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Abstract. Recent work has shown that convolutional neural networks
(CNNs) can be used to estimate optical flow with high quality and fast
runtime. This makes them preferable for real-world applications. How-
ever, such networks require very large training datasets. Engineering
the training data is difficult and/or laborious. This paper shows how to
augment a network trained on an existing synthetic dataset with large
amounts of additional unlabelled data. In particular, we introduce a se-
lection mechanism to assemble from multiple estimates a joint optical
flow field, which outperforms that of all input methods. The latter can
be used as proxy-ground-truth to train a network on real-world data and
to adapt it to specific domains of interest. Our experimental results show
that the performance of networks improves considerably, both, in cross-
domain and in domain-specific scenarios. As a consequence, we obtain
state-of-the-art results on the KITTI benchmarks.
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1 Introduction

Like all deep learning applications that follow the supervised learning paradigm,
the success of learning optical flow estimation stands and falls with the availabil-
ity and quality of training data. In case of optical flow, the creation of ground-
truth annotation on real images is extremely tedious and virtually impossible on
large datasets. For this reason, state-of-the-art networks for optical flow estima-
tion, such as FlowNet 2.0 [1] and PWC-Net [2] have been trained on synthetically
rendered images. These networks tend to generalize comparatively well to real
images – in contrast to semantic tasks, such as object detection or semantic
segmentation. This is because correspondence estimation is different from recog-
nition and does not depend so much on the content of the images. In fact, optical
flow estimation is possible without any learning, thus not requiring any training
data. There is a long history of unsupervised optical flow methods that imple-
ment the concept of correspondence. These classical methods perform equally
well as a state-of-the-art optical flow network, yet with significantly higher run-
times.
? equal contribution
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The advantage of learning comes in when correspondences cannot be estab-
lished easily and priors are needed to make decisions. Typical examples are areas
in the image that have homogeneous color (aperture problem) or areas that are
occluded in the other image. Works from the pre-learning era used handcrafted
regularizers [3, 4] and corresponding optimization heuristics to hallucinate opti-
cal flow in these areas. Learning such priors is much more elegant and also more
successful: networks tend to outperform these classical techniques especially in
occluded areas. However, such learning of priors is no longer independent of the
image content: while basic hallucination strategies for occluded regions can be
estimated from synthetic data, the hallucinated content should ideally depend
on the objects in the scene. Thus, there is a domain gap between synthesized
training images and real images, just like in semantic tasks. Real images are
required for training. Multiple strategies have been proposed to integrate real
images into the training procedure. These span from using the same unsuper-
vised training loss for the network as is used in variational methods [5, 6], over
multi-task learning with an auxiliary task that allows learning from unlabelled
images [7], to training on pseudo-ground-truth obtained from running an (unsu-
pervised) variational method [8].

This paper comprises two contributions. First, we present an assessment net-
work that learns to predict the error for each of a set of flow fields generated
with various optical flow estimation techniques. Then, a fused optical flow field
can be trivially obtained by selecting for each pixel the flow vector with the
smallest predicted error. We show that this assessment network, which we call
FusionNet combines the advantages of a potentially large set of techniques and
avoids their limitations. As a consequence, FusionNet yields results that exceed
the performance of all methods that produced its input. Independent on how the
state of the art will improve in the future, FusionNet can always benefit from
these improvements. However, this comes at the cost of very large runtimes,
since a whole set of partially slow methods must be run on the test image for
the assessment network to assemble the final flow field. This is a show stopper
for most optical flow applications.

Thus, as a second contribution, we augment a FlowNet by training it on the
flow obtained with the assessment network, which now serves as proxy ground-
truth. This shifts the large runtimes to the training phase, while the final network
is as fast as a regular FlowNet at test time. Training data can be generated on all
sorts of unlabeled videos, which allows the augmented FlowNet to learn priors
from real images. This yields the currently best accuracy-runtime trade-off and
enables the specialization to target domains directly on real images without
tedious modeling of synthetic scenes in such domains. We show-case this with
state-of-the-art results on the KITTI benchmarks.

2 Related Work

Traditional optical flow estimation. Optical flow estimation goes back to
the works of Lucas&Kanade [9] and Horn&Schunck [3]. Both rely on a bright-
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ness constancy term combined with a local or global smoothness assumption.
Especially the variational approach of Horn&Schunck was extended by many
successive works [4, 10, 11]. While variational methods are very precise in small
displacement cases, they have deficits in case of large displacements. This was
taken into account by Brox et al. [12], who mixed the variational method with a
simple nearest-neighbor matching of local descriptors. DeepMatching [13] elab-
orated on the matching, and EpicFlow [14] improved the variational refinement.
FlowFields [15] builds upon EpicFlow and elaborates on the matching using a
random search strategy. The present state of the art is defined by DCFlow [16]
and MRFlow [17]. The accuracy of these techniques is very high and on-par
or even higher than with learning based techniques. However, the combinatorial
search in state-of-the-art methods leads to quite large runtimes that do not allow
for interactive frame rates.

Optical flow with supervised learning. End-to-end learning of optical
flow was pioneered by the work of Dosovitskiy et al. [18], which presented the
two network architectures FlowNetS and FlowNetC. The former is purely con-
volutional, while the latter includes an explicit correlation. The networks were
trained on a simplistic dataset made from Flickr and chair images to which
affine transformations were applied (FlyingChairs). Mayer et al. [19] introduced
a more sophisticated 3D dataset (FlyingThings3D). Ilg et al. [1] presented a stack
of networks termed FlowNet 2.0 with high accuracy and fast runtime. Ranjan
et al. [20] presented a network architecture that contains a spatial pyramid and
runs even faster than FlowNet 2.0, but at the cost of accuracy. Sun et al. [2]
extended this idea by introducing correlations at the different pyramid levels.
Their network termed PWC-Net currently achieves state-of-the-art results.

Other methods combine feature learning with traditional methods: Flow-
FieldsCNN [21] uses an improved hinge embedding loss to train a Siamese ar-
chitecture for feature extraction, which is then used in combination with Flow-
Fields. PatchBatch [22] shows that CNN features can even be improved to a level
on which plain nearest-neighbor matching performs well. DeepDiscreteFlow [23]
combines a local network with a context network and discrete optimization.

Optical flow with unsupervised learning components. Ahmadi et
al. [5] proposed an unsupervised learning approach by using the brightness con-
stancy loss from variational approaches to train a CNN. In principle, their ap-
proach replaces the Gauss-Newton step in variational optimization with back-
propagation on a network representation. While coming from a fully unsuper-
vised approach, the resulting flow fields are inferior to those of unsupervised
variational techniques. Meister et al. [6] proposed an additional unsupervised
loss based on forward-backward consistency to train the network termed Un-
Flow in a completely unsupervised manner.

Several other methods introduce unsupervised losses in addition to supervised
training on synthetic data. Yu et al. [24] and Ren et al. [25] use the loss from
variational approaches to refine the decoder stages of a pre-trained FlowNet. Lai
et al. [26] use a GAN approach to distinguish the optical flow estimated by the
generator network from ground-truth optical flow. Sedaghat et al. [7] proposed



4 O. Makansi, E. Ilg and T. Brox

Img 1

Img 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

AssessmentNet Error
Warped

Method 1 Error

AssessmentNet Error
Warped

Method 2 Error

AssessmentNet Error
Warped

Method N Error

Fig. 1. Overview of the FusionNet principle. Given the input images, the optical flow is
estimated with various existing methods. Each method’s optical flow estimate is used
to warp the second image. The two input images, the warped image, and the flow are
fed into the proposed assessment network, which is trained on predicting the error of
each flow field. Finally the flow fields are merged by locally choosing the flow vector
with the minimum predicted error.

the self-supervised auxiliary task of next frame prediction as additional loss. Like
the above-mentioned works, this allows them to improve FlowNet on real-world
data. The guided optical flow proposed by Zhu et al. [8] uses the flow computed
by a traditional, unsupervised method as proxy ground-truth to train a network
in the usual supervised manner. The final network is limited by the performance
of the traditional method that provided the proxy ground-truth. In contrast,
we anticipate this drawback by training on flow fields produced by multiple
different methods and locally selecting the best. This way, the final network can
yield better results than any single method that produced the training data.

Optical flow fusion. The principle to locally select the best flow vector
from a set of flow fields has been implemented outside the scope of deep learning.
Lempitsky et al. [27] proposed a combinatorial optimization approach to combine
flow fields from multiple methods based on a smoothness loss. Their approach
was also used in MDPFlow [28], which locally combined multiple hypotheses
from coarser pyramid levels and nearest neighbor matching. In contrast to these
approaches, our selection among flow vectors is based on a deep network that
learns to predict directly the optical flow error rather than just selecting based
on smoothness priors.

3 FusionNet

We assume that various optical flow estimation methods have different strengths
and weaknesses. This does not exclude that these methods may have also many
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difficulties in common. However, as long as there are differences, we want to ex-
ploit these differences to choose from the method that works best on a particular
problem.

To this end, we propose an assessment network that predicts the errors of
the optical flow estimated by a set of existing methods, as shown in Figure 1
and is trained on synthetic data with available ground-truth optical flow. On
first glance, this training on synthetic images looks like we are back at square
one. However, the task of assessment is different from the task of flow estimation
itself. First, we benefit from the information contained in the various input flow
fields. Second, the assessment task may generalize more easily to other domains
than the task of optical flow estimation, since it must only find ways to predict
errors rather than predicting the flow field itself.

The assessment network uses a typical encoder-decoder architecture with
skip-connections; the architecture details are as in FlowNetS [1]. It takes the
two input images into account together with the flow estimate and the second
image warped by that flow. This error map predicted by the assessment network
is used to optimally combine the estimated flow fields. We refer to the complete
setup, as shown in Figure 1, as FusionNet. We investigate two different loss
functions: an L1 loss and a hinge loss.

3.1 L1 Loss

For training the assessment network with an L1 loss, we let the network directly
estimate the pixel-wise endpoint error. Let the estimated optical flow at a certain
pixel be denoted w = (u, v) with the x- and the y-components u and v. The
ground-truth endpoint error egt for a pixel location is:

egt =
√

(u− ugt)2 + (v − vgt)2. (1)

Let e be the error predicted by the assessment network. To improve on the
predicted error, we apply back-propagation with the L1 loss:

L1(e) = |egt − e|. (2)

In principle, one could train a separate, specialized network for each input
method to be assessed. However, since we want to improve on the generalization
of the assessment network, we use the same network for assessing all input flows,
and rather sample the mini-batches during training from the different methods.
More training details are provided in Section 5.1.

3.2 Hinge Loss

Directly applying an L1 loss on the error makes the network estimate the error
for each method. However, for the fusion we only need to know the input methods
with the lowest error. That means, the L1 loss potentially solves a harder problem
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Fig. 2. Using our FusionNet to augment a FlowNet: FlowNet and FusionNet are
trained on labeled data. Subsequently, FusionNet is used to augment FlowNet with
large amounts of unlabeled data.

than necessary to reach the actual goal1. A related problem to picking the input
with the smallest error is the one of designing a distance metric to match patches.
This metric only needs to reflect the ranking, e.g. ”A is closer to B than A is to
C” [29, 30]. Many feature learning algorithms use this as a triplet loss [16, 31–34].
With the same motivation, we use the well-known multi-class hinge loss [35, 36]

LMargin(e1, ..., eN ) =
∑
i 6=j

max(0,m + ej − ei), (3)

where j is the index of the method with the lowest error according to the
ground-truth, and m is the minimum margin between the best estimate and the
other estimates. If the predicted best error corresponds to the true index j and
all other errors are at least m larger than ej , this loss will be zero. Otherwise,
each error that is above the allowed margin will contribute to the loss. Since
the network is allowed to rescale the errors, we can set m = 1 without loss of
generality. Note that the errors predicted by the network with this loss do no
longer correspond to the L1 error but may be rescaled. The rescaling factor may
even be different for each pixel. Obviously, the hinge loss implies joint training
of the assessment network while giving all N methods as input.

4 Augmented FlowNet

Given the FusionNet from the last section, we can apply it to any unlabelled data
to estimate high-quality optical flow. However, running FusionNet is very costly,
since it requires running the various, partially very slow optical flow estimation
methods. In order to have fast optical flow estimation at test time, we use the
optical flow fields estimated with FusionNet as proxy ground-truth in order to
finetune a FlowNet, for instance, to optimize it for a specific domain or to make
it run better on general real-world videos. The principle is quite straightforward
and illustrated in Figure 2.

1 That said, the prediction of the error could be valuable on its own right for a series
of other purposes not discussed in this paper, for instance, uncertainty estimation.
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5 Experiments

We evaluated the concept on the common optical flow benchmarks, where we can
quantify the improvements by the fusion and by the augmentation of FlowNet
directly. In addition, we demonstrate the effect of the augmentation in a motion
segmentation context.

5.1 Training Details

For training the assessment network, we followed the same training schedule as
proposed in Ilg et al. [1] for training FlowNet, i.e., we first train on FlyingChairs
for 1.2m iterations and subsequently on FlyingThings3D for 500k iterations. The
augmented FlowNet is initialized with a FlowNet trained on the same schedule.
We also applied the same data augmentation mechanism, i.e., a set of spatial and
color transformations. The networks were implemented using the Caffe frame-
work. The code will be made publicly available upon publication.

5.2 Datasets

We used the two publicly available synthetic datasets FlyingChairs[18] and Fly-
ingThings3D[1] to train the assessment network and the initial FlowNet before
augmentation. These are the two datasets for which labeled training data is
available. For the unsupervised fine-tuning, we use various unlabeled datasets
that we grouped to two domains: animation movies and driving.

Animation movies. We collected several animation movies from the Blender
project[37] and used them for unsupervised training. For such animation movies
there is the potential option to derive ground-truth optical flow, as shown in
Butler et al. [38] and Mayer et al. [39], but we did not use this option here and
rather used just the unlabeled videos for training. For the evaluation in this
domain we used the official Sintel benchmark dataset [38].

Driving. Driving scenes are a popular application domain for optical flow.
Thus, we selected them to make a second evaluation domain. For unsupervised
training, we took approximately 100k frames from the Frankfurt part of the
publicly available Cityscapes dataset [40]. For the evaluation in this domain, we
used the two publicly available KITTI2012 [41] and KITTI2015 [42] benchmark
datasets.

Motion Segmentation. For indirect evaluation of the optical flow on a
motion segmentation task, we used approximately 32k frames from the UdG-
MS19 and UdG-MS20 datasets [43] for unsupervised training. We evaluated the
motion segmentation on the FBMS benchmark dataset [44].

5.3 FusionNet

We evaluated the FusionNet with the following optical flow estimation tech-
niques as input: LDOF [12], DeepFlow [13], EpicFlow [14], FlowFields [15], and
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Animation Domain Driving Domain
Method Sintel clean Sintel final KITTI 2012 KITTI 2015

AEE AEE AEE F1-noc AEE Fl-all
train test train test train test test train test

In
p
u
ts

LDOF[12] 4.65 7.56 6.16 9.12 10.26 12.4 21.93% 17.71 −
DeepFlow[13] 2.66 5.38 4.02 7.21 5.78 5.8 7.22% 13.14 28.48%
EpicFlow[14] 2.27 4.11 3.57 6.28 3.52 3.8 7.88% 9.23 26.29%
FlowNet2[1] 2.02 3.96 3.62 6.02 4.09 − − 10.06 −
FlowFields[15] 1.86 3.75 3.40 5.81 3.08 3.5 5.77% 9.26 −

B
es

t DCFlow[16] − 3.54 − 5.12 − − − − 14.86%
PWC-Net[2] 2.55 4.39 3.93 5.04 4.14 1.7 4.22% 10.35 9.60%
MR-Flow[17] 1.83 2.53 3.59 5.38 − − − − 12.19%

O
u
r FusionNet-L1 1.59 − 3.10 − 3.11 − − 8.13 −

FusionNet-Hinge 1.58 3.20 3.18 5.50 2.97 3.6 5.50% 8.18 21.44%

Oracle 0.96 − 1.83 − 2.04 − − 5.77 −

Table 1. Comparison of FusionNet to the state-of-the-art. The upper section of the
table corresponds to the input methods used for FusionNet. FusionNet performs better
than any of the input methods. The Oracle Fusion refers to a fusion based on the
ground-truth error.

FlowNet2 [1]. There are some very recent methods with even better performance,
such as DCFlow [16], PWC-Net [2], and MR-Flow[17], but their code was not
operational in time to include them for the experiments. A nice property of Fu-
sionNet is that new methods can be integrated trivially at any time to improve
results further.

Table 1 compares FusionNet to the state-of-the-art on the common bench-
mark datasets. FusionNet consistently outperforms each of the techniques that
have been provided as input, which demonstrates that the assessment network is
able to locally select the best optical flow vectors. As a consequence, this brings
it close to the most recent state of the art and would most likely outperform it
if these methods were also included for selection. Table 1 also reports the results
when selecting the flow vectors based on the ground-truth error. This oracle fu-
sion is the lower bound that FusionNet can achieve with the respective optical
flow fields given as input.

The predicted error when trained with an L1 loss is shown in Figure 3. One
can observe that it matches the ground-truth error quite well. Thus, in hard
cases, if one of the input methods is able to estimate the motion successfully,
FusionNet is able to select the best estimate. The predicted error for the margin
loss is not directly interpretable due to the local scaling. However, the resulting
final optical flow field is as good as the one obtained with the L1 loss. Also
quantitatively comparing the L1 loss against the hinge loss, there is no significant
difference.
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Flow GT Occlusion GT Image 0 Image 1

FlowFields [15] flow GT error Predicted error (L1) Predicted error (Hinge)

FlowNet2 [1] flow GT error Predicted error (L1) Predicted error (Hinge)

EpicFlow [14] flow GT error Predicted error (L1) Predicted error (Hinge)

DeepFlow [13] flow GT error Predicted error (L1) Predicted error (Hinge)

LDOF [12] flow GT error Predicted error (L1) Predicted error (Hinge)

Oracle FusionNet (L1) FusionNet (Hinge)

Fig. 3. Qualitative example showing the error prediction of the assessment network
and the corresponding fused optical flow field. First column: Different flows provided
as input. Second column: Their ground truth error. Third and fourth column:
Error prediction with the L1 loss and the hinge loss, respectively. The error predicted
with the L1 loss is very close to the ground-truth error. The error predicted with the
hinge loss is not interpretable, since it is a relative error and therefore is locally scaled.
The bottom row shows the merged flow using the ground truth (Oracle) or the error
predictions. The marked regions indicate how FusionNet picks the best motion vectors
from the different input methods.



10 O. Makansi, E. Ilg and T. Brox

Animation Domain Driving Domain
Sintel KITTI

Method clean final 2012 2015

Baseline 3.07 4.46 6.66 12.47

D
o
m

.

AugmentedFlowNetD-FlowNet2 2.79 4.05 4.26 9.60
AugmentedFlowNetD-FlowFields 2.97 4.18 3.62 8.01
AugmentedFlowNetD-EpicFlow 3.09 4.21 3.70 8.11
AugmentedFlowNetD-DeepFlow 3.34 4.45 4.90 12.11
AugmentedFlowNetD-LDOF 3.66 4.69 7.93 14.93
AugmentedFlowNetD-Rand. Mix 3.07 4.20 4.14 9.61

AugmentedFlowNetD-FusionNet (L1) 2.80 3.97 3.69 8.17
AugmentedFlowNetD-FusionNet (Hinge) 2.75 3.97 3.52 7.65

G
en

. AugmentedFlowNetG-FusionNet (L1) 2.84 4.06 3.91 8.34
AugmentedFlowNetG-FusionNet (Hinge) 2.78 4.02 3.77 8.01

Table 2. Influence of the proxy ground truth on the augmented FlowNetC. Average
endpoint errors on the training set of Sintel and KITTI are reported. Augmentation
with a single proxy can improve results, but it is not obvious which method to choose.
Using multiple methods to generate the proxy ground-truth (FusionNet) yields consis-
tent improvements across all benchmarks. The benefits come largely from combining
FlowNet2 and FlowFields. The upper part of the table shows experiments which are
trained on domain-specific data (denoted AugmentedFlowNetD), while the bottom
part shows experiments where the training data came from multiple domains to yield
a generic network (denoted AugmentedFlowNetG).

5.4 Augmented FlowNet

While FusionNet yields excellent optical flow that combines the best from all
available methods, it requires 84 seconds per frame. In contrast, FlowNet 2.0
runs at 8 frames per second 2. In this section we test how far we can transfer the
good results from FusionNet to a FlowNet, thus inheriting also the runtimes of
the latter.

Table 2 first shows the influence of the choice of the proxy ground-truth when
fine-tuning a basic FlowNetC. Augmenting the FlowNet with an optical flow field
that is superior to the baseline improves results, whereas inferior flow fields can
decrease the performance. When using just a single proxy method, there is the
dilemma of which method to choose. Feeding a random mixture of samples from
various methods during fine-tuning (Rand. Mix) does not yield the best of all
involved methods, but approximately the average of those. In contrast, the use
of FusionNet resolves the dilemma.

We also distinguish between augmentation for a specific domain and generic
augmentation. In the first case, we augment the FlowNet only on data from the
respective domain, i.e., animation movies in case of Sintel and driving videos in

2 FlowNet2 runtime is reported on an Nvidia GTX1080 GPU, while the classical meth-
ods run on the CPU.
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Animation Domain Driving Domain
Sintel KITTI

Method clean final 2012 2015

Baseline 3.07 4.46 6.66 12.47
D

o
m

.

UnFlow-C-CityScapes [6] − − 5.08 10.78
UnFlow-C-ours 4.22 5.12 5.01 11.07
UnFlow-C-KITTIraw [6] − − 3.78 8.80
UnFlow-CS [6] − − 3.30 8.14
UnFlow-CSS [6] − − 3.29 8.10

D
o
m

. AugmentedFlowNetD-C 2.75 3.97 3.52 7.65
AugmentedFlowNetD-CS 2.20 3.45 2.35 5.84
AugmentedFlowNetD-CSS 2.09 3.34 2.05 5.35

G
en

. AugmentedFlowNetG-C 2.78 4.02 3.77 8.01
AugmentedFlowNetG-CS 2.21 3.49 2.44 5.90
AugmentedFlowNetG-CSS 2.10 3.38 2.17 5.18

Table 3. Comparison of augmented FlowNet stacks to UnFlow [6].
AugmentedFlowNetD-C and UnFlow-C-ours are trained on the same domain-
specific data and are initialized with the same model (Baseline). The results show that
the purpose of domain adaptation is better achieved with the augmentation based on
FusionNet than with the unsupervised loss of UnFlow. The results for the FlowNet
augmented with data from both domains even show that it is not necessary to train
separate networks for each domain, but that a generic network augmented on both
domains is equally good.

case of KITTI; in the second case, data from both domains is used for finetuning.
Specialization to a certain domain is one of the big advantages of learning-based
optical flow methods, and a particular advantage for those methods that do not
require supervision in that domain, as in our case.

Table 2 shows that domain-specific augmentation improves results consider-
ably on KITTI, which is a very special scenario. The error is almost cut into half.
However, also the generic augmentation is not much worse, as it also benefits
from the training data from the special domain, even though it is now mixed with
data from another domain. Obviously, the network can figure out automatically
at test time from which domain the input is from, and applies the appropriate
priors from that domain.

Table 3 extends the augmentation to a stacked FlowNet and compares it
to UnFlow [6]. UnFlow uses an unsupervised loss, thus it can be specialized
conveniently to any domain. The table shows results for UnFlow trained on
CityScapes or the unlabeled data from KITTI, which outperform the supervised
baseline, which was trained on synthetic data outside this domain. For better
comparison to our strategy, we also report results for a semi-supervised version
of UnFlow, i.e., it is initialized with a FlowNet trained on synthetic data before
the unsupervised training starts.
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Animation Domain Driving Domain
Method Sintel clean Sintel final KITTI 2012 KITTI 2015

AEE AEE AEE F1-noc AEE Fl-all
train test train test train test test train test

U
n

/
S

em
i DSTFlow[25] 6.93 5.20 7.82 5.92 10.43 12.4 − 16.79 39.00%

GAN-OpticalFlow[26] 3.30 6.27† 4.68 7.31† 7.16 6.8 − 16.02 31.01%
Hybrid-OpticalFlow-NextFrame[7] − − − − 5.31 9.2 39.12% 10.19 −
UnFlow-CSS[6] − − 7.91 10.22 3.29 1.7† 4.28%† 8.10 11.11%†

S
u

p FlowNet2[1] 2.02 3.96 3.62 5.74† 3.55 1.8† − 8.94 11.48%†

PWC-Net[2] 2.55 3.86† 3.93 5.04† 4.14 1.7† 4.22%† 10.35 9.60%†

DCFlow[16] − 3.54 − 5.12 − − − − 14.86%
MR-Flow[17] 1.83 2.53 3.59 5.38 − − − − 12.19%

O
u

r AugmentedFlowNetD-CSS 2.09 4.22† 3.34 5.63† 2.05 1.5† 3.97%† 5.35 8.57%†

AugmentedFlowNetG-CSS 2.10 3.69 3.38 5.20 2.17 2.7 7.04% 5.18 20.09%
FusionNet-Hinge 1.58 3.20 3.18 5.50 2.97 3.6 5.50% 8.18 21.44%

Table 4. Comparison to the state-of-the-art. Numbers marked with † have been ob-
tained after fine-tuning on the training set of the respective benchmark. On the KITTI
benchmarks, we clearly extend the state of the art. Thanks to additional fine-tuning
with ground truth data, the augmented network even performs better than the Fusion-
Net proxy, but also the generic version, which has only been finetuned on the FusionNet
proxy, gets close to FusionNet and sometimes even outperforms it.

Results show that the domain adaptation with the augmented FlowNet is
clearly superior to the one of UnFlow3. As we already observed in Table 2, there
is no significant difference between domain-specific training and training on a
joint set of domains. This is also true for the stacked network.

Table 4 compares the stacked augmented FlowNet to the state of the art. On
the KITTI benchmarks, the augmented FlowNet sets the new state of the art
after being finetuned also with the ground truth from the KITTI training set.
But also the generic version, which has not been finetuned with ground truth
data yields very good results. The direct comparison to FlowNet2 quantifies the
improvement on stacked networks due to the augmentation.

Interestingly, the stacked augmented FlowNet often even outperforms the
FusionNet proxy. This is due to the finetuning with ground truth in case of
the domain-specific network. Sometimes, also the generic network is better than
FusionNet, but not consistently.

Fig. 4 shows some qualitative examples of the augmentation by the proxy,
yet with the smaller, non-stacked network.

Finally, we also evaluated the augmented FlowNet in an application sce-
nario. We augmented the FlowNet on data from UdG-MS19 and UdG-MS20 [43]
and fed its optical flow into the motion segmentation approach from Keuper et
al. [45]. The motion segmentation performance was evaluated on the FBMS
benchmark [44]. Table 5 shows that the adaptation to real images clearly helps a
small FlowNetC to improve motion segmentation results. For the larger, stacked
network, we do not see a significant improvement due to the augmentation. We

3 UnFlow does not require any supervision, which makes it biologically more plausible.
From the engineering perspective, however, this is irrelevant.
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Image 1 Flow GT Baseline Flow

Image 2 FusionNet Proxy Augmented Flow

Image 1 Flow GT Baseline Flow

Image 2 FusionNet Proxy Augmented Flow

Image 1 Flow GT Baseline Flow

Image 2 FusionNet Proxy Augmented Flow

Image 1 Flow GT Baseline Flow

Image 2 FusionNet Proxy Augmented Flow

Fig. 4. Examples from Sintel Clean and KITTI2015. Using the proxy ground truth
obtained with FusionNet for finetuning improves the network’s performance. Note that
the ground truth on KITTI is sparse and lacks some moving objects.
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Method F1 Measure Extracted Objects

FlowNetC (baseline) 60.52% 10/69

AugmentedFlowNetD-C 65.29% 13/69

FlowNet2 [1] (stacked baseline) 76.72% 26/69

AugmentedFlowNetD-CS 77.09% 28/69

Table 5. Motion segmentation results on the FBMS test set [44]. We fed the optical
flow from the listed methods to the motion segmentation approach from Keuper et
al. [45]. The augmentation on real data clearly improved the FlowNetC baseline. For
the stacked network, we do not see a significant improvement. This is mainly because
the optical flow is already very good in this case and other effects in the motion
segmentation pipeline dominate the final result.

attribute this to some saturation effect: the optical flow of FlowNet2 is already
very good, such that other parts of the motion segmentation pipeline dominate
the final result.

6 Conclusion

In this paper, we have presented two contributions: (1) We have presented a way
to assemble a high-quality flow field from a set of input flow fields being computed
in an unsupervised manner using existing optical flow estimation methods. This
has been achieved by training an assessment network that learns to predict the
errors of the input techniques. (2) We have shown that finetuning a FlowNet on
such high-quality flow fields allows for unsupervised adaptation of the network
to a specific domain. With this strategy, we obtained state-of-the-art results on
the KITTI benchmarks. Moreover, we have shown that this strategy is more
successful on domain adaptation than a fully unsupervised approach that does
not make use of any synthetic data.
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