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Chapter 6

Optimal feature selection
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Simple recognition example with
two objects (circle and square)

No one would use 512×512 pixels as features of the objects !!          
(1 feature is sufficient: area)

Assuming that the images are scanned with 512×512 pixels.
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Feature selection with 
linear transformations

The complexity of designing a classifier increases with dimension N of the feature 
space. The intention of the feature selection is to choose an appropiate subspace. 
The selected features must have high relevance for characterization of the 
classes, and at the same time guarantee a high capability to discriminate 
between classes. Thus they must vary little within a class (intra class distance), 
and guarantee great distances between the classes (inter class distance).

In general it does not make great sense to use the pixels of an image directly as a 
feature (N=5122=218=0,25 mio. pixel). Generally there is high redundancy in the
images since the pixels highly correlate.

It is also not very useful to enlarge a feature space by adding new features, if the
new features highly correlate to the existing.

Idea: Transforming the original images into a new feature space (shifting and 
rotation of the coordinate system (unitary transformation)). And thus reduction
to few features and - at the same time - information compression/condensation. 
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Characterizing random events in vector 
spaces

A random event xi is an element of the vector spaceX. For discrete spaces the

elementary event consists of an ordered set of numerical values 
xi:={x0

i, x1
i, x2

i,..., xN-1
i} 

or for continuous spaces consists of a time- or position functions xi(t) .
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A stochastic process x consists of a set of events  x:={xj}.
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Statistical characteristics of a process
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The elements of the correlation matrix describe the
correlation between the particular vector elements  
{ x0,x1}, { x0,x2} ... in time/local direction with 
increasing distance between elements:
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Gaussian distributions stay so under
linear transformations  
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Calculating the ACF from the
autocorrelation matrix

The values of the linear (cyclic) ACF result from diagonal sums of the (periodical continued) 
autocorrelation matrix: 

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2
2 2 2
0 1 2 0 1 1 2 0 2

linear ACF:    

          

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x+ + +

0 1 2

0 0 0 0 1 0 2

1 1 0 1 1 1 2

2 2 0 2 1 2 2 02

Autokorrelationsmatrix:

x x x

x x x x x x x

x x x x x x x

x x x x x xx xx

autocorrelation matrix
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Decorrelation of neighbouring signal 
or pixel values in the vector space

Given a signal or pixel value; what is the probabilityof the
neighbouring signal amplitude taking similar values? 

In general high correlation to neighbouring values! (1st angle 
bisection in vector space)

1D 2D similar 

ix 1ix + ix

1ix +



ME-I, Kap. 6H. Burkhardt, Institut für Informatik, Universität Freiburg 9

A simple example for the transition to a new
feature space using an orthogonal transformation

Given a signal with two scan 
values
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Selecting only the first component (subspace) in the
original space, results in an approximation performance of 
(omittung one scan value strikes !!): 

4
7,21 5

4 0

4 6
5 %= =

In contrast in the new feature space: 

7,07
7,21

5 2 0

5 2 2
98%= =

Also: the new values do not correlate! 
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Representing in the vector space by rotation of the 
coordinate system with orthogonal transformation

original space         feature space
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Optimal feature selection with unitary
transformations

(Karhunen-Loeve or principal axis transformation)

1x

2x

3x

4x

5x

6x

7x

8x

1εεεε

2εεεε
3εεεε

4εεεε 5εεεε

6εεεε
7εεεε

8εεεε

1e

2e

1′e
2′e

{ } { }
T

i i

T

′→

′ =

A

e e

x A x

!

* *

, , ,

     

∗

−

= =

⇒ = ⇒ =1

Ax Ay x A Ay x y

A A I A A

Unitary transformation, for real  
orthogonal transf. => rotation of 
the coordinate system

task: find new base vectors
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If the corresponding basis system is arbitrary (and is known by sender and reciever), 
a single vector elementx can be characterized by a scalar value, if the first base
vectore 1́ is chosen in direction of x (element occurs or not):

2 30 0α ′ ′= + ⋅ + ⋅ +x
x e e

x
…

In general the point is to find an optimal transformation into an appropiate 
coordinate system for a completeensemble of vectors, in order to characterize 
the elements of the ensemble with as few coefficients as possible.

We start with determing the first new basis vectore1´ , which we choose so that the 
approximation error for the ensemble of n vectors isminimal, or the sought
space direction, that represents a maximal information of the ensemble. 
According to the projection sentence the smallest error results from projection to 
the subspace, which is represented bye1´; sought is the correct space direction. 
An optimal solution is sought starting from a quality factor. 
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ZR: For a orthogonal projection to a subspacePx
applies according to Pythagoras:
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Useful formulas:
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The inner product can be calculated over the trace of
the outer product!

(maximization of the 
squares of the FC)
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and thus:
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Side condition: the new basis vector is a unit vector :
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The first term in J is constant and thus J is minimized, if the 
following term is maximized:

Involving the side condition in the maximization of  J´ by a  
Lagrange approach:
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and thus the Eigenvalue equation:

λ′ ′=xxR e e

(if R symm.)
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This term is maximized, if the maximal Eigenvalueλ1=λmax and the
corresponding Eigenvector is chosen.

The one-dimensional subspace alonge1´ is separated, within the 
remaining subspace one choses the second basis vector e2´=> λ2 
and the second largest Eigenvalue, and so on.

1 1Inserting in  results in:  TJ J λ λ′ ′ ′ ′= =e e
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Approximation errors
The approximation error withM components (1≤ M ≤ N) results

from:

[ ]2
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to the subspace, which is spaned by the first M Eigenvectors 
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Approximation errors
and inserted into the quality measure:
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1 1
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i.e., the approximation error corresponds to the sum of the 
Eigenvalues, that have not been considered.
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The Karhunen-Loéve transformation
(KLT)

The Karhunen-Loéve transform is defined as:

-1

      KLT

        KLT

T=

=

y A x

x Ay

1 2
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and it applies:
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ΛΛΛΛ

The KLT can be calculated (as seen here) based on the correlation matrix, or
based on the  autocovariance matrix (the expected value is subtracted):

( )T= − xy A x µµµµ
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Interpretation of the KLT

Minimizing the error is equal to maximizing the energy (length2) in the transformed area or the 
maximization of the square sum of the Fouriercoefficients.
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KLT for images (2D)

The above approach can be applied directly to a vector, which consists
of stacked row vectors of an image matrix of dimensionN×N (since
we are only concerned about the complete sum error!). So now we
have to find the Eigenvalue for a symmetrical matrix of dimension
N2×N2. An Eigenvalue problem for matrixN×N requiresO(N3) 
operations, so here: O(N6)

according to:

1 1 2 2: { }      : { }i i= =x x x x

1 2:
T=X x x

If an ensemble of imagesX:={X i} of dimensionN×N can be modeled
by the dyadic product of two one-dimensional ensembles of 
dimensionN×1

i.e. X is separable!
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KLT for images(2D)

Thus for every one-dimensional ensemble a KLT can be calculated and thus:

1 1 2 2 1 2( )
T T T= =Y A x x A A XA

2D-KLT for separable images

Thus only 2 Eigenvalues of dimensionN×N are to be calculated. This results in a 
computing time improvement of: O(N 6) / O(N 3) = O(N 3)

The transformation with separable kernel can also be reduced, namely from   
O(N 4) to O(2N 3)=O(N 3).
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Properties of KLT

• advantages:
– The KLT is optimal (wrt. the square error) in terms of best 

representation in subspaces with orthogonal basis.
For highly correlating vector elements results a high information
condensation in few elements of the KLT. The KLT profits from 
high correlations in the vector elements.

– SinceRyy is a diagonal matrix, the values in y do not correlate!

• disadvantages:
– The KLT is data dependent and must be calculated separately for

every dataset. 
– Also there isno fast algorithm for KLT.
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Data reduction depending on degree 
of correlation

data un-correlated (white process) 
KLT is of no significance

data highly correlated. KLT has 
high effect.

extreme case: images with constant gray value
(a vector is sufficient for representation)
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Properties of KLT

KLT
DFT

COSINUS

WALSH

behaviour of different unitary 
transformations

n

variance of coeff. in image space (FC 
of KLT). Values montonic decreasing

2( )nσ y

2( )nσ x

variance of coeff. in 
original space

Every subtotal is
independent of  M
maximal!
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Further properties of KLT

The KLT guarantees, that the variances of the transformed features (principal
diagonal elements of the covariance matrix) are maximal unbalanced
(minimal entropy):

( )T= − xy A x µµµµ
A maximization of the entropy, or a constant variance of all features can be 

obtained by a whitening transformation:

1/ 2 1/ 2 1/ 2 1/ 2 1/ 2
1 2( )        diag( , , , )T

Nλ λ λ− − − − −= − =xu A x …Λ µ ΛΛ µ ΛΛ µ ΛΛ µ Λ

All features have same variance var(ui)=1 (sterical
invariant relations). The energy is distributed
equally to all features.

n

2( )nσ u

2( ) var( )nn yσ =y

Whitening e.g. is needed to obtain a robustness as 
greatest as possible if a component is left out (e.g. 
in transfer mode systems). 

The variables remain un-correlated when multiplied
with a diagonal matrix!
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Further properties of KLT
The optimality of KLT wrt. the minimal error square leads to a best information

condensation of one ensemble and allows a selection of M dominant features of N
observed values. Question: how can all data berepresented in the best way? 

This does not lead neccessarily to a best class representation, if several classes are too
different. An optimization wrt. this leads to the so-calleddiscriminantion analysis. 
Question: how can the data bediscriminated in the best way?

In this example, the features of 
the first Eigenvector 
overlap, while the feature 
of the second Eigenvector 
distinguishes the classes!

Assumption: variance alonge1´  
greater than variance along
e2´.

covariance matrix is computed
for the entire ensemble, 
because only one form of 
feature selection can be
chosen! 
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