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Abstract

Single-view 3D object reconstruction has seen much
progress, yet methods still struggle generalizing to novel
shapes unseen during training. Common approaches pre-
dominantly rely on learned global shape priors and, hence,
disregard detailed local observations. In this work, we ad-
dress this issue by learning a hierarchy of priors at different
levels of locality from ground truth input depth maps. We
argue that exploiting local priors allows our method to ef-
ficiently use input observations, thus improving generaliza-
tion in visible areas of novel shapes. At the same time, the
combination of local and global priors enables meaningful
hallucination of unobserved parts resulting in consistent 3D
shapes. We show that the hierarchical approach generalizes
much better than the global approach. It generalizes not
only between different instances of a class but also across
classes and to unseen arrangements of objects.

1. Introduction
The usual problem setting of single-view 3D reconstruc-

tion assumes an input image with a single dominant object,
where the geometry of both the visible and the invisible
part of this object shall be reconstructed. For the invisi-
ble parts, reconstruction must rely on shape priors, which
can be based on the object class, symmetry, or smoothness.
The geometry of the visible parts can be obtained, at least
partially, from sensing data (e.g., depth, texture, shading).

Most existing approaches are encoder-decoder net-
works [7, 10, 12, 19, 27, 30, 34] and have been shown to
barely generalize to novel shape categories [38]. Only few
works have targeted generalization explicitly [3, 32, 38].
They argue that, for better generalization, the problem
should be split into two parts: (1) prediction of a geometric
representation of the visible parts from a single RGB image
and (2) prediction of the final shape from the geometric rep-
resentation. In this paper, we focus on the prediction of the
object shape and assume the ground truth depth map to be
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Global prior (ONet) Hierarchical prior (HPN, ours)

Figure 1. We employ a hierarchical shape prior to enable recom-
bination of partial shapes observed during training. This signif-
icantly improves generalization compared to conventional global
shape priors.

already given as input. This reflects the argument that an in-
termediate depth map helps generalization [38] and should
make the reconstruction of the visible parts almost trivial.

Surprisingly, however, existing approaches fail to gen-
eralize even in the visible areas, despite the perfect input.
Consider the example in Fig. 1: ONet [19] trained on sin-
gle chairs uses its learned prior to reconstruct the shape for
an input with two chairs. Although the required shape prior
(chairs) has been seen during training, the approach cannot
use this knowledge to explain the clean observation of two
chairs (Fig. 1 top left), which leads to an unresolved com-
petition between observation and prior (Fig. 1 bottom left).
This reveals a general problem of existing approaches: not
only do they not generalize to new object classes, they even
do not generalize to new combinations of the same training
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classes. Even if we would train these networks on pairs of
chairs, they must see all possible configurations of pairs – a
combinatorial explosion.

In this paper, we propose to foster the recombination of
previously seen partial shapes by a hierarchical approach. It
consists of two main building blocks: (1) a local reconstruc-
tion module that reconstructs the shape at a certain level of
locality (Fig. 2), and (2) fusion of the beliefs from various
levels of locality (Fig. 3). The reconstruction module is ef-
fectively an implicit surface network (e.g. ONet) which per-
forms shape estimation from patches of the input image. If
the patch size covers the whole image, it comes down to
the original global surface network. Intuitively, instead of
reconstructing the full shape with a single prediction effort,
local versions of the network learn to estimate geometry of
individual object parts and put those together to obtain the
whole shape. Since similar shape parts are likely to repeat
between different categories, this strategy offers effective
recombination of parts from various training samples and,
hence, much better generalization potential.

Since local patches have a limited view of the overall
shape, the reconstructed global shape may not look consis-
tent, especially in large occluded areas. Therefore, we com-
bine multiple patch sizes (including the global one based on
the full image) to form a hierarchy of such local networks.
The combination is possible by simple averaging of the logit
outputs.

We demonstrate the intriguing effect of the new hier-
archical reconstruction concept on various generalization
tasks derived from the ShapeNet [5] dataset. This includes
tasks that require inter-class generalization and generaliza-
tion from single to multiple objects. The results show
the huge effect of the ability to recombine parts, which is
missing in all previous learning-based reconstruction ap-
proaches. This ability also improves the data efficiency:
in contrast to existing global methods, the performance of
our local networks does not noticeably degrade even when
training on as little as 1% of the original data. Since the
choice of the base reconstruction module is flexible, the hi-
erarchy of local networks acts as a working principle that
can be applied to enhance the generalization of effectively
any method based on implicit functions. We refer to this as
Hierarchical Prior Network (HPN).

2. Related Work
3D representations. A large portion of single-view 3D
reconstruction research has dealt with developing meth-
ods that operate on different 3D representations. Those
include voxels [7], octrees [30], patch-based [12] or de-
formable [34] meshes, point clouds [10], nested depth
maps [27] and implicit functions [19, 11]. All these
pipelines effectively follow the same design: a 2D encoder
which compresses the input image into a single global la-

tent vector and a 3D decoder which regresses the output 3D
representation from it.
3D parts. Multiple works reconstruct the output shape
as a collection of 3D parts which can come in form of
cuboids [17, 21, 33, 40], superquadrics [22, 23], convex
elements [9] or actual semantic parts [14, 36]. All these
approaches use parts solely as an alternative 3D representa-
tion and do not provide a mechanism for attending to local
patches of the input image. This is different for our method:
we directly consider the relationship between local input
patches and their 3D counterparts. Note also that we do
not make any assumptions about shape parts being seman-
tically meaningful, which makes our approach general and
prevents the need for having semantic annotations similar
to [20].
Generalization. Only few methods explicitly touch the
matter of generalization to shape categories unseen during
training. Shin et al. [29] and Tatarchenko et al. [31] ana-
lyze the conventional setup and conclude that working in
the viewer-centered mode is a necessary (though not suffi-
cient) condition for generalization. Zhang et al. [38], Wu
et al. [35] and Thai et al. [32] propose to predict intermedi-
ate geometric representations in the pipeline and show that
this improves generalization. In our work, we use a simi-
lar setting but further simplify it by starting from a ground
truth depth map. Surprisingly, we find that even then the
actual generalization achieved by existing methods is still
limited. Thai et al. [32] show that using three-degree-of-
freedom camera poses and SDFs as a 3D representation,
while keeping the architecture from [19], helps generalize
to a new dataset.
Local encoding. Several existing works proposed to
include local encoding modules into the pipeline. Xu et
al. [37] combine local and global features with the aim
of improving the reconstruction details. However, their
method is not forced to use local information and could
in principle ignore it, plus they never explicitly target the
generalization setting. For a special case of reconstructing
human clothing, Saito et al. [28] propose to align local
per-pixel features to the global shape context, thus explic-
itly leveraging the 2D-3D relationship. Peng et al. [25]
combine a local encoder with an implicit function decoder
for a task of point-cloud-based surface reconstruction.
Similarly, multiple works [1, 13, 4] target a setting where
surfaces are locally reconstructed from sparse multi-view
observations. Similar in spirit to our approach, Chibane et
al. [6] propose to extract a hierarchy of features for solving
several 3D-to-3D tasks. Bautista et al. [3] locally assign
features and 3D points in order to get a more expressive
intermediate shape representation. Most similar to ours
is the work from Genova et al. [11]. Local Gaussian
regions of the input depth map are encoded and decoded
independently. The global 3D shape results from the sum of
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Figure 2. The proposed local reconstruction module independently reconstructs the shapes of individual patches of the input in a sliding
window fashion. The resulting overlapping 3D parts are aggregated with Gaussian-weighted averaging into the final shape estimate.

the deep local implicit functions. However, the module that
distributes the Gaussian regions requires a global context
and can break if major dataset priors, like that of having a
single object, are violated.

3. Method
The core idea of our approach is based on two obser-

vations: (1) effective generalization to new classes and
new configurations requires the recombination of partial
shapes seen during training; (2) recombination of such par-
tial shapes requires (local) support regions of different sizes
in the input image.

Although the regular encoder-decoder networks consider
a hierarchy of multiple receptive field sizes when observing
the input, they do not learn local priors during training. This
is because their loss function only considers the whole ob-
ject reconstruction, for which all of the input image and all
of the ground truth shape is observed. While all the infor-
mation for recombination is available, there is nothing in the
training procedure that requires and fosters recombination.

For this reason, we combine multiple local reconstruc-
tion networks that only observe a cut-out part of the im-
age and the corresponding cut-out part of the ground truth
shape during training. The different levels of locality yield
networks that have learned more specialized (global) or less
specialized (local) priors. In their combination, they enable
part recombination at all locality levels and consistency of
the global shape at the same time.

3.1. Local Reconstruction

Consider a single-channel input depth map d ∈ RW×H

of width W and height H pixels, and its corresponding
ground truth 3D model D represented as a mesh with ver-
tices VD and faces FD. Following the conventional setup in
literature, we assume that D is normalized such that it fits
into a unit cube.

For the `-th hierarchy level, we denote with N ` ∈ N the
width and height in pixels of a square patch p`i,j ⊂ d cen-
tered at pixel position (i, j). These patches are positioned

across the input d using a stride of s`train pixels. For each
p`i,j there is a corresponding 3D volume r`x,y,z centered at
position (x, y, z) in the ground-truth 3D model. In the gen-
eral case, the shape of r`x,y,z is a frustum determined by the
internal camera parameters, and the 3D position x, y, z de-
pends on the patch location i, j and the camera model. For
simplicity, we assume an orthographic camera model which
results in r`x,y,z being a cuboid with x = y = M ∈ (0, 1)
and z = 1. However, the whole setup could be extended to
support perspective cameras.

Our local reconstruction module is an implicit function
f `, for example an Occupancy Network (ONet), which
takes as input a patch p`i,j and some points SPK×3 in r`x,y,z
and outputs 3D predictions for r`x,y,z in form of an occu-
pancy logit or signed distance value for every input point.
ONet could be replaced by any other network that imple-
ments an implicit function in 3D.

We extract a mesh from the occupancy logits by us-
ing Marching Cubes [18] with an empirically determined
threshold τ as described in Occupancy Networks. We use
the same procedure if the backbone network predicts SDF
values, but determine a new threshold.

At training time, each 3D part is effectively treated as
an independent sample, i.e. the only difference to the orig-
inal ONet is in the training data. Therefore we normalize
the training points from the 3D part r`x,y,z to lie within
[−0.5, 0.5] in all three dimensions. Similar to Occupancy
Networks, during training, we only provide a randomly
sampled subset of training points to the network.

During inference, the network is applied in a sliding win-
dow fashion with a 2D stride s`infer, such that each 3D re-
gion of the prediction gets updated by multiple parts. This
enables smoother transitions between adjacent parts. We
fuse predictions from multiple parts together by Gaussian-
weighted averaging of the outputs of all contributing parts
in the overlapping regions.

Since we assume that the camera model is known, there
is a deterministic assignment between the predicted 3D
parts and their absolute locations within the unit cube of the
full shape. We use it to assemble a full reconstructed shape
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Figure 3. We use a hierarchy of networks operating on input
patches of different resolutions (including the global one) to pro-
duce multiple shape reconstruction variants. Those are fused by
simple averaging to yield the final reconstruction.

from individual predicted parts. An example of such a re-
construction for patches of size N = 32 and stride s = 16
is shown in Fig. 2.

3.2. Hierarchical fusion

We train multiple local reconstruction networks, each
operating on different patch sizes N (including N = W =
H = 256, i.e. the full image case). In case of non-
square input images we suggest to use zero-padding in or-
der to convert them into a square shape. Together the lo-
cal reconstruction networks form a hierarchy ofK indepen-
dent predictions relying on priors of different locality levels
` ∈ {1, . . . ,K} which we then fuse into a single final pre-
diction.

Similarly to averaging softmax outputs of overlapping
parts in the previous section, we combine predictions from
different hierarchy levels by averaging their corresponding
softmax outputs. Since individual output values correspond
to pseudo-probabilities that a certain 3D region is occupied,
averaging them already provides an automatic mechanism
to weigh the contribution of each level onto the final fused
reconstruction. For example, in areas of the shape which
are visible in the input image where the local reconstruction
is usually more confident, local occupancy scores dominate
those of the global one, and vice versa for invisible shape
regions. The fusion of hierarchy levels is illustrated in Fig. 3
where three hierarchy levels of differing local patch sizes
are fused to produce a single reconstruction. We call this
combination of networks acting at multiple levels of locality
Hierarchical Prior Network (HPN).

More sophisticated (learned) averaging schemes are con-
ceivable, but come with the risk of overfitting to the train-
ing configurations. As we show in the experiments, already
simple averaging leads to consistent shapes and is free from
a bias to the training set.

4. Experiments
Existing approaches generalize to a certain degree to

novel instances of a category seen during training. We tar-
get the more difficult generalization to novel categories and
novel object assemblies.

4.1. Datasets

We train our method on two different subsets of the
ShapeNet dataset [5]. (1) We report on the train split from
Zhang et al. [38] referred to as multi-class, where networks
are trained on planes, cars, and chairs. (2) We train on
shapes from only a single category (single class). These
training categories are chair or lamp.

We evaluate our method on individual shape categories
as suggested by Zhang et al. [38], both on the ones seen
during training, corresponding to generalization across in-
stances, and on those not seen during training, correspond-
ing to generalization across classes.

In addition, we propose a new test set referred to as Com-
position, which allows us to explicitly evaluate generaliza-
tion to novel object arrangements. We create it by plac-
ing up to three objects into one image. We exclusively use
shape instances from the ShapeNet test set. For each com-
positional image, we randomly select the shape categories.
Then, we pick objects of the selected categories and modify
elevation and azimuth of their pose. Before rendering the
image with PyTorch3D [26], we shift the objects along the
x-axis to reduce their overlap.

4.2. Models

ONet. We train the original occupancy network [19] on the
ground truth depth images.
GenRe. GenRe [38] is the pioneer work for generalization
to novel categories. The GenRe network architecture con-
sists of two parts. The first one estimates a depth map for
a given RGB image. The second one reconstructs the 3D
shape, given the depth image. We report the Chamfer dis-
tance from their paper for reconstructions from ground truth
depth maps. For a comparison of all 13 test classes please
see the supplemental.
LDIF. LDIF [11] represents 3D shapes as multiple local im-
plicit functions and improves over ONet and GenRe, thus
being the state-of-the-art method. We use their custom data
preprocessing pipeline to train LDIF networks on single-
view perspective depth images.
ONet-SDF. We use the same training points as for Occu-
pancy Networks, but replace the binary occupancy label
with the signed distance (SDF) of each point to the mesh
surface. Points within the mesh have a negative distance.
This also changes the training of the network from binary
classification to regression. Instead of using the binary cross
entropy as loss, we now use the L1 loss. In order to ex-
tract a mesh from the SDF-values predicted by the network,
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Figure 4. Reconstruction results for unseen classes in the different generalization settings. Left: Networks trained in the multi-class setting
(on planes, cars and chairs). Right: Networks trained on lamps. More examples are provided in the Appendix.

Chair Lamp Speaker Sofa Table Mean (unseen) Composition
F↑ CD↓ F↑ CD↓ F↑ CD↓ F↑ CD↓ F↑ CD↓ F↑ CD↓ F↑ CD↓

pl
an

e,
ca

r,c
ha

ir ONet [19] 40.8 4.1 18.8 9.3 38.4 6.0 43.2 4.7 35.2 5.3 29.3 6.8 18.3 8.7
ONet-SDF [19] 35.9 4.6 19.9 8.5 37.6 5.8 38.3 5.1 33.0 5.6 28.6 6.6 19.3 8.0

GenRe [38] - - - 6.0* - 7.7* - 5.9* - 5.7* - 5.7* - -
LDIFsvim1d [11] 62.1 0.9 20.8 9.4 22.9 5.2 52.7 1.3 33.0 3.3 32.1 3.5 16.4 10.9

HPN (ours) 44.3 3.8 38.4 4.8 49.7 4.8 46.6 4.5 43.7 4.4 42.9 4.9 30.2 5.7
HPN-SDF (ours) 53.6 3.3 56.5 3.5 49.4 5.0 54.4 3.9 53.1 3.7 48.2 4.6 42.4 3.9

ch
ai

r

ONet [19] 36.2 4.6 16.6 10.3 34.2 6.5 35.3 5.4 31.6 5.9 24.3 7.9 16.5 9.3
LDIFsvim1d [11] 59.2 1.0 17.8 10.6 21.6 5.6 44.4 1.4 31.4 3.9 27.7 4.2 14.9 13.0

HPN (ours) 43.0 3.9 40.2 4.6 48.6 4.8 44.4 4.6 44.2 4.3 43.1 4.7 31.2 5.3
HPN-SDF (ours) 41.2 4.2 43.6 4.3 48.8 5.0 43.8 5.0 44.2 4.5 45.3 4.7 31.7 5.2

la
m

p

ONet [19] 20.4 8.1 42.0 4.7 37.8 5.6 24.2 7.2 29.1 7.1 26.8 6.8 18.1 8.5
LDIFsvim1d [11] 12.4 12.2 48.1 2.5 21.6 5.1 11.8 7.4 17.1 10.5 21.1 5.6 12.5 14.0

HPN (ours) 42.4 4.7 50.3 3.6 53.2 4.6 45.2 5.0 47.1 4.7 47.1 4.7 35.8 5.0
HPN-SDF (ours) 41.1 4.8 48.4 3.6 51.5 4.6 44.7 5.0 44.8 4.8 46.1 4.8 33.9 5.2

Table 1. Comparison of the hierarchical prior network (HPN) to the state of the art in terms of generalization. The top part of the table
shows training in the multi-class setting, the lower part shows training on a single class. We report two metrics: F-score (F, shown in %)
and Chamfer distance (CD, multiplied by 100 for better readability). * denotes results taken from the original paper. svim1d denotes
[11]’s data generation - a single perspective ground truth depth map. Results on categories seen during training are marked in blue. Mean
(unseen) shows the average of per-class scores over all 13 unseen categories. Composition shows results on the composition of two objects
per image. On compositions, HPN is more than twice as accurate as the state of the art and generally better on unseen classes, while LDIF
is better on seen classes. See the supplemental for more results. Best viewed in color.

we empirically determine the new threshold τsdf = −0.02.
Therefore, we pick τsdf from the interval [−1, 1] with a
stepsize of 0.1 and a smaller stepsize of 0.01 in the inter-
val [−0.1, 0.1].

HPN and Local@N. As described in Sec. 3 we design local
variants of the ONet and a fused variant for which different
hierarchy levels are combined. In general, we refer to the
fused variant as hierarchical prior networks (HPN) and to its

local variants as Local@N where N is the width and height
of a local patch in pixels, e.g., Local@64 for patches of size
64 × 64 pixels. HPN is the fused version of Global@256,
Local@64 and Local@32. HPN-SDF is the fused version of
Global@256-SDF, Local@64 and Local@32, i.e. the SDF
representation is used for the global but not for the local
networks.
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4.3. Setup

Training. All networks were trained using the ADAM op-
timizer [15] with the same optimization settings as used for
the Occupancy Network [19]. We trained all networks until
convergence. Similar to Occupancy Networks, during train-
ing, we only provide a randomly sampled subset of 1500
training points to our local networks.
Evaluation metrics. We report quantitative results for two
widely used 3D reconstruction metrics: F-score [16] and
Chamfer distance (CD) [2]. The two scores highlight dif-
ferent aspects of the reconstruction, as the F-score is robust
to outliers (large deviations) and CD is not. We further dis-
cuss this point in Sec. 4.5. For completeness, we list the
IoU values in the supplemental.

As part of our analysis, we additionally report F-score
and Chamfer distance for the parts of the 3D shape that are
visible from the input image and the parts that are invisi-
ble (self occluded) from the input image. In order to deter-
mine the visibility label, we project a set of points from the
ground truth mesh into the depth image and check, whether
they coincide with the respective depth value (visible) or are
larger than the respective depth value (invisible). We do this
for all test shapes, s.t. during evaluation we can look up the
visibility label and compute the metrics separately.
Implementation. All the networks are implemented in Py-
Torch [24]. For visualizing qualitative examples, we used
the Open3D [39] framework.

4.4. Results

Fig. 4 shows the drastically improved generalization to
new shape classes and shape configurations compared to
the state of the art. None of the networks has seen such
categories during training, but thanks to the ability to flexi-
bly recombine training parts, the hierarchical prior can also
reconstruct completely new shapes in a reasonable quality.
This also includes the composition of two objects, which
was never observed during training. In contrast, the plain
ONet model is bound to the most similar global shapes dur-
ing training, which is insufficient in all these examples. Re-
membering the nice-looking reconstructions from literature,
one should be aware that these were obtained via largely
overlapping training and test sets.

Although the effect of the local recombination principle
is already evident and indisputable from just the visual im-
pression, Tbl. 1 also quantifies this effect. In all train-test
configurations HPN outperforms the baselines and the pre-
vious state of the art in generalization. The performance
almost doubles on unseen classes, both in terms of F-Score
and Chamfer distance, in comparison to ONet. It also sig-
nificantly improves over LDIF in terms of F-Score. For
Chamfer distance, LDIF is competitive with HPN. We hy-
pothesize that this happens because for some shapes our lo-
cal networks produce outliers which have a large impact on

the mean distance. Interestingly, LDIF represents the train-
ing classes better than all other methods but completely fails
on compositional shapes. This indicates that LDIF is capa-
ble of nicely fitting the training data which is not useful
when generalization is required. The use of signed distance
functions yields more detailed reconstructions in conjunc-
tion with our hierarchical prior network (HPN-SDF), lead-
ing to best scores in the multi-class setting.

All approaches achieve consistently better scores on
the unseen categories than on the new compositional test
dataset. We conclude that the compositional setting is more
difficult. One reason might be that one shape occludes the
other, which requires to reconstruct the front side of the oc-
cluding shape (bookshelf), and the backside of the occluded
shape (chair); see Fig. 4.

4.5. Analysis

4.5.1 Different hierarchy levels

We investigated the reconstruction by individual local net-
works and how they contribute to the full hierarchical re-
construction. Fig. 5 shows an example and Tbl. 2 reports
test set scores on the full shape, as well as the visible and
invisible parts of it. All models are trained on chairs and
evaluated on the other categories. In visible areas, the lo-
cal networks reconstruct details much better than the global
network, which highlights the problem that global priors in-
terfere with the measurements in these areas. Local net-
works with the smallest patch size (16 and 32) are particu-
larly noisy in the invisible areas. Surprisingly, local models
with larger patch size also perform a bit better (on average)
in the invisible areas. This supports our recombination idea
and indicates that explaining even the invisible shape re-
gions with a collection of local priors may have advantages
over using a single global one.

Full Visible Invisible
F↑ CD↓ F↑ CD↓ F↑ CD↓

ch
ai

r

Global@256 (ONet) 23.3 7.7 28.6 6.4 22.7 7.7
Local@128 38.5 4.9 57.8 2.8 27.1 6.0
Local@64 42.0 4.9 67.3 2.2 27.3 6.4
Local@32 37.5 5.8 54.7 2.9 28.1 7.4
Local@16 36.6 6.7 57.8 3.2 24.5 8.7
HPN@(256+32) 35.7 5.2 48.8 3.3 28.3 6.2
HPN@(256+64) 38.3 4.9 56.7 2.8 27.4 6.1
HPN@(256+64+32) 39.7 4.7 57.6 2.6 29.8 5.7
HPN@(256+128+64+32+16) 42.0 4.4 61.7 2.4 30.4 5.6

Table 2. Mean F-score (F) and Chamfer distance (CD) for mul-
tiple hierarchy levels trained on the category chair and evaluated
on all unseen categories. We report the F-score and the CD for the
full shape (Full), the visible and the invisible parts of it.

The best reconstruction scores are achieved when
combining all available sources of information:
HPN@(256+128+64+32+16) works better than any
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Input 16 32 64 128 256 Fused GT

Figure 5. Reconstructions produced by different hierarchy levels. Numbers correspond to different patch sizes N. Top row: Same view-
point. Bottom row: Opposite viewpoint. Reconstructions for very small patches are particularly noisy, since they see little context and the
smaller overlap area reduces the spatial smoothing effect. However, due to the aggregation with other levels, this has no negative effect on
the fused reconstruction.

viewing direction

Local@64 ONet HPN

Figure 6. Point cloud of a couch (side-view). Black: Ground truth.
Orange: Predicted shape. Marked boxes indicate regions where
the local and global predictions differ significantly. Best viewed
in color.

other configuration. This result is slightly unintuitive given
that the most local reconstruction levels (32 and 16) on their
own do not provide any quantitative improvement over the
more global ones (128 and 64). We hypothesize that this
can be attributed to the full set of networks acting like an
ensemble, which averages out the errors of individual levels
thus improving the final score. Note that more hierarchy
levels also means higher computational cost. As a trade-off
between efficiency and accuracy, in the rest of the paper we
only use three levels, i.e. HPN@(256+64+32).

We can better understand the properties captured by in-
dividual quantitative metrics by looking at Fig. 6. The local
reconstruction is very precise in the visible area (blue box)
but completely wrong in the invisible part. The global re-
construction acts the other way around: it is off in the visible
area but provides a plausible prior for the invisible part. The
fused version gets much better on average - this is captured
well by the CD. However, certain parts are still not perfect,
e.g. the HPN reconstruction within the dashed green box is
a bit off. Because of that, the F-score, being a robust metric,
may not react so strongly to such changes. One should be
aware of this when interpreting the quantitative results.

4.5.2 Data efficiency

Another expression of improved generalization is the re-
quired use of training data. Because the patch-based net-
works can effectively learn to recombine, hence reuse, parts
seen during training to reconstruct novel shapes, we expect
to need less training data for the patch-based networks to
reach the same performance as the global variant. We eval-
uated this claim, comparing our Local@64 with the global
ONet on the unseen categories of the multi-class setting for
different amounts of training examples. Results are summa-
rized in Fig. 7.

As expected, we see a significantly higher mean F-score
for the patch-based network (bright orange) compared to the
global network (dark blue) for all training dataset sizes. The
local network reaches its full performance already with just
1% of the training data. Both networks converge for large
amounts of training data. Two effects cause this data effi-
ciency: (1) The local parts are less complex than a global
shape, i.e., they require less data to be represented. (2)
Each training sample comprises many local parts, which in-
creases the effective training set size.

4.5.3 Failure cases

Fig. 8 shows some failure cases. Since the local recon-
struction emphasizes the visible areas more, transfer of the
global layout from examples seen during training is less
pronounced than with the purely global baseline. Con-
versely, some details reconstructed correctly with the purely
local network can be washed out due to the aggregation with
the more global hierarchy levels.

4.6. Real data

In order to verify that our conclusions are not limited to
the case of perfect ground truth input depth maps, we run
the evaluation on selected depth maps from the ScanNet [8]
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Figure 7. Reconstruction quality in dependence of the number
of training samples. Local reconstruction reaches its full perfor-
mance already with as little as 1% of the training data.

Input GT ONet HPN (Ours)

Input GT Local@64 HPN (Ours)

Figure 8. Failure cases of our approach. All models are trained on
multi-class First row: ONet correctly reconstructs the leg of the ta-
ble that is invisible in the input. HPN misses this leg. Second row:
difficult view of a couch. ONet correctly reconstructs the invisible
arm rest, while HPN does not. Third row: detailed reconstruc-
tions, like the mirror in the local reconstruction, can disappear due
to global aggregation in HPN.

dataset. Both the baseline network and our approach were
only trained in the synthetic multi-class setting.

Fig. 9 shows that HPN produces reasonable results both
in case of multiple objects per scene and in case of a com-
plex novel object from the statue class, although it has never
seen noisy real-world data during training. In contrast, the
ONet baseline only captures global blob-like structures.

Input ONet HPN

Figure 9. When provided with real-world noisy depth images from
ScanNet, our multi-class-trained HPN yields more detailed recon-
structions than the ONet baseline.

5. Conclusion

In this paper, we introduced a new paradigm for learning
single-view reconstruction priors based on multiple locality
levels. The decisive advantage of this paradigm over
previous global reconstruction approaches is its ability
to recombine local shapes. This recombination not only
makes much more efficient use of training data, it also
enables the generalization to completely unseen shapes or
configurations of objects, which has been the key limitation
of single-view object reconstruction to-date. Technically,
the presented approach is simple yet flexible. While
we used Occupancy Networks, any other network that
implements an implicit function (even a retrieval approach)
could replace that architecture. In this sense, the proposed
hierarchy of local networks should not be regarded as
an isolated network architecture, but rather as a working
principle.

Acknowledgements: We thank Philipp Schroeppel
and Evgeny Levinkov for feedback on the manuscript. We
also thank Philipp for his help with the infrastructure.
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