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Estimating the covariance matrix
The covariance matrix (central moments) can be estimated from an ensemble of 

observations {xi}:
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Problem of high feature dimensionality
Ĉ is thus singular, if less than n=N, with N=dim(x), independent 

observations of the ensemble are available!!
This is a problem, if the number of features is very high and only 

few samples of the ensemble are available.
Also Ĉ-1 is needed!
The estimation can be significantly improved with n>>N. 

What to do, if the number of samples is too little? One could 
– reduce the number of feature using a KLT, or
– assuming the features are not correlated all auxiliary diagonal elements are 

set to zero, which forces invertibality. Even though this procedure is actually
incorrect, the results of this heuristics are usually good. 



ME I Kap 7cH Burkhardt Institut für Informatik Universität Freiburg 3

The problem of few samples 
The resulting classifier assuming statistical independency is for sure suboptimal. This

relates to the problem of  insufficient samples. It can be compared to the problem of 
curve-fitting. The images shows 6 data points and different polynoms for fitting. The 
data points were created adding mean value free, independent noise to a parabola. 
That is why a parabel should result in the best fit, assuming that more samples are
added to supplement/complete the 6 points. 

curve approximation to a 
set of points

• The line results in a feasible estimation.
• The parabel results in a better approximation, 

but in question is still, whether the sample was 
appropiate to locate the parabel. The parabel for
a higher number of samples could be somewhere
different and in the inspected interval the line 
could be a better estimation.

• The polynomial of 10th degree results in a 
perfect fit. But such an underdetermined 
estimation cannot be expected to approximate
new samples in a good way. Many more samples
are needed to get a similarly good approximation
of a polynom of 10th degree compared to a 
parabel fit, despite the fact, that the latter case is 
a special case (n=2) of first.
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Rule: the fewer the samples the simpler the model

Ensemble

sample 1 (representative)

sample 2 (not representative)

Generally applies: Reliable inter- and extrapolation
can only be expected for highly over-
determined solutions (sufficiently high 
number of samples).

If an exact statistical model would have been given, 
our problem could be solved with the MAP-
approach. In practice there is the problem of 
finding a good classifier from a finite number
of samples. 
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The problem of generalizing capability
of a classifier

How does a classifier, which is built on a finite set of samples, react 
to new experiments (problem of inter- and extrapolation)?

That is why we need to distinguish between a training- (learning-)
and a testing set.

The checking of the capability only based on the learning set is
called reclassification (which can lead to an ideal fit) and the
checking based on an independent test data set is called
generalization (inter- and extrapolation capability).

The higher the number of parameter of the estimation function used
in the classification, the higher the number of the samples of  the
training set has to be. 
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Recursive estimation of statistical 
parameter

In case during a recognition task new samples
are added, recursive estimation of the
paramaters can be beneficial. This produces
much less cost than calculating the basic
equations over and over again using the
enhanced samples (learnig or adaptive 
approach, batch estimate versus recursive
estimate).
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For estimation of expected value applies:

The estimate is altered proportionally to deviation between present estimate and 
present observation with each step.
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Generalizing the recursion above results in:
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With  α=1/n stationary relations are assumed, i.e. all observations
have the same weight independent on the time of occurence, 
which means that later observations are as important as first
observations. 

contribution to 
mean value

long term averaging

1/ nα =

1/α

contribution to
mean value

short term averaging

.constα =

At  α=const. a fluctuation is accepted, i.e. the newer observations
have a higher weight than the old ones (exponential smoothing). 
The observation frame is approximately given through 1/α with
α=const.
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Recursive estimate of the 
covariance matrix

For  correlation matrix (2nd moments) this recursion results:
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Recursive estimate of the 
covariance matrix

Both recursions together:
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Recursive estimate of the inverse
correlation matrix

For calculating the Mahalanobis-distance a recursion for the inverse covariance 
matrix is needed, without inverting the matrix additionally!

With the following statement about matrix inversion:

1 1( ) ( )T T T− −+ = − +I AB I A I B A B

a recursion for the inverse correlation matrix results:
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Recursive estimate of the inverse 
correlation matrix

And for inverse covariance matrix:
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Recursive learning can of course be combined with pattern
classification. The system is being improved for additional 
samples. This implies „labelling“ for classes though (supervised  
learning), i.e. the human observer decides on the class.
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