
ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 1

Chapter 8

Neural networks

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 2

Aproaches to designing a
classifier

There are in principal two different kinds of approaches to
designing a classifier:

1. Statistical parametric modelling of class distributions,
then MAP

2. Solving a map problem by function approximation (non-
linear regression) of the a-posteriori-probabilities

{ }2min ()E

feature space
decision space

−

−
−

f x y

X
Y

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 3

Zu 1.) The approach for designing a classifier described so far is based on
approximating class-specific distribution densities

p(x|ωi)P(ωi)
parametrically by static models (by estimating the parameters, e.g.
Gaussian distribution) and on deciding using a maximum selection.
Learning means: Improving of the parameter-fitting.

Zu 2.) There is a second approach, which is based on evaluation of the a-
posteriori-probablity density

P(ωi|x)
and can be described by a problem of function approximation.

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 4

The two approaches to classifier design

Modelling of class
distribution densities

Direct modelling of
a-posteriori-distribution densities

(|) (|) ()i i iP p Pω ω ωx x∼ (|)iP ω x

1(|)P ω x 2(|)P ω x

1 1(|) ()p Pω ωx

2 2(|) ()p Pω ωx

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 5

Equivalence of both approaches

General case: matlab-MAP.bat

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 6

This function approximation can be performed e.g. by a non-linear regression
with polynoms or also using an artificial neural network (NN). This
lecture aims to cover the foundations for both approaches.

Basically, the search for the best approximation function is a variation
problem, which can be reduced to a parametric optimization problem by
choosing base functions. Learning in this context also means: parameter-
fitting.

The equivalence of both approaches result from the Bayes-theorem:

The equivalence results from the denomiator being independent on ω .

(|) ()(|)
()
i i

i
p Pp

p
ω ωω =

xx
x

independent on ω

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 7

In the following the transfer to a function approximation problem will be
established.

With known a-posteriori-p. P(ω|x) for every continuous x a ω could be
assigned to at the best (functional assignment f:x →ω). Given are only
samples and sought is a function f, that fits the individual experiments at
the best and therefore implements a map:

2

()
min { () }J E= −
f x

f x y

: feature space equivalence space
ω

→
x

f

This task can be solved using variation calculation. Choosing the minimal error
square as quality factor, it is about minimizing:

ω

x

f

(xi, ωk)

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 8

In this process target vectors {yi} in the decision space Y
by simple map of scalar labels {ωi}

1 2

1 2

: { , , , }

: { , , , }
mit:

0

0
 i-ter Einheitsvektor1

0

0

K

K

i

ω ω ω=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

y y y

y

Y�

…

…

#

#

Ω

with

i-th unit vector

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 9

Two-class-problem with Gaussian distribution density

decision function

x

1(|) ()P pω ⋅x x

(|) () (,) (|) ()k k k kP p p p Pω ω ω ω⋅ = = ⋅x x x x

2 2(|) ()p Pω ω⋅x1 1(|) ()p Pω ω⋅x

() (|) ()k k
K

p p Pω ω= ⋅∑x x

x
feature space

2(|) ()P pω ⋅x x

1x
µ

2xµ

1

0

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 10

Regression using
artificial neural nets

Usage of a multilayer perceptron for function
approximation

Motivation:
– Imitation of human approach
– Parallel evaluation with NN-computer (hardware)

Human brain: 1011 neurons with up to 104 links per
neuron

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 11

Model of a neuron
(McCulloch & Pitts, 1943)

(,)y f b= 〈 〉 +w x

The neural activity is described by a scalar product of the weight vector w and the
input channels xi with a subsequent non-linear activation function f(s). Excitations xi
can have a strengthening or repressice effect, which corresponds to positive or negative
weight values wi .

w0x0

w1x1

w2x2

wNxN

+ f (s)
s y

internal
state variable

synapses

axonb

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 12

The multilayer perceptron with 3 layers
(Rosenblatt 1958)

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 13

f1+

W1

b11

x
N×1

S1×N

S1×1

S1×1

S1×1

s1

y1=f1(W1x+b1)

first layer

N

f2+

W2

b21

y1

S1×1
S2×S1

S2×1

S2×1

S2×1

s2

y2=f2(W2y1+b2)

second layer

f1+

W3

b31

y2

S2×1
S3×S2

S3×1

S3×1

S3×1

s3

y3=f3(W3y2+b3)

third layer

y3

S3×1

y3=f3(W3f2(W2f1(W1x+b1)+b2)+b3)

Symbolic description of a perceptron
with 3 layers

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 14

The perceptron with one neuron and two inputs
(Rosenblatt, 1958)

In the beginning of NN-research threshold logic was prefered to use, i.e. the input
vector was two-valued and as activation function unit step function (f(s)=σ(s)=1
for s≥0 and σ(s)=0 für s<0).

Since every Boolean function can be written in disjunctive or conjunctive normal
form, it is possible to implement every logic function with a two-layered
perceptron.

w

x

x1

x2

y=1

y=0

(,) (())y b gσ σ= 〈 〉 + =w x x

x1

+
y

w0
σ

w0x2 b
threshold

x1

+
y

w0
σ

w0x2 b

s

functionality with real-valued inputs

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 15

Functionality of the perceptron
The neuron divides the input space of x with a hyper plane (here: line) into two
halves. The hyper plane is the geometric location, on which all vectors lie, whose
projections to w are constant:

() , 0g b= 〈 〉 + =x w x

For two points on the separation plane applies:

1 2

1 2

1 2

0 , ,
, () 0

()

b b= 〈 〉 + = 〈 〉 +
⇒ 〈 − 〉 =
⇒ ⊥ −

w x w x
w x x

w x x
w

x1

x1

x2

d

g(x)>0

g(x)<0

d b= w

x2

?

orthogonal projection:

, cos
b

ϕ ><
〈 〉

=
w x x
w w

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 16

Non-linear classifier design -
the XOR problem

It is obvious, that the Boolean functions AND and OR can be solved
by a linear classifier and therefore with a one-layered perceptron:

x1

x2 AND

OR

(0,0) (1,0)

(1,1)(0,1)

d

x1

+
y

w0
σ

w0x2 b
threshold

AND

OR
1
2

1
1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

w
1

4 2b = −

3
4 2b = −

3
21 2

1
21 2

or simplified:
AND: () 0
OR: () 0

g x x
g x x

= + − =
= + − =

x
x

x 1 x 2 AND class OR class
0 0 0 ω1 0 ω1

0 1 0 ω1 1 ω2

1 0 0 ω1 1 ω2

1 1 1 ω2 1 ω2

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 17

Solving the XOR problem with a two-
layered perceptron

The exclusive-OR problem contrary to AND and OR can not be solved by a
linear classifier.

A solution can be achieved by combination of two separating lines. This leads
to a two-layered perceptron!

OR

1
21 1 2

3
22 1 2

3
21 2

() OR
() NAND
() AND

y x x
y x x
z y y

σ
σ
σ

= + −
= − − +
= + −

NAND

XOR

y1

x1 + z
1

-1
x2

-1/2 +
σ

+-1

1

+3/2

-3/2

1

1

y1

y2

σ

σ

After mapping the first layer a linearly
separable problem results!!

x 1 x 2 y 1 y 2 XOR class
0 0 0 1 0 ω1

0 1 1 1 1 ω2

1 0 1 1 1 ω2

1 1 1 0 0 ω1

first layer second layer

1 2 1 2 1 2() () y XORz x x x x y= ∨ ∧ ∧ = ∧
y2

y1

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 18

Functionality of the first layer:
Mapping the real-valued input space to the corners of a

hyper cube
In the first layer of a perceptron a neuron reacts with 0 or 1, dependung on in

which half of the half spaces created by the hyper plane the input vector lies.
Each further neuron creates an additional separation plane. The first layer of a

perceptron therefore maps the real-valued input space to the corners of a
hyper cube.

The intersecting separating planes form linearly limited (convex) areas, so-called
polyhedron. Each area corresponds to a corner of the hyper cube.

The following diagram shows 3 neurons and a two-dimensional input space x:

+
-

+
-

+
-

g2(x)

g3(x)

g1(x)

111

110

100
000001

010

(y1,y2,y3) = 011

x1

x2

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 19

Functionality of the second layer:
Cutting a corner off the hyper cube

In the second layer a unique feature for a convex area can be created by cutting a
corner off the hyper cube with a new separation plane:

convex area

vertices of a hyper cube

101

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 20

Optimal separation plane for cutting a corner
off a hyper cube

If the signum function is chosen as the non-linear function in the neuron, the
resulting hyper cube lies centered within the origin. The optimal separation
plane lies in the middle of a corner and a plane, which is spanned by the next
neighbours.

Without loss of generality we can consider the corner along the first space
diagonal u. The following applies:

1

1

x1

x2

d

N=2

(-1,-1) (1,-1)

(1,1)(-1,1) []1 1 1 1 with: dim()T

u

N

N

= =

⇒ = =

u x

e u u u

…

Actually placing the separation plane with
distance d=N1/2-ε with sufficiently small
distance ε will do. Problem: an exact
statement about ε depending on N cannot be
made.

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 21

The separation plane lies exactly between u and the orthogonal projection of one
of the neighbouring corners u1 to u:

A u neighbouring corner of the cube
produces in the scalar product <u1,u>
exactly (N-2) !

eu

u1
u

separation plane

1
⊥u

[]1

1

1 1 1 1T

N −

= −u …��	�

N

1 1

2

1 1
2

21,

and therefore the rootpoint of the separation plane:
2 1 1 1(1) (1)

2

2z. Bsp. 3 3
 4 3 4
 100 0,99

T
u

N

u

d

N
N N

N N N
N N N N

N

N
N

⊥

−

⊥

−
= 〈 〉 =

+ − − −
= + = − = =

= ⇒

= ⇒
= ⇒

u u u e u

u u u u u e

u

u
u

�	

The equation of the separation plane results as:
1,

1 1,

, (1)

u
Nd

N
N

N N
N

−
〈 〉 = =

−
⇒ 〈 〉 =

⇒ 〈 〉 = −

x e

x u

x u

d

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 22

The 3-layer perceptron
with threshold function

3rd layer: arbitrary linearly limited areas
evolve from union of convex areas (OR).

With a 3-L-S-MLPC arbitrary linealy limited cluster
can be classified in feature spaces!!

1111

0000

1100

0

1

1st layer: intersecting hyper planes form
convex polyhedron . These are mapped to
the corners of a hyper cube.

2nd layer: By cutting corners off the hyper
cube convexe polyhedrons are selected
by intersection of half spaces (AND).

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 23

first layer:
linearly limited areas

are mapped to
hypercubes

second layer:
intersections of half spaces

(polyhedrons)
are assigned to Boolean

vectors (AND)

third layer:
union of

convex areas (OR)

f1+

W1

b11

x
N×1

S1×N

S1×1

S1×1

S1×1

s1

y1=f1(W1x+b1)

N

f2+

W2

b21

y1

S1×1
S2×S1

S2×1

S2×1

S2×1

s2

y2=f2(W2y1+b2)

f1+

W3

b31

y2

S2×1
S3×S2

S3×1

S3×1

S3×1

s3

y3=f3(W3y2+b3)

y3

S3×1

y3=f3(W3f2(W2f1(W1x+b1)+b2)+b3)

Perceptron with 3 layers for implementing a classifier for
arbirtrary linearly limited areas (polyhedrons)

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 24

Example: Selecting a non-convex area
with a 3-layered perceptron with f(s)=sign(s)

1
2
3
4
5

1 2 3 4 5 x1

x2

+

+

-

-

g4

g1 g2 g3

g5
g6

1,1 1,2 1

2,1 2,2 2

3,1 3,2 31 1

4,1 4,2 4

5,1 5,2 5

6,1 6,2 6

1 0 1
1 0 2
1 0 4

0 1 4
0 1 2
0 1 1

w w g
w w g
w w g
w w g
w w g
w w g

= = ← −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ← −⎢ ⎥ ⎢ ⎥
⎢ ⎥= = ⎢ ⎥← −

= =⎢ ⎥ ⎢ ⎥= = ← −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = ← −
⎢ ⎥ ⎢ ⎥

= = ← −⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

W b

y3=f3(W3f2(W2f1(W1x+b1)+b2)+b3)

1 1 1 1
1

1
e.g.: : , 0 with: 1

0
g b b

⎡ ⎤
〈 〉 + = = = −⎢ ⎥

⎣ ⎦
w x w

task: Designing the first layer: definition of hyper planes

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 25

Designing the second layer:

1
2
3
4
5

1 2 3 4 5 x1

x2

+

+

-

-

g4

g1 g2 g3

g5
g6

task: Designing the second layer:
Cutting corners off the hyper cube

Marking the areas:

G1

G2 G3

1
2 2

2

3

1 1 1 1 1 1 5
1 1 1 1 1 1 5
1 1 1 1 1 1 5

− − − ← −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − − − ← = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − ← −⎣ ⎦ ⎣ ⎦

W b
G
G
G

g1 g2 g3 g4 g5 g6

1 2 3 4 5 6

1

2

3

g g g g g g
+ − − − + +
+ − − − − +
+ + − − − +

G
G
G

The row vectors of W2 point to the corners to be cut off; the threshold has value N-1

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 26

Designing the third layer:

[]3 31 1 1 2b= − − − = −W

Within the third layer the union of areas has to be implemented, which is done by a simple
OR-conjunction. This means that the corner [–1 –1 –1] has to be cut off, which is done
using:

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 27

Simplified design of the second and third layer:

1
2
3
4
5

1 2 3 4 5 x1

x2

+

+

-

-

g4

g1 g2 g3

g5
g6

task: Designing the second layer:
Cutting corners off the hyper cube

Marking the areas: the table contains “don‘t care”-
elements (∗). The corresponding neurons can be left
unconsidered (cutting the link)G1

G2 G3

12 2

2

1 1 0 1 0 1 3

1 0 1 0 1 1 3
←− − −⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥←− − −⎣ ⎦ ⎣ ⎦
W b

F
F

g1 g2 g3 g4 g5 g6

1 2 3 4 5 6

1 1 2

2 2 3

g g g g g g
= ∪ + − ∗ − ∗ +
= ∪ + ∗ − ∗ − +

F G G
F G G

The row vectors if W2 point exactly to the corners to be cut off; the threshold has value
N-1 of the reduced cube!

The dimension of the
reduced cube is only
N=4 (without “don‘t
care”-elements!)

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 28

Simplified design of third layer:

[]3 31 1 1b= − − = −W

Within the third layer union of areas has to be implemented, which is done by a simple
OR-conjunction. This means, that the corner [–1 –1] has to be cut off, which is done
using:

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 29

Example for a non linearly separable two-class
problem

(M.T. Hagan, H.B. Demuth, M. Beale „Neural Network Design“, PWS Publishing Company, Boston, 1995)

1
2
3

1 2 3 4 5 x1

x2

class ω1
class ω2

classification problem

1
2
3

1 2 3 4 5 x1

x2
separation lines of the first layer

1
2 3

4

5
6

7
8

11
10

9

1
2
3

1 2 3 4 5 x1

x2 convex regions of the
second layer

1
2 3

4

5
6

7
8

11
10

9

1
2
3

1 2 3 4 5 x1

x2 Final decision areas
of the third layer

1
2 3

4

5
6

7
8

11
10

9

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 30

Example for a non linearly separable two-
class problem

[]

1

1

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

2 3 0.5 0.5 1.75 2.25 3.25 3.75 6.25 5.75 4.75

T

T

− − − − −⎡ ⎤
= ⎢ ⎥− − − − −⎣ ⎦

= − − − − −

W

b

First layer: 11 lines for separating the areas as function of two input
variables are needed!

2 2

1 1 1 1 0 0 0 0 0 0 0 3
0 0 0 0 1 1 0 0 1 0 1 3

0 0 0 0 1 0 0 1 1 1 0 3
0 0 0 0 0 0 1 1 1 0 1 3

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

W b

Second layer: four convex areas are selected!

[]3 31 1 1 1 3b= =W
Third layer:

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 31

Example for a non linearly separable
two-class problem

first layer:
linearly limited areas

are mapped to
hypercubes

second layer:
intersections of half spaces

(polyhedrons)
are assigned to

Boolean vectors (AND)

third layer:
union of

convex areas (OR)

+

W1

b11

x
2×1

11×2

11×1

11×1

11×1

s1

y1=sign(W1x+b1)

2

+

W2

b21

y1

11×1
4×11

4×1

4×1

4×1

s2

y2=sign(W2y1+b2)

+

W3

b31

y2

4×1
1×4

1×1

1×1

1×1

s3

y3=sign(W3y2+b3)

y3

1×1

y3=sign(W3sign(W2sign(W1x+b1)+b2)+b3)

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 32

En route to automatic design of a
neural network

The approach drafted so far is very descriptive and in the
two-dimensional case intuitive, but for higher
dimensions it is not applicable. In practice we only have
learning samples. An automatic algorithm is needed,
that based on the approach so far and on a learning
process calculates the optimal weights of the NN
autmatically.

If one chooses to employ iterative algorithms for this kind
of non-linear optimization, differientiable non-linearities
in the neurons are needed (the threshold functions are
terminally applicable for this task!)

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 33

Linearly separable classes –
the perceptron algorithm

Target is an algorithm for automatic adjustment of the unknown weight matrices
Wi of a perceptron to a classification problem, given a finite number of samples
{(xi,ωk)}.
In case of linearly separable classes Rosenblatt proposed an iterative algorithm for
solving this problem. Supposing that a linear separation plane, defined by the
equation w*Tx=0, exists for the two-class problem:

1

2

* 0
* 0

T

T

ω

ω

> ∀ ∈

< ∀ ∈

w x x
w x x

This includes the case, that the separation plane does
not intersect the origin (as it is here), i.e. w*Tx+b*=0,
since this case can by extension of x be reduced to the
equation above:

1, ,
TTT T

T T

b

b

∗ ∗ ∗

∗ ∗ ∗

⎡ ⎤′ ′⎡ ⎤= =⎣ ⎦ ⎣ ⎦

′ ′⇒ = +

x x w w

w x w x Linearly separable problem

1ω

2ω

w

x

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 34

The problem is solved by choosing an applicable objective function and
declaration of an optimization algorithm. The perceptron quality measure that is
to be minimized is given by (measure for mal-classification):

where Y contains the set of training vectors, which
are mal- classified by the given hyper plane.
Obviously the sum above is always positive and
becomes zero, if Y is the empty set, i.e. all
elements have been classified correctly.
In case of a wrongly classified vector x∈ω1 we get
with wTx > 0 and δx > 0 a positive productof the
two terms. The same applies for vectors of class ω2
. The objective function is zero (its minimal value),
if all samples have been classified correctly.

1

2

() ()

mit: 1 für
und: 1 für

T
x

x

x

J δ

δ ω
δ ω

∈

= = +

= + ∈

= − ∈

∑
x

w w x

x
x

Y

1ω

2ω

w

ix

sum of all absolute values of the
projections of the mal-classified
vectors to the normal vector of the
separation line

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 35

The objective function is continuous and piecewise linear. If we alter the weight
vector little, J(w) changes linearly up to the point where the numer of mal-
classified vectors changes. At this point the gradient of J is not defined and not
continuous.
The iterative minimization of the cost function is done by an algorithm, which is
similiar to gradient descent:

1
()

i i i
Jρ+

=

∂
= −

∂
iw w

ww w
w

wi is the weight vector for the i-th iteration and ρi a squence of positive numbers.
Points of discontiniuty are to be considered carefully! From the objective function
results:

1

() , due to:

and therefore:

 perceptron algorithm

x

i i i x

J δ

ρ δ

∈

+
∈

∂ ∂〈 〉
= =

∂ ∂

= −

∑

∑

x

x

w w xx x
w w

w w x

Y

Y

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 36

The iteration has to be continued until the algorithm converges.
The following picture illustrates the functionality, supposing, that within iteration
step i only one x is mal-classified
(wTx > 0) and let ρi=0,5. The perceptron algorithm corrects the weight vector in
the direction of x. Therefore the separation line rotates and x is correctly
classified (wTx > 0) .

i+1

wi+1

ρix

i

x

wi

x1

x2

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 37

In the following example we suppose, that we have reached the last but one
iteration step and only two feature vectors still are mal-classified:

[]
[] []

1 2separation line: 0,5 0 weight vector: 1 1 0,5

mal-classified vectors: 0,4 0,05 -0,2 0,75

TT

T T

x x+ − = ⇒ = −w

With the perceptron algorithm results the next weight vector with ρi=0,7 as:

1

1 2

0, 4 0, 2 1,42
0,7(1) 0,05 0,7(1) 0,75 0,51

1 1 0,5
The new separation line: 1, 42 0,51 0,5 0 separates all
vectors correctly. The algorithm terminates.

i i

x x

+

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − − + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ − =

w w

ME I Kap 8aH Burkhardt Institut für Informatik Universität Freiburg 38

Properties of the perceptron algorithm

• Later we will see multi-layer NN, which can solve arbitrary classification
problems (even non-linear problems). The backpropagation algorithm can
be used to train neural networks.

Demo from Matlab: NN-Toolbox

-Perceptron Learning rule

-Linearly non-separable vectors

Demo from Matlab: NN-Toolbox

-Perceptron Learning rule

-Linearly non-separable vectors

• One can prove, that the algorithm converges in a finite number of
iterations towards a solution (with properly chosen values of ρi, which is
always a problem for gradient algorithms), if the condition is fulfilled, that
the classes are linearly separable.

• The solution found is not unique though.

• For non linearly separable problems no solution results. Correction in the
iteration always has absolute values different from zero and the algorithm
therefore cannot terminate.

	Chapter 8
	Aproaches to designing a classifier
	The two approaches to classifier design
	Equivalence of both approaches
	Two-class-problem with Gaussian distribution density
	Regression using artificial neural nets
	Model of a neuron(McCulloch & Pitts, 1943)
	The multilayer perceptron with 3 layers(Rosenblatt 1958)
	Symbolic description of a perceptron with 3 layers
	The perceptron with one neuron and two inputs (Rosenblatt, 1958)
	Functionality of the perceptron
	Non-linear classifier design -the XOR problem
	Solving the XOR problem with a two-layered perceptron
	Functionality of the first layer:Mapping the real-valued input space to the corners of a hyper cube
	Functionality of the second layer:Cutting a corner off the hyper cube
	Optimal separation plane for cutting a corner off a hyper cube
	The 3-layer perceptron with threshold function
	Perceptron with 3 layers for implementing a classifier for arbirtrary linearly limited areas (polyhedrons)
	Example: Selecting a non-convex area with a 3-layered perceptron with f(s)=sign(s)
	Designing the second layer:
	Designing the third layer:
	Simplified design of the second and third layer:
	Simplified design of third layer:
	Example for a non linearly separable two-class problem(M.T. Hagan, H.B. Demuth, M. Beale „Neural Network Design“, PWS Publish
	Example for a non linearly separable two-class problem
	Example for a non linearly separable two-class problem
	En route to automatic design of a neural network
	Linearly separable classes – the perceptron algorithm
	Properties of the perceptron algorithm

