Edit View Insert Tools Window Help
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Generalization ability of the network

* Assuming that the network 1s trained for 11
samples

VX b Y X b i X0 )

 How well does the network approximate the function for samples
not learned depending on the complexity of the network?

Starting Matlab demo (Hagan 11-21)

e Rule: The network should have fewer parameters than the
available input/output pairs
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Improving the ability to generalize of a net
by adding noise

» If only few samples are available, the generalization ability of a
nn can be improved by extending the number of samples e.g. by
normally distributed noise. 1.e. adding further samples, which can
be found in the nearest neighbourhood with high probablity.

* In doing so the intra class areas are broadened and the borders
between classes are sharpened.

class 2

class 1 \\\\\\\\\“__
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Interpolation by overlapping of normal

distributions

1.4
1.2 - B
/ h . \ g \
\ W / |
0.8 / \ / \ ) \,
: N . \
0.6- / B \ / y \‘
/ I D /N _
0.4 7/ P / >< / \
e /N / \
0.2 ) / N / N
S
.

y(X) = Zai L(x=t)
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Interpolation by overlapping of
normal distributions
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Character recognition task for

26 letters of size 7x5

« with gradually increasing additive noise:

ARBE
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Two-layer neural net for symbol recognition with 35 input
values (pixel), 10 neurons in the hidden layer and 26 neurons
in the output layer

first layer second layer
A AN
4 N7 N
1 2
X y y
> 1 > 2 >
Nx1 W Six1= W 2% 1=
SixN= gl 10 x1 g24gi= 52 26 x 1
10 x35 @slx_l:w 2610 @327:\"
/  10x1 / 26x1
1+ b! 1+ b?
N=35 Six1= Six1= S2x1= S2x1=
\ 10x1 IOXIJ k 26 x 1 26 xy
Y Y
yI=fI(W!x+b!) y2=f2(W2y'l+h?)

Y= y(W2y(W'x+b!)+b?)
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Demo with MATLAB

* Opening Matlab
— Demo in Toolbox Neural Networks
— ,,Character recognition® (command line)

— Two networks are trained
 network 1 without noise

 network 2 with noise

— Network 2 has better results than network 1
considering an independent set of test data

Starting Matlab demo
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Possibilites to accelerate the adaption

Adaption of NN 1s simply a general parameter optimization
problem. Accordingly a variety of other optimization methods
from numerical mathematics could be applied in principle. This
can lead to significant improvements (convergence speed,
convergence area, stability, complexity).

In general conclusions cannot be made easily, since the events can
differ a lot and compromises have to be made!

* Heuristic improvements of the gradient algorithm (increment
control)

— gradient algorithm (steepest descent) with momentum term (update of
weights depends not only on gradient but also on former update)

— using an adaptive learning factor

* Conjugate gradient algorithm
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* Newton and Semi-Newton-algorithms (using the second derivatives of the
error function, e.g. in form of Hesse mtrix or its estimation)
—  Quickprop
— Levenberg-Marquardt-algorithm

Taylor expansion of quality function in w :

J(W+Aw) = J(W)+VJI' Aw + L Aw'HAw + terms of higher order
0J

“ow

with: VJ gradient vector

0%J .
and: H= Hesse matrix
c?wiﬁwj

* Pruning techniques. Starting with a sufficiently big network, neurons, that
have no or little effect on the quality function, are taken off the net, which
can reduce overfitting of data.
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Demo with MATLAB

(Demo of Theodoridis)

« (C:\..\matlab\PR\startdemo

« Example 2 (XOR) with (2-2-1 and 2-5-5-1)

« Example 3 with three-layer network [5,5] Start der Matlab-Demo
(3000 epochs, learning rate 0,7, momentum 0,5)

Two solutions of the XOR-problem:

A 2-2-2-1 does not
G o J e converge!

©) 9 g

V3

Convex area implemented with two-layer Union of 2 convex areas implemented with a

net (2-2-1). Possible mal-classification three-layer net (2-5-5-1). Possible mal-
for variance: classification for variance:

In||>1v2 ~ 0,35 |n||>0,5
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,J 3-layer adaptive BP with momentum
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XOR with high noise in order to activate
second solution! With two lines a error-free
(exact) combination cannot be reached and
the gradient is still different from 0!
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<3 J-layer adaptive BP with momentum

1zt laver:s 2nd layer:S learnin rate:0.7  momentum: 0.5 Irncs% Irﬂec:zﬂ%
2
1':' - 1 1 1 1 1

1
10

Sum-Squared Errar

10

1 |:|- I I 1 1 I
0 SO0 1000 1500 2000 2500 A000

Epoch

I Riirl-hards Tarnctit11+ 853+ T fFAarmoatil T Thivioarcitatr Erathhitvro NALD IT 7/~ Ol




AA

=10] x|

| 1 1 1 | | 1
o -
%
5 2
o
Ku.nu.nu.nmun
ko
&%ﬁﬁﬁ
s 5 .
%
®
x % i
» x«wx .
”u.n“ —
St
g
%
y o
i i -
% i, #x
i u.w_mx
)
I
% Hmnx “
xx%ﬂﬁx _
" b I
|
||||| A
L0 Ay L) ™ L0 o L)
Ml —d e —

3.5

2.5

1.5

1

NALD IT 7/~ Ol

1L hardd Tvracti1t11f €3+ TrnfFarivatil T Trhivearctifatr BErathitror

o R,



Demo with MATLAB
(Klassifikationgui.m)

. Opemng Matlab

first invoke setmypath.m, then

C:\Home\ppt\Lehre\ME_2002\matlab\KlassifikatorEntwurf-
WinXX\Klassifikationgui

set of data: load Samples/xor2.mat
Setting: 500 epochs, learning rate 0.7

load weight matrices: models/xor-trivial. mat
load weight matrices : models/xor-3.mat

* Two-class problem with banana shape

load set of data Samples/banana test samples.mat
load presetting from: models/MLP 7 3 2 banana.mat

Starting Matlab-Demo
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Solution of the XOR-problem with two-layer nn

-} 3-D Plot of MLP Discriminant Functions

Discriminant Functions
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Solution of the XOR-problem with two-layer nn

-} 3-D Plot of MLP Discriminant Functions
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Solution of the XOR-problem with three-layer nn

-} 3-D Plot of MLP Discriminant Functions

Discriminant Functions
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Solution of the XOR-problem with three-layer nn

-} 3-D Plot of MLP Discriminant Functions
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-} 3-D Plot of MLP Discriminant Functions

Discriminant Functions
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-} 3-D Plot of MLP Discriminant Functions

Discriminant Functions
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Convergence behaviour of
backpropagation algorithm

Backpropagation with common gradient descent
(steepest descent)

Starting Matlab demo

Backpropagation with conjugate gradient descent
(conjugate gradient) — significantly better convergence!

Starting Matlab demo
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NN and their properties

* ,,Quick and Dirty*“. A nn design 1s simple to implement and results in
solutions are by all means usable (a suboptimal solution is better than just any
solution).

« Particularly large problems can be solved.

« All strategies only use “local” optimization functions and generally do not
reach a global optimum, which 1s a big draw back for using neural nets.
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Using a NN for 1terative calculation of Principal
Component Analysis (KLT)

» Instead of solving the KLT explicitely by finding Eigen values, a nn can be
used for iterative calculation.

* A two-layer perceptron is used. The output of the hidden layer w 1s the
feature vector sought.

« The first layer calculates the feature vector as:

w=A'x
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Supposing a linear activation function is used. The second layer
implements the reconstruction of x with the transposed weight matrix of the
first layer

X = Aw
Target of optimization is to minimize:

I =E{Jx—x'} = E{Jaw x| 5 E{HAATX_XHZ}

The following learning rule:
A—A-a(Aw—x)w' =A—-aVJ]

leads to a coefficient matrix A, which can be written as a product of two
matrices (without proof!):

A=B,T

B,, is a Nx M-matrix of the M dominant Eigenvectors of E{xx'} and T a
orthonormal M x M—matrix, which causes a rotation of the coordinate
system, within the space that is spanned by the M dominant Eigenvectors of

E{xx'}.
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e The learning strategy does not include translation. 1.e. this strategy

calculates the Eigenvectors of the moment matrix E {xx'} and not of the
covariance matrix K = E{(x-p,)(x- p,)"}. This can be implemented by
subtracting a recursively estimated expected value p, = E{x} before starting
the recursive estimation of the feature vector. The same effect can be

retrieved by using an extended observation vector:

instead of x
X R

e
|l
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