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Abstract

Despite the success of deep learning in disparity estima-
tion, the domain generalization gap remains an issue. We
propose a semi-supervised pipeline that successfully adapts
DispNet to a real-world domain by joint supervised train-
ing on labeled synthetic data and self-supervised training
on unlabeled real data. Furthermore, accounting for the
limitations of the widely-used photometric loss, we analyze
the impact of deep feature reconstruction as a promising
supervisory signal for disparity estimation.

1. Introduction

From 3D reconstruction to autonomous driving, many
applications require depth estimates, which can be accu-
rately obtained by predicting disparity from stereo images.

Inspired by the matching cost and aggregation ideas from
traditional stereo algorithms, recent works have designed
successful deep learning architectures that are trained for
disparity estimation on labeled data [10, 9, 5, 2, 15]. How-
ever, most of these works report only fine-tuned results for
each individual dataset, neglecting generalization across do-
mains [9, 5, 2]. Trying to improve this, and given the cost of
acquiring ground truth data on real scenarios, some works
have adopted a self-supervised approach [20, 17, 19, 1].
They replace labels by a view reconstruction objective that
maximizes consistency between the target image and the
second image warped with the predicted disparity. How-
ever, self-supervised methods are still less precise, espe-
cially on fine details and challenging areas, partially due
to the limitations of this photometric consistency [8]. Aim-
ing to overcome these limitations, [18, 14] and [7] have ex-
plored a reconstruction error based on deep features, for
monocular depth and optical flow. Nevertheless, perfor-
mance only improved marginally after combining it with a
photometric loss, which shows the need for further analysis.

In this work, we present two contributions that address
the described problems: (1) we propose a semi-supervised
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Figure 1. Semi-supervised training pipeline: We use supervised
training on synthetic data and self-supervised training on real data
samples, either with photometric or deep feature reconstruction.

pipeline for disparity estimation that improves cross-do-
main generalization by exploiting cheap synthetic labels
and unlabeled data from real scenarios, and (2) we summa-
rize the result of a thorough analysis of deep feature recon-
struction (DFR) as consistency measure in self-supervised
training, where we show examples of its potential and shed
light on key reasons that limit its current effectiveness.

2. Semi-supervised pipeline
Aiming to improve the domain adaptation, we propose

a general semi-supervised pipeline for disparity estimation,
depicted in Figure 1. We train a single end-to-end network
by alternating batches of synthetic and real data. Synthetic
batches, whose labels are already available at no extra cost,
are used to train in a supervised manner. On the other hand,
we train with real-data batches in a self-supervised way, us-
ing either the well-known photometric [4] or deep feature
reconstruction loss, as detailed in Section 3. Additionally,
following [6], we train the network during supervised up-
dates to predict occlusions. In real-data updates, we bi-
narize the predicted occlusions and use them to mask out
occluded areas in the self-supervised loss. Finally, we add
synthetic occlusions [16, 15] to real-world data, which al-
lows the network to learn about occlusions also from un-
labeled samples. In this work, we use the DispNet-C [10]
architecture, for its simplicity and efficiency, but our pro-
posed pipeline is compatible with other disparity estimation
networks.
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Figure 2. Matching costs curves of DFR and photometric on three different scenarios. From top to bottom: zoom-in of the left image
(target point in red); same zoom-in on the right image (matching ground truth in red); obtained matching costs at different disparities along
the epipolar line, aligned with the right image (minimum of the curves and ground truth are marked with vertical dashed lines).

3. Deep feature reconstruction
We investigate on DFR for self-supervision by substitut-

ing the RGB images with features extracted from the first
three layers of DispNet. Due to their higher-level represen-
tation, deep features should provide a more robust signal
on challenging areas, like texture-less or non-Lambertian
surfaces. Given the predictions and feature maps at mul-
tiple scales, we resample each disparity map with nearest-
neighbor interpolation to match all feature map sizes. We
compute the dissimilarity between the left and the warped
right feature maps using cosine distance, which resembles
the computed dot product from the correlation layer.

4. Experimental results
We present results of our semi-supervised framework,

using photometric loss (PH) and deep feature reconstruc-
tion (DFR). We use FlyingThings3D (FT) [10] for super-
vised updates, and KITTI Raw (K) [3] for self-supervised
ones, equally balancing their number of samples per epoch.

Semi-supervised learning with photometric consis-
tency: In Table 1, we compare our results with two su-
pervised baselines. On KITTI2015 (K15) [11], the semi-
supervised approach with photometric loss outperforms the
supervised DispNet trained only on FT (-15.8% EPE),
showing the improved adaptation to real-world domains.
We even achieve this while increasing the error on the syn-
thetic FT domain only marginally (+4.7% EPE), as op-
posed to the drastically increased error with supervised fine-
tuning on K15 (+80.5% EPE). We also test the generaliza-
tion to unseen environments using ETH3D [13] and Mid-
dlebury at half resolution (MidH) [12]. Remarkably, our
semi-supervised approach generalizes also to these datasets,
whereas fine-tuning on K15 only learns priors from KITTI
but does not generalize to other real-world data.

Deep feature reconstruction analysis: As shown in Ta-
ble 1, we obtain inferior results with DFR than with its pho-
tometric counterpart. Instead of directly combining DFR
with a photometric loss as in previous works, we conducted
an in-depth analysis of the reasons that currently prevent the

Endpoint Error (EPE)
Model train DS time FT K15 ETH3D MidH

DispNet Supervised FT 0.04 1.69 1.46 0.92 3.21

DispNet Supervised ft FT + K15 0.04 3.05 (0.69) 1.99 3.79

DispNet SemiSup. PH FT + (K) 0.04 1.77 1.23 0.61 2.92

DispNet SemiSup. DFR FT + (K) 0.04 1.77 1.32 0.67 2.94

GWCNet-gc [5] FT 0.32 1.65 2.35 1.73 5.08

GWCNet-gc ft [5] FT + K12 0.32 5.63 0.82 1.09 5.41

LEA Stereo [2] FT 0.30 1.58 1.98 0.87 4.72

Reversing PSMNet [1] (K) 0.41 6.03 1.01 0.51 6.02

Table 1. Results on FT ’cleanpass’ test set and K15, ETH3D,
MidH train sets. Train datasets are in brackets when no labels
are used. We report all SOTA results by evaluating their publicly
available models. Notice we do not filter disparities>192.

effectiveness of DFR. We identified the following issues:
(1) higher sensitivity to occlusions, (2) large dependence on
the distance metric and resampling strategy, (3) tainted in-
formation around disparity discontinuities due to convolu-
tional aggregation, (4) higher entropy on matching curves,
and (5) high gradient locality that complicates optimization.
We illustrate (3) and (4) on Figure 2. Despite DFR’s clearly
better response in texture-less areas (road), it fails near dis-
parity discontinuities (sky-pole). Due to its higher-entropy
curve, DFR is less precise on object boundaries (van).

Comparison to the state of the art: Finally, we com-
pare to state-of-the-art approaches, namely the supervised
GWCNet [5] and LEAStereo [2], and the self-supervised
Reversing PSMNet [1]. Results demonstrate the general-
ization problems of current supervised works. In contrast
to this, our pipeline achieves reasonable results on FT and
K15 and generalizes better across domains.

5. Summary
We have presented a novel semi-supervised pipeline and

analyzed the influence of deep feature reconstruction for
disparity estimation. Our results show improved general-
ization across domains, outperforming previous works in
this setting. Based on our detailed study of DFR, we aim
to exploit its potential in future work.
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