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Abstract. Occlusions play an important role in disparity and optical
flow estimation, since matching costs are not available in occluded areas
and occlusions indicate depth or motion boundaries. Moreover, occlu-
sions are relevant for motion segmentation and scene flow estimation. In
this paper, we present an efficient learning-based approach to estimate
occlusion areas jointly with disparities or optical flow. The estimated oc-
clusions and motion boundaries clearly improve over the state-of-the-art.
Moreover, we present networks with state-of-the-art performance on the
popular KITTI benchmark and good generic performance. Making use
of the estimated occlusions, we also show improved results on motion
segmentation and scene flow estimation.

1 Introduction

When applying dense correspondences to higher level tasks, there is often the
desire for additional information apart from the raw correspondences. The ar-
eas in one image that are occluded in the other image are important to get an
indication of potentially unreliable estimates due to missing measurements. A
typical approach to estimate occluded areas is by computing correspondences
in both directions and verifying their consistency post-hoc. However, since oc-
clusions and correspondences are mutually dependent [17, 32] and the presence
of occlusions already negatively influences the correspondence estimation itself,
post-processing is suboptimal and leads to unreliable occlusion estimates.

Another valuable extra information in disparity maps and flow fields are ex-
plicit depth and motion boundaries, respectively. Referring to the classic work of
Black&Jepson [4], ”motion boundaries may be useful for navigation, structure
from motion, video compression, perceptual organization and object recogni-
tion”.

In this paper, we integrate occlusion estimation as well as depth or motion
boundary estimation elegantly with a deep network for disparity or optical flow
estimation based on FlowNet 2.0 [18] and provide these quantities explicitly as
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output. In contrast to many prior works, this leads to much improved occlusion
and boundary estimates and much faster overall runtimes. We quantify this
improvement directly by measuring the accuracy of the occlusions and motion
boundaries. We also quantify the effect of this improved accuracy on motion
segmentation.

Furthermore we improved on some details in the implementation of the dis-
parity and optical flow estimation networks from [29, 11, 18], which gives us state-
of-the-art results on the KITTI benchmarks. Moreover, the networks show good
generic performance on various datasets if we do not fine-tune them to a par-
ticular scenario. While these are smaller technical contributions, they are very
relevant for applications of optical flow and disparity. Finally, with state-of-the-
art optical flow, disparity and occlusion estimates in place, we put everything
together to achieve good scene flow performance at a high frame-rate, using only
2D motion information. Using our predicted occlusions as input, we present a
network that learns to interpolate the occluded areas to avoid the erroneous
or missing information when computing the motion compensated difference be-
tween two disparity maps for scene flow.

2 Related Work

Optical flow estimation with CNNs. Optical flow estimation based on deep
learning was pioneered by Dosovitsky et al. [11], who presented an end-to-end
trainable encoder-decoder network. The work has been improved by Ilg et al. [18],
who introduced a stack of refinement networks. Ranjan and Black [34] focused
on efficiency and proposed a much smaller network based on the coarse-to-fine
principle. Sun et al. [42] extended this idea by introducing correlations at the
different pyramid levels. Their network termed PWC-Net currently achieves
state-of-the-art results. The coarse-to-fine approach, however, comes with the
well-known limitation that the flow for small, fast-moving objects cannot be
estimated. While this does not much affect the average errors of benchmarks,
small objects can be very important for decisions in application scenarios.

Disparity estimation with CNNs. For disparity estimation, Zbontar et
al. [52] were the first to present a Siamese CNN for matching patches. Post-
processing with the traditional SGM method [14] yielded disparity maps. Other
approaches to augment SGM with CNNs were presented by [28, 38]. The first
end-to-end learning framework was presented by Mayer et al. [29]. The network
named DispNetC was derived from the FlowNetC of Dosovitskiy et al. [11] re-
stricted to rectified stereo images. It includes a correlation layer that yields a cost
volume, which is further processed by the network. Kendall et al. [21] presented
GC-Net, which uses 3D convolutions to process the cost volume also along the
disparity dimension and by using a differentiable softargmin operation. Pang et
al. [31] extended DispNetC by stacking a refinement network on top, similar to
FlowNet 2.0 [18], with the difference that the second network is posed in a resid-
ual setting. In this work we also make use of network stacks with up to three
networks and use their residual refinement.
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Occlusion Estimation. Occlusion and optical flow estimation mutually de-
pend on each other and are thus a typical chicken-and-egg problem [17, 32].
Humayun et al. [16] determine occlusions post-hoc by training a classifier on a
broad spectrum of visual features and precomputed optical flow. Pérez-Rúa et
al. [32] do not require a dense optical flow field, but motion candidates, which
are used to determine if a “plausible reconstruction” exists. Many other methods
try to estimate optical flow and occlusions jointly. Leordeanu et al. [27] train a
classifier based on various features, including the current motion estimate and
use it repeatedly during energy minimization of the flow. Sun et al. [41] make
use of superpixels and local layering for an energy formulation that is optimized
jointly for layers, optical flow and occlusions. The most recent work from Hur et
al. [17] uses consistency between forward and backward flows of two images,
by integrating a corresponding constraint into an energy formulation. Since oc-
clusions are directly related to changes in depth [12], it was quite common to
consider them explicitly in disparity estimation methods [12, 19, 9, 44].

In this paper, we show that training a network for occlusion estimation is
clearly beneficial, especially if the trained network is combined with a network
formulation of disparity or optical flow estimation. We do not try to disentan-
gle the chicken-and-egg problem, but instead solve this problem using the joint
training procedure.

Depth and motion boundary estimation. In many energy minimiza-
tion approaches, depth or motion boundary estimation is implicitly included in
the form of robustness to outliers in the smoothness constraint. Typically, these
boundaries are not made explicit. An exception is Black&Fleet [4], who estimate
translational motion together with motion boundaries. Motion boundaries are
also explicit in layered motion segmentation approaches. Most of these assume a
precomputed optical flow, and only few estimate the segmentation and the flow
jointly [40, 8]. Leordeanu et al. [26] introduced a method for combined optimiza-
tion of a boundary detector that also covers motion boundaries, while most other
approaches make use of an external image boundary detector [1, 10]. Sundberg et
al. [43] use gPb [1] and LDOF [6] to compute motion differences between regions
adjacent to image boundaries. Weinzaepfel et al. [49] use a structured random
forest trained on appearance and motion cues. Lei et al. [25] present a fully
convolutional Siamese network that is trained on annotated video segmentation.
Using only the video segmentation ground-truth for training, they are able to
infer the motion of boundary points during inference. For disparity and depth
boundaries, the problem is very similar and most of the above mentioned meth-
ods could be applied to disparities, too. Jia et al. [20] infer depth boundaries
from color and depth images with a Conditional Random Field. In this paper,
we obtain depth and motion boundaries also by a joint training procedure and
by joint refinement together with occlusions and disparity or flow.

Scene Flow Estimation. Scene flow estimation was popularized for the first
time by the work of Vedula et al. [45] and was later dominated by variational
methods [15] [33] [47]. Vogel et al. [46] combined the task of scene flow estimation
with superpixel segmentation using a piecewise rigid model for regularization.
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Schuster et al. [37] proposed a variational approach to interpolate sparse scene
flow estimates from sparse matches. Behl et al. [3] proposed a 3D scene flow
method, which exploits instance recognition and 3D geometry information to
obtain improved performance in texture-less, reflective and fast moving regions.

In this paper, we investigate scene flow estimation based on estimating corre-
spondences only, without the use of 3D geometry information. The only learning
based approach in a similar setting was proposed by Mayer et al. [29], but did
not perform similarly well.

3 Network Architectures

We investigate estimating occlusions and depth or motion boundaries with CNNs
together with disparity and optical flow. To this end, we build upon the con-
volutional encoder-decoder architectures from FlowNet [11] and the stacks from
FlowNet 2.0 [18]. Our modifications are shown in Figure 1(a). For simplicity, in
the following we mention the flow case. The disparity case is analogous.

In our version of [18], we leave away the small displacement network. In
fact, the experiments from our re-implemented version show that the stack can
perform well on small displacements without it. We still keep the former fusion
network as it also performs smoothing and sharpening (see Figure 1(a)). We
denote this network by the letter ”R” in network names (e.g. FlowNet-CSSR).
This network is only for refinement and does not see the second image. We
further modify the stack by integrating the suggestion of Pang et al. [31] and
add residual connections to the refinement networks. As in [18], we also input
the warped images, but omit the brightness error inputs, as these can easily be
computed by the network.

Finally, we add the occlusions and depth or motion boundaries. While oc-
clusions are important for refinement from the beginning, boundaries are only
required in later refinement stages. Therefore we add the boundaries in the
third network. Experimentally, we also found that when adding depth or motion
boundary prediction in earlier networks, these networks predicted details better,
but failed more rigorously in case of errors. Predicting exact boundaries early
would be contrary to the concept of a refinement pipeline.

Generally, in an occluded area, the forward flow from the first to the second
image does not match the backward flow from the second to the first image. If
the forward flow is correctly interpolated into the occluded regions, it resembles
the flow of the background object. Since this object is not visible in the second
image, the backward flow of the target location is from another object and
forward and backward flows are inconsistent. Many classical methods use this
fact to determine occlusions.

We bring this into the network architecture from Figure 1(b). In this version,
we let the network estimate forward and backward flows and occlusions jointly.
Therefore we modify FlowNetC to include a second correlation that takes a
feature vector from the second image and computes the correlations to a neigh-
borhood in the first image. We concatenate the outputs and also add a second
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(a) Extension of FlowNet2 with occlusions and residual connections.
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(b) Architecture for joint estimation of forward/backward
flows and occlusions. See figure caption for symbol explana-
tion.
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(c) Dual forward and backward estimation architec-
ture with mutual warping. See figure caption for sym-
bol explanation.
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(d) Extending FlowNet-CSS and DispNet-CSS to a
full scene flow network.

Fig. 1. Overview of possible refinement stacks for flow, occlusions and motion bound-
aries. The residual connections are only shown in the first figure and indicated by +
elsewhere. Aux. refers to the images plus a warped image for each input flow, respec-
tively. Architectures for the disparity case are analogous.

skip connection for the second image. This setup is shown as FlowNetC-Bi in
Figure 1(b). Throughout the stack, we then estimate flow and occlusions in
forward and backward directions.
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In the third variant from Figure 1(c), we model forward and backward flow
estimation as separate streams and perform mutual warping to the other direc-
tion after each network. E.g., we warp the estimated backward flow after the
first network to the coordinates of the first image using the forward flow. Subse-
quently we flip the sign of the warped flow, effectively turning it into a forward
flow. The network then has the forward and the corresponding backward flow at
the same pixel position as input.

Finally, we use our networks for flow and disparity to build a scene flow
extension. For the scene flow task, the disparity at t = 0 is required and the
flow is extended by disparity change [29] (resembling the change in the third
coordinate). To compute this disparity change, one can estimate disparities at
t = 1, warp them to t = 0 and compute the difference. However, the warping will
be incorrect or undefined everywhere, where an occlusion is present. We therefore
add the network shown in Figure 1(d) to learn a meaningful interpolation for
these areas given the warped disparity, the occlusions and the image.

4 Experiments

4.1 Training Data

For training our flow networks, we use the FlyingChairs [11], FlyingThings3D [29]
and ChairsSDHom [18] datasets. For training the disparity networks, we only
use the FlyingThings3D [29] dataset. These datasets do not provide the ground-
truth required for our setting per-se. For FlyingChairs, using the code provided
by the authors of [11], we recreate the whole dataset including also backward
flows, motion boundaries and occlusions. For FlyingThings3D, depth and mo-
tion boundaries are directly provided. We use flow and object IDs to determine
occlusions. For ChairsSDHom, we compute motion boundaries by finding discon-
tinuities among object IDs and in the flow, by using a flow magnitude difference
threshold of 0.75. To determine the ground-truth occlusions, we also use the flow
and the object IDs.

4.2 Training Schedules and Settings

For training our networks, we also follow the data and learning rate schedules
of FlowNet 2.0 [18]. We train the stack network by network, always fixing the
already trained networks. Contrary to [18], for each step we only use half the
number of iterations. The initial network is then a bit worse, but it turns out that
the refinement can compensate for it well. We also find that the residual networks
converge much faster. Therefore, we train each new network on the stack for
600k iterations on FlyingChairs and for 250k iterations on FlyingThings3D.
Optionally, we follow the same fine-tuning procedure for small-displacements on
ChairsSDHom as in [18] (we add ”-ft-sd” to the network names in this case).
We use the caffe framework and the same settings as in [18], with one minor
modification: we found that numerically scaling the ground-truth flow vectors
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Input
F-measure

FlyingThings3D [29] Sintel clean [7]

Images 0+1 0.790 0.545

Images 0+1, GT fwd Flow 0.932 0.653
Images 0+1, GT fwd Flow, GT bwd flow 0.930 -
Images 0+1, GT fwd Flow, GT bwd flow warped+flipped 0.943 -
Images 0+1, GT fwd Flow, GT fwd/bwd consistency 0.943 -

Table 1. Training a FlowNetS to estimate occluded regions from different inputs. Since
Sintel [7] does not provide the ground-truth backward flow, we additionally report
numbers on FlyingThings3D [29]. The results show that contrary to literature [32,
27, 16], occlusion estimation is even possible from just the two images. Providing the
optical flow, too, clearly improves the results

(by a factor of 1
20 ) yields noise for small displacements during optimization. We

propose to change this factor to 1. Since these are all minor modifications, we
present details in the supplemental material.

To train for flow and disparity, we use the normal EPE loss. For small dis-
placement training we also apply the suggested non-linearity of [18]. To train
for occlusions and depth or motion boundaries, we use a normal cross entropy
loss with classes 0 and 1 applied to each pixel. To combine multiple losses of
different kind, we balance their coefficients during the beginning of the training,
such that their magnitudes are approximately equal.

4.3 Estimating Occlusions with CNNs

We first ran some basic experiments on estimating occlusions with a FlowNetS
architecture and the described ground-truth data. In the past, occlusion esti-
mation was closely coupled with optical flow estimation and in the literature
is stated as ”notoriously difficult” [27] and a chicken-and-egg problem [17, 32].
However, before we come to joint estimation of occlusions and disparity or opti-
cal flow, we start with a network that estimates occlusions independently of the
optical flow or with optical flow being provided as input.

In the most basic case, we only provide the two input images to the network
and no optical flow, i.e., the network must figure out by itself on how to use the
relationship between the two images to detect occluded areas. As a next step,
we additionally provide the ground-truth forward optical flow to the network,
to see if a network is able to use flow information to find occluded areas. Since
a classical way to detect occlusions is by checking the consistency between the
forward and the backward flow as mentioned in Section 3, we provide different
versions of the backward flow: 1.) backward flow directly; 2.) using the forward
flow to warp the backward flow to the first image and flipping its sign (effectively
turning the backward flow into a forward flow up to the occluded areas); 3.)
providing the magnitude of the sum of forward and backward flows, i.e., the
classical approach to detect occlusions. From the results of these experiments in
Table 1, we conclude:
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Configuration EPE F-measure

FlowNetC estimating flow 3.21 -
FlowNetC estimating occlusions - 0.546
FlowNetC estimating flow + occlusions 3.20 0.539
FlowNetC-Bi estimating fwd/bwd flow and fwd occlusions 3.26 0.542

Table 2. Joint estimation of flow and occlusions with a FlowNetC from Sintel train
clean. Estimating occlusions neither improves nor degrades flow performance

Occlusion estimation without optical flow is possible. In contrast to
existing literature, where classifiers are always trained with flow input [32, 27,
16, 26] or occlusions are estimated jointly with optical flow [41, 17], we show that
a deep network can learn to estimate the occlusions directly from two images.

Using the flow as input helps. The flow provides the solution for cor-
respondences and the network uses these correspondences. Clearly, this helps,
particularly since we provided the correct optical flow.

Adding the backward flow marginally improves results. Providing
the backward flow directly does not help. This can be expected, because the
information for a pixel of the backward flow is stored at the target location of
the forward flow and a look-up is difficult for a network to perform. Warping the
backward flow or providing the forward/backward consistency helps a little.

4.4 Joint Estimation of Occlusions and Optical Flow

Within a single network. In this section we investigate estimating occlusions
jointly with optical flow, as many classical methods try to do [41, 17]. Here,
we provide only the image pair and therefore can use a FlowNetC instead of a
FlowNetS. The first row of Table 2 shows that just occlusion estimation with
a FlowNetC performs similar to the FlowNetS of the last section. Surprisingly,
from rows one to three of Table 2 we find that joint flow estimation neither
improves nor deproves the flow or the occlusion quality. In row four of the table
we additionally estimate the backward flow to enable the network to reason
about forward/backward consistency. However, we find that this also does not
affect performance much.

When finding correspondences, occlusions need to be regarded by deciding
that no correspondence exists for an occluded pixel and by filling the occlusion
area with some value inferred from the surroundings. Therefore, knowledge about
occlusions is mandatory for correspondence and correct flow estimation. Since
making the occlusion estimation in our network explicit does not change the
result, we conclude that an end-to-end trained network for only flow already
implicitly performs all necessary occlusion reasoning. By making it explicit, we
obtain the occlusions as an additional output at no cost, but the flow itself
remains unaffected.
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Configuration EPE F-measure

Only flow as in FlowNet2-CS [18] 2.28 -
+ occlusions (Figure 1(a)) 2.25 0.590
+ bwd direction (Figure 1(b)) 2.77 0.572
+ mutual warping (Figure 1(c)) 2.25 0.589

Table 3. Results of refinement stacks on Sintel train clean. Simply adding occlusions in
a straightforward manner performs better or similar to more complicated approaches.
In general, adding occlusions does not perform better than estimating only flow

4.5 With a refinement network

In the last section we investigated the joint estimation of flow and occlusions,
which in the literature is referred to as a ”chicken-and-egg” problem. With our
first network already estimating flow and occlusions, we investigate if the esti-
mated occlusions can help refine the flow (”if a chicken can come from an egg”).

To this end, we investigate the three proposed architectures from Section 2.
We show the results of the three variants in Table 3. While the architectures
from Figures 1(a) and 1(c) are indifferent about the additional occlusion input,
the architecture with joint forward and backward estimation performs worse.

Overall, we find that providing explicit occlusion estimates to the refinement
does not help compared to estimating just the optical flow. This means, either
the occluded areas are already filled correctly by the base network, or in a stack
without explicit occlusion estimation, the second network can easily recover oc-
clusions from the flow and does not require the explicit input.

We finally conclude that occlusions can be obtained at no extra cost, but do
not actually influence the flow estimation, and that it is best to leave the inner
workings to the optimization by using only the baseline variant (Figure 1(a)).
This is contrary to the findings from classical methods.

4.6 Comparing occlusion estimation to other methods

In Tables 4 and 5 we compare our occlusion estimations to other methods. For
disparity our method outperforms Kolmogorov et al. [24] for all except one scene.
For the more difficult case of optical flow, we outperform all existing methods by
far. This shows that the chicken-and-egg problem of occlusion estimation is much
easier to handle with a CNN than with classical approaches [44, 24, 17, 27] and
that CNNs can perform very well at occlusion reasoning. This is confirmed by
the qualitative results of Figure 2. While consistency checking is able to capture
mainly large occlusion areas, S2DFlow [27] also manages to find some details.
MirrorFlow [17] in many cases misses details. Our CNN on the other hand is
able to estimate most of the fine details.
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Method
F-Measure

Cones Teddy Tsukuba Venus Sintel clean Sintel final

Kolmogorov et al.[24] 0.45 0.63 0.60 0.41 - -
Tan et al.[44] 0.44 0.40 0.50 0.33 - -

Ours 0.91 0.57 0.68 0.44 0.76 0.72

Table 4. Comparison of estimated disparity occlusions from our DispNet-CSS to other
methods on examples from the Middlebury 2001 and 2003 datasets (results of Kol-
mogorov et al. [24] and Tan et al. [44] taken from [44]) and the Sintel train dataset. Only
in the scene Teddy of Middlebury our occlusions are outperformed by Kolmogorov et
al. [24]

Method Type
F-Measure
clean final

FlowNet2 [18] consistency 0.377 0.348
MirrorFlow [17] estimated 0.390 0.348
S2DFlow [27] estimated 0.470 0.403

Ours estimated 0.703 0.654

Table 5. Comparison of the occlusions from FlowNet-CSSR-ft-sd to other occlusion
estimation methods on the Sintel train dataset. For the first entry, occlusions were
computed using forward/backward consistency post-hoc. The proposed approach yields
much better occlusions

4.7 Motion Boundary Estimation

For motion boundary estimation we compare to Weinzaepfel et al. [49], which
is to the best of our knowledge the best available method. It uses a random
forest classifier and is trained on the Sintel dataset. Although we do not train
on Sintel, from the results of Table 6, our CNN outperforms their method by
a large margin. The improvement in quality is also very well visible from the
qualitative results from Figure 3.

4.8 Application to Motion Segmentation

We apply the estimated occlusions to the motion segmentation framework from
Keuper et al. [22]. This approach, like [5], computes long-term point trajectories
based on optical flow. For deciding when a trajectory ends, the method depends
on reliable occlusion estimates. These are commonly computed using the post-
hoc consistency of forward and backward flow, which was shown to perform
badly in Section 4.6. We replace the occlusion estimation with the occlusions
from our FlowNet-CSS. Table 3 shows the clear improvements obtained by the
more reliable occlusion estimates on the common FBMS-59 motion segmentation
benchmark. In row four, we show how adding our occlusions to flow estimations
of FlowNet2 can improve results. This shows that by only adding occlusions, we
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Image 0 Occ GT S2DFlow [27] Consistency

Image 1 Ours MirrorFlow [17]

Image 0 Occ GT S2DFlow [27] Consistency

Image 1 Ours MirrorFlow [17]

Image 0 Occ GT S2DFlow [27] Consistency

Image 1 Ours MirrorFlow [17]

Fig. 2. Qualitative results for occlusions. In comparison to other methods and the
forward-backward consistency check, our method is able to capture very fine details.

Method Sintel clean Sintel final

Weinzaepfel et al. [49] 76.3 68.5

Ours 86.3 79.5

Table 6. Comparison of our motion boundary estimation to Weinzaepfel et al. [49] on
the Sintel train dataset. The table shows the mean average precision computed with
their evaluation code. Although Weinzaepfel et al. [49] trained on Sintel train clean,
our method outperforms theirs by a large margin

recover 30 objects instead of 26. The last result from our flow and occlusions
together further improve the results. Besides the direct quantitative and qualita-
tive evaluation from the last sections, this shows the usefulness of our occlusion
estimates in a relevant application. Our final results can produce results that
are even better than the ones generated by the recently proposed third order
motion segmentation with multicuts [23].

4.9 Benchmark results for disparity, optical flow, and scene flow

Finally, we show that besides the estimated occlusions and depth and motion
boundaries, our disparities and optical flow achieve state-of-the-art performance.
In Table 8 we show results for the common disparity benchmarks. We also present
smaller versions of our networks by scaling the number of channels in each layer



12 E. Ilg, T. Saikia, M. Keuper and T. Brox

(a) Image 0 (b) Boundary ground-truth (c) Weinzaepfel et al. [49]

(d) Flow ground-truth (e) Ours (hard) (f) Ours(soft)

Fig. 3. Motion boundaries on Sintel train clean. Our approach succeeds to detect the
object in the background and has less noise around motion edges than existing ap-
proaches (see green arrows). Weinzaepfel et al. detect some correct motion details in
the background. However, these details are not captured in the ground-truth.

Method
FBMS test set (30 sequences)

Precision Recall F-Measure #Objects

Third Order Multicut [23] 87.77% 71.96% 79.08% 29/69

DeepFlow [48] 88.20% 69.39% 77.67% 26/69
FlowNet2 86.73% 68.77% 76.71% 26/69
FlowNet2 + our occ 85.67% 70.15% 77.14% 30/69
Ours 88.71% 73.60% 80.45% 31/69

Table 7. Results of motion segmentation from Keuper et al. [22] on the FBMS-59 test
set [5, 30] (with sampling density 8px). The fourth row uses flows from FlowNet2 [18]
combined with our occlusions. The improved results show that occlusions help the
motion segmentation in general. The last row shows the segmentation using our flow
and occlusions, which performs best and also improves over the recent state-of-the-art
on sparse motion segmentation using higher order motion models [23]

down to 37.5% as suggested in [18] (denoted by css). While this small ver-
sion yields a good speed/accuracy trade-off, the larger networks rank second
on KITTI 2015 and are the top ranked methods on KITTI 2012 and Sintel.

In Table 9 we show the benchmark results for optical flow. We perform on-par
on Sintel, while we set the new state-of-the-art on both KITTI datasets.

In Table 10 we report numbers on the KITTI 2015 scene flow benchmark.
The basic scene flow approach warps the next frame disparity maps into the
current frame (see [36]) using forward flow. Out of frame occluded pixels cannot
be estimated this way. To mitigate this problem we train a CNN to reason about
disparities in occluded regions (see the architecture from Figure 1(d)). This yields
clearly improved results that get close to the state-of-the-art while the approach
is orders of magnitude faster.
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Method Sintel KITTI KITTI Runtime
(clean) (2012) (2015)
AEE AEE Out-noc AEE D1-all
train train test train test (s)

Standard

SGM [14] 19.62 10.06 - 7.21 10.86% 1.1

CNN based

DispNetC [29] 5.66 1.75 - 1.59 - 0.06
DispNetC-ft [29] 21.88 1.48 4.11% (0.68) 4.34% 0.06
CRL [31] 16.13 1.11 - (0.52) 2.67% 0.47
GC-Net [21] - - 1.77% - 2.87% 0.90
MC-CNN-acrt [52] - - 2.43% - 3.89% 67
DRR [13] - - - - 3.16% 0.4
L-ResMatch [39] - - 2.27% - 3.42% 42

With joint occ. est.

SPS stereo [51] - - 3.39% - 5.31% 2
Our DispNet-CSS 2.33 1.40 - 1.37 - 0.07
Our DispNet-CSS-ft 5.53 (0.72) 1.82% (0.71) 2.19% 0.07
Our DispNet-css 2.95 1.53 - 1.49 - 0.03

Table 8. Benchmark results for disparity estimation. We report the average end-
point error (AAE) for Sintel. On KITTI, Out-noc and D1-all are used for the bench-
mark ranking on KITTI 2012 and 2015, respectively. Out-noc shows the percentage of
outliers with errors more than 3px in non-occluded regions, whereas D1-all shows the
percentage in all regions. Entries in parentheses denote methods that were finetuned
on the evaluated dataset. Our network denoted with ”-ft” is finetuned on the respec-
tive training datasets. We obtain state-of-the-art results on the Sintel and KITTI 2015.
Also, our networks generalize well across domains, as shown by the good numbers of the
non-finetuned networks and the reduced drop in performance for a network finetuned
on KITTI and tested on Sintel

5 Conclusion

We have shown that, in contrast to traditional methods, CNNs can very easily
estimate occlusions and depth or motion boundaries, and that their performance
surpasses traditional approaches by a large margin. While classical methods
often use the backward flow to determine occlusions, we have shown that a
simple extension from the forward FlowNet 2.0 stack performs best in the case
of CNNs. We have also shown that this generic network architecture performs
well on the tasks of disparity and flow estimation itself and yields state-of-the-
art results on benchmarks. Finally, we have shown that the estimated occlusions
can significantly improve motion segmentation.
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Method Sintel Sintel KITTI KITTI Runtime
(clean) (final) (2012) (2015) (s)
AEE AEE AEE OUT-noc AEE F1-all

train test train test train test train test

Standard

EpicFlow [35] 2.27 4.12 3.56 6.29 3.09 7.88% 9.27 26.29% 42
FlowfieldsCNN [2] - 3.78 - 5.36 - 4.89% - 18.68% 23
DCFlow [50] - 3.54 - 5.12 - - - 14.86% 9

CNN based

FlowNet2 [18] 2.02 3.96 3.14 6.02 4.09 - 10.06 - 0.123
FlowNet2-ft [18] (1.45) 4.16 (2.01) 5.74 (1.28) - (2.30) 11.48% 0.123
SpyNet [34] 4.12 6.69 5.57 8.43 9.12 - - - 0.016
SpyNet-ft [34] (3.17) 6.64 (4.32) 8.36 (4.13) 12.31% - 35.07% 0.016
PWC-Net [42] 2.55 - 3.93 - 4.14 - 10.35 33.67% 0.030
PWC-Net-ft [42] (2.02) 4.39 (2.08) 5.04 - 4.22% (2.16) 9.80% 0.030

With joint occ est.

MirrorFlow [17] - 3.32 - 6.07 - 4.38% - 10.29% 660
S2D flow [27] - 18.48 - 6.82 - - - - 2280
Our FlowNet-CSS 2.08 3.94 3.61 6.03 3.69 - 9.33 - 0.068
Our FlowNet-CSS-ft (1.47) 4.35 (2.12) 5.67 (1.19) 3.45% (1.79) 8.60% 0.068
Our FlowNet-css 2.65 - 4.05 - 5.05 - 11.74 0.033

Table 9. Benchmark results for optical flow estimation. We report the average
endpoint error (AAE) for all benchmarks, except KITTI, where Out-noc and F1-all are
used for the benchmark ranking on KITTI 2012 and 2015, respectively. Out-noc shows
the percentage of outliers with errors more than 3px in non-occluded regions, whereas
F1-all shows the percentage in all regions. Entries in parentheses denote methods that
were finetuned on the evaluated dataset. On the Sintel dataset, the performance of
our networks is on par with FlowNet2. When comparing to other methods with joint
occlusion estimation we are faster by multiple orders of magnitude. On KITTI 2012
and 2015 we obtain state-of-the-art results among all optical flow methods (two frame,
non-stereo)

Method D1-all D2-all Fl-all SF-all Runtime (s)

ISF [3] 4.46 5.95 6.22 8.08 600

SGM+FlowFields (interp.)[36] 13.37 27.80 22.82 33.57 29
SceneFFields (dense) [37] 6.57 10.69 12.88 15.78 65
Ours(interp.) 2.16 13.71 8.60 17.73 0.22
Ours(dense) 2.16 6.45 8.60 11.34 0.25

Table 10. Benchmark results for scene flow estimation. ”Interp.” means the dispar-
ity values were automatically interpolated by the KITTI benchmark suite in the sparse
regions. Compared to [37] we obtain much improved results and close the performance
gap to much slower state-of-the-art methods, such as [3], which use 2D information by
a large margin
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Supplementary Material

1 Video

Please see the supplementary video for qualitative results on a number of video
sequences at https://www.youtube.com/watch?v=SwOdSaBRysI.

2 Visual Examples

Figures 3, 4 and 5 give examples of our motion boundary, occlusion and flow
estimation on some real images. We show our FlowNet-CSS and our FlowNet-
CSSR-ft-sd, which includes fine-tuning on small displacements and the final re-
finement network. One can observe that already FlowNet-CSS performs well,
while FlowNet-CSSR-ft-sd provides smoother flow estimations and a bit more
details. Generally, one can observe that motion boundaries are estimated well,
indicating the usefulness for motion segmentation. This is also visible in the
provided video.

Figure 6 shows the case for depth boundary, occlusion and disparity estima-
tion on some examples from Sintel. One can observe that the estimations are
very close to the ground-truth and hard to distinguish at first glance. Note how
well the DispNet-CSS architecture can estimate the large occlusion areas in the
first, and the fine details in the second example.

Figure 7 shows results from the network proposed for filling occluded areas
for scene flow. Note that occlusion in general causes hallucination effects (visible
e.g. for the trees on the right) and missing values at the boundaries. One can
observe that our network is able to remove the hallucination effects and that it
provides a meaningful extrapolation to the missing values.

3 Losses

3.1 Scaling of Predictions

For training CNNs it is common to normalize input and output data to a common
range. Let f be the output of the network, ygt the ground-truth and y our
prediction. The original FlowNet [11, 18] provided the following implementation:

min L(
1

20
· ygt, f) ,

y = 20 · f ,
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(a) FlowNet2-C [18] (b) Scaling (c) Ground-truth

Fig. 1. Comparison of FlowNets trained with different scalings on a Sintel example.
(a) shows the first network of the stack published in FlowNet2 [18]. (b) shows the same
network with the scaling as proposed by us. (c) shows the ground-truth. Note how the
scaling significantly removes noise for small displacements

where L is the loss function. In other words, the ground-truth was scaled down
by a factor of 20. This leads to very small values in the network. We instead
propose to scale up the values inside the network by removing the coefficient:

min L(ygt, f) ,

y = f .

We show a visual example of both scalings in Figure 1. As visible, removing the
scaling produces much better results in the case of small displacements. From
the first two rows of Table 2 we also see that changing the scaling has no big
effect on the EPE. For disparity, the EPE even decreases a bit. Also for the
examples from Figures 3, 4 and 5, our network produces very good results for
small displacements even without the small displacement fine-tuning and even
without the extra small displacement network of FlowNet2 [18].

Note that within the decoder of the network the predictions are always up-
scaled and concatenated to further decoder stages. Thus, the optimization needs
to scale internal activations to fit the ranges of the inserted predictions. In gen-
eral, such a scale can be arbitrary. However, we conjecture that the different
effects come from weight decay, which can yield different results when operating
with different ranges.

3.2 Weight Maps for Occlusions and Boundaries

We predict occlusions by using the cross-entropy loss for the two classes occluded
and non-occluded. We observed that such a network learns to correctly identify
large occluded and non-occluded areas, but tends to ignore thin regions. This is
because small regions contribute much less to the total loss.

In general, more non-occluded than occluded pixels are present, thus, the
classes are imbalanced. A first solution is to weigh the occluded pixels higher to
balance the classes, but this can lead to overflow effects, e.g., pixels of a thin oc-
clusion area have a high weight and are thus more likely to be predicted correctly,
but surrounding non-occluded pixels have a low weight and are more easily pre-
dicted also as occluded. We propose the following weighting that counteracts
this effect:
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(a) Occlusions (b) Weighting

Fig. 2. Illustration of weighting for occlusion and boundary loss. Left image shows
occlusion ground-truth, right image shows weighting visualized as a heatmap. The
weight is higher, the more surrounding pixels have a different occlusion value

Correlation level EPE

2 5.62
3 3.19

Table 1. Impact of correlation level in DispNetC (the level indicates after which convo-
lution the correlation is defined in the network). We observe a significant performance
improvement by just changing the position of the correlation layer to be after the third
convolution

w(x, y) =

∑
i,j∈N

δo(x,y)6=o(i,j) · g(x− i)g(y − j)∑
i,j∈N

g(x− i)g(y − j)
,

with g(d) = e−
d2

2σ2 ,

where N is a neighborhood and δo(x,y)=o(i,j) determines whether the neighboring
pixel has the same occlusion value as the center pixel. The weight determined for
the current pixel is the highest if all surrounding pixels have different occlusion
value and decreases as surrounding pixels have similar occlusion value. Neighbors
are weighted with a Gaussian with parameter σ according to their distance. We
show an example of the weights in Figure 2. For boundary estimation, there is
a similar problem. Thus, we apply the same weights.

4 Ablation Study of Network Configurations

We first change the DispNet architecture by moving the correlation layer up one
level. This results mainly in larger strides and correlation distances. From the
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results of Table 1, one can see that this significantly lowers the endpoint error
by almost 50%. For an example of improved performance in large displacement
regions we refer to the supplementary video.

In Table 2 we provide an ablation study for building our for flow and disparity
estimation (in this study we exclude occlusions and boundaries and see only the
effects of the stack construction).

In the first step we show that scaling as proposed in Section 3.1 has no big
effect on the EPE. In the case of disparity it even improves the results. Adding
the second network with residual connections [31] clearly gives an improvement
over the normal stacking. As the second and the third network have similar tasks,
it turns out that to train the third network, it is beneficial to copy the weights
of the second network for initialization. Although we do not train with the full
schedule proposed in [18], our final result for FlowNet-CSS is the same. For the
case of disparity, our stack significantly improves over DispNetC [29] (see results
in main paper).

Configuration Pred. Residual Weight Flow Disparity
scaling refinement copy EPE EPE

C No No No 3.154 3.335
C Yes No No 3.208 3.194

CS Yes No No 2.340 2.634
CS Yes Yes No 2.280 2.494

CSS Yes No No 2.234 -
CSS Yes Yes No 2.115 2.476
CSS Yes Yes Yes 2.042 2.361

Table 2. Ablation study for training details of a single network and network stacks.
Reported errors are from the Sintel train clean dataset. We train each network with
the schedule of 600k iterations on FlyingChairs [11] and 250k iterations on FlyingTh-
ings3D [29]. For details see text

5 Motion Segmentation Results

In Table 3 we show results of motion segmentation additionally for the 4px
density evaluation. One can observe that the behaviour for the dense version is
similar and our approach also performs better in this case.

6 Training Settings for KITTI

We fine-tune each network in our stack individually on KITTI. After fine-tuning
the first network, we fix the weights and then fine-tune the second network. This
process is repeated for all networks in the stack. We train on a mixture of KITTI
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Method Test set (30 sequences)

Density Precision Recall F-Measure #Objects

DeepFlow [48] 0.89% 88.20% 69.39% 77.67% 26/69
FlowNet2 0.85% 86.73% 68.77% 76.71% 26/69
FlowNet2+occ 0.86% 85.67% 70.15% 77.14% 30/69
FlowNetX+occ 0.84% 88.71% 73.60% 80.45% 31/69

DeepFlow [48] 3.79% 88.58% 68.46% 77.23% 27/69
FlowNet2 3.66% 87.16% 68.51% 76.72% 26/69
FlowNet2+occ 3.71% 86.29% 69.72% 77.13% 29/69
FlowNetX+occ 3.61% 89.12% 72.77% 80.12% 32/69

Table 3. Results of motion segmentation from Keuper et al. [22] on the FBMS-59 test
set [5, 30] (with sampling densities 8 and 4px). The third and seventh rows use flows
from FlowNet2 [18] combined with our occlusions. The improved results show that
occlusions help the motion segmentation in general. The fourth and last rows show the
segmentation using our flow and occlusions, which yields the best performance, also in
the 4px density case

2012 and 2015 data, which is split into training and validation sets (with sizes
75%/25%). Each network in the stack is trained for 200k iterations with a base
learning rate of 1e− 5.

The last network in the stack requires motion boundary labels. Since KITTI
does not have ground-truth motion boundary labels, we pre-compute the raw
motion boundary features estimated from our network and then tie the predic-
tions to these features using an L2 loss. In this way the network does not forget
the already learned boundaries in the case when ground-truth is absent.
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Image 0 M.Bnd. M.Bnd. (ft-sd)

Image 1 Occ. Occ. (ft-sd)

FlowNet2 Flow Ours Flow Ours (ft-sd)

Image 0 M.Bnd. M.Bnd. (ft-sd)

Image 1 Occ. Occ. (ft-sd)

FlowNet2 Flow Ours Flow Ours (ft-sd)

Fig. 3. Examples of our joint motion boundary, occlusion and optical flow estimation on
some real images. We provide estimations for FlowNet-CSS and FlowNet-CSSR-ft-sd.
One can observe that our method provides very sharp estimations and that the version
fine-tuned for small displacements provides a bit more details. In the top example the
occlusions from the child in the background become visible
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Image 0 M.Bnd. M.Bnd. (ft-sd)

Image 1 Occ. Occ. (ft-sd)

FlowNet2 Flow Ours Flow Ours (ft-sd)

Image 0 M.Bnd. M.Bnd. (ft-sd)

Image 1 Occ. Occ. (ft-sd)

FlowNet2 Flow Ours Flow Ours (ft-sd)

Fig. 4. More examples of our joint motion boundary, occlusion and optical flow esti-
mation on some real images. We provide estimations for FlowNet-CSS and FlowNet-
CSSR-ft-sd. One can observe that our method provides very sharp estimations and
that the version fine-tuned for small displacements provides a bit more details. In the
top example, the boundaries of the cars become apparent. Note the fine details, such
as the exhaust pipe of the truck. In the bottom example, motion from the background
pattern is visible in the fine-tuned version
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Image 0 M.Bnd. M.Bnd. (ft-sd)

Image 1 Occ. Occ. (ft-sd)

FlowNet2 Flow Ours Flow Ours (ft-sd)

Fig. 5. One more example of our joint motion boundary, occlusion and optical flow
estimation on some real images. We provide estimations for FlowNet-CSS and FlowNet-
CSSR-ft-sd. One can observe that our method provides very sharp estimations and that
the version fine-tuned for small displacements provides a bit more details. In this case
the motion boundaries estimated from FlowNet-CSSR-ft-sd segment the bear from the
background very well

Image L GT Disp GT Occ. GT D.Bnd.

Image R Disp Occ. D.Bnd.

Image L GT Disp GT Occ. GT D.Bnd.

Image R Disp Occ. D.Bnd.

Fig. 6. Examples from our DispNet-CSS for joint depth boundary, occlusion and dis-
parity estimation on some Sintel images. The estimations from our method are in
general very close to the ground-truth
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Ours (Interp.) Ours (Dense) ISF [3]
Flow Flow Flow

Disp t=0 Disp t=0 Disp t=0

Disp warped from t=1 Disp warped from t=1 Disp warped from t=1

SF error SF error SF error

Fig. 7. Example of our occlusion filling network for scene flow. We compare our results
on scene flow estimation with the current state of art on KITTI [3] (right) directly
with the visualizations from the KITTI benchmark. The first row shows the estimated
optical flow on the left images from t = 0 to t = 1. The second row shows disparity at
t = 0 with left image as the reference frame. The third row shows the disparity at t = 1
warped to t = 0 using in the forward flow (shown in the first row). The last row shows
the scene flow error map from the KITTI benchmark, where the occluded regions have
a dark overlay.
The first column shows results of sparse predictions. The interpolation into occluded
regions is the default from the KITTI benchmark. The second column shows the results
when using our additional network to fill the occlusion areas and the third column
visualizes the results from ISF [3]. We can observe that our scene flow architecture
learns to fill reasonable disparity values in the occluded regions. The error in the
bottom occlusion area is significantly lower. Also, note that the hallucination effects at
the road sign (yellow) are removed by our network


