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Abstract

A local convergence result for abstract descent methods is proved. The sequence
of iterates is attracted by a local (or global) minimum, stays in its neighborhood and
converges within this neighborhood. This result allows algorithms to exploit local
properties of the objective function. In particular, the abstract theory in this paper
applies to the inertial forward–backward splitting method: iPiano—a generalization
of the Heavy-ball method. Moreover, it reveals an equivalence between iPiano and
inertial averaged/alternating proximal minimization and projection methods. Key for
this equivalence is the attraction to a local minimum within a common neighborhood
and the fact that, for a prox-regular function, the gradient of the Moreau envelope is
locally Lipschitz continuous and expressible in terms of the proximal mapping. In a
numerical feasibility problem, the inertial alternating projection method significantly
outperforms its non-inertial variants.
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Moreau envelopes, Heavy-ball method, alternating projection, averaged projection, iPiano
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1 Introduction

In non-convex optimization, we must content ourselves with local properties of the objec-
tive function. Exploiting local information such as smoothness or prox-regularity, around
the optimum yields a local convergence theory. Local convergence rates can be obtained or
iterative optimization algorithms can be designed that depend on properties that are avail-
able only locally, around a local optimum. For revealing such results, it is crucial that the
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Introduction

generated sequence, once entered such a neighborhood of a local optimum, stays within this
neighborhood and converges to a limit point in the same neighborhood.

An important example of local properties, which we are going to exploit in this paper, is
the fact that the Moreau envelope of a prox-regular function is locally well-defined and its
gradient is Lipschitz continuous and expressible using the proximal mapping—a result that is
well known for convex functions. Locally, this result can be applied to gradient-based itera-
tive methods for minimizing objective functions that involve a Moreau envelope of a function.
We pursue this idea for the Heavy-ball method [47, 52] and iPiano [43, 41] (inertial version
of forward–backward splitting) and obtain new algorithms for non-convex optimization such
as inertial alternating/averaged proximal minimization or projection methods. The conver-
gence result of the Heavy-ball method and iPiano translate directly to these new methods in
the non-convex setting. The fact that a wide class of functions is prox-regular extends the
applicability of these inertial methods significantly.

Prox-regularity was introduced in [46] and comprises primal-lower-nice (introduced by
Poliquin [45]), lower-C2, strongly amenable (see for instance [48]), and proper lower semi-
continuous convex functions. It is known that prox-regular functions (locally) share some
favorable properties of convex functions, e.g. the formula for the gradient of a Moreau enve-
lope. Indeed a function is prox-regular if and only if there exists an (f -attentive) localization
of the subgradient mapping that is monotone up to a multiple of the identity mapping [46].
In [4], prox-regularity is key to prove local convergence of the averaged projection method
using the gradient descent method, which is a result that has motivated this paper.

The convergence proof of the gradient method in [4] follows a general paradigm that is
currently actively used for the convergence theory in non-convex optimization. The key is
the so-called Kurdyka– Lojasiewicz (KL) property [25, 37, 38, 8, 10], which is known to be
satisfied by semi-algebraic [7], globally subanalytic functions [9], or more general, functions
that are definable in an o-minimal structure [10, 20]. Global convergence of the full sequence
generated by an abstract algorithm to a stationary point is proved for functions with the KL
property. The algorithm is abstract in the sence that the generated sequence is assumed to
satisfy a sufficient decrease condition, a relative error condition, and a continuity condition,
however no generation process is specified.

The following works have also shown global convergence using the KL property or earlier
versions thereof. The gradient descent method is considered in [1, 4], the proximal algorithm
is analyzed in [2, 4, 11, 6], and the non-smooth subgradient method in [40, 22]. Convergence
of forward–backward splitting (proximal gradient algorithm) is proved in [4]. Extensions
to a variable metric are studied in [18], and in [15] with line search. A block coordinate
descent version is considered in [51] and a block coordinate variable metric method in [19].
A flexible relative error handling of forward–backward splitting and a non-smooth version of
the Levenberg–Marquardt algorithm is explored in [21]. For proximal alternating minimiza-
tion, we refer to [3] for an early convergence result of the iterates, and to [14] for proximal
alternating linearized minimization.

Inertial variants of these algorithms are also actively researched. [43] establishes conver-
gence of an inertial forward–backward splitting algorithm, called iPiano. Where [43] assumes
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the non-smooth part of the objective to be convex, [41] and [17] prove convergence in the
full non-convex setting. An extension to an inertial block coordinate variable metric version
was studied in [42]. Bregman proximity functions are considered in [17]. A similar method
was considered in [16] by the same authors. The convergence of a generic multi-step method
is proved in [36] (see also [23]). A slightly weakened formulation of the popular acceler-
ated proximal gradient algorithm from convex optimization was analyzed in [35]. Another
fruitful concept from convex optimization is that of composite objective functions involving
linear operators. This problem is approached in [49, 32]. Key for the convergence results is
usually a decrease condition on the objective function or an upper bound of the objective.
The Lyapunov-type idea is studied in [29, 34, 32]. Convergence of the abstract principle of
majorization minimization methods was also analyzed in a KL framework [44, 13].

The global convergence theory of an unbounded memory multi-step method was proposed
in [36]. Local convergence was analyzed under the additional partial smoothness assumption.
In particular local linear convergence of the iterates is established. Although the fruitful
concept of partial smoothness is very interesting, in this paper, we focus on convergence
results that can be inferred directly from the KL property. In the general abstract setting,
local convergence rates were analyzed in [21, 33] and for inertial methods in [33, 23]. More
specific local convergence rates can be found in [2, 39, 3, 50, 14, 19].

While the abstract concept in [4] can be used to prove global convergence in the non-
convex setting for the gradient descent method, forward–backward splitting, and several
other algorithms, it seems to be limited to single-step methods. Therefore, [43] proved
a slightly different result for abstract descent methods, which is applicable to multi-step
methods, such as the Heavy-ball method and iPiano. In [42], an abstract convergence result
is proved that unifies [4, 21, 43, 41].

Contribution. In this paper, we develop the local convergence theory for the abstract
setting in [43], in analogy to the local theory in [4]. Our local convergence result shows
that, also for multi-step methods such as the Heavy-ball method or iPiano, a sequence that
is initialized close enough to a local minimizer

• stays in a neighborhood of the local minimum and

• converges to a local minimizer instead of a stationary point.

This result allows us to apply the formula for the gradient of the Moreau envelope of a
prox-regular function to all iterates, which has far-reaching consequences and has not been
explored algorithmically before. We obtain several new algorithms for non-convex optimiza-
tion problems. Conceptionally the algorithms are known from the convex setting or from
their non-inertial versions, however there are no guarantees for the inertial versions in the
non-convex setting.

We transfer the convergence results for the Heavy-ball method and iPiano using the
formula for the gradient of the Moreau envelope of a function to special settings. The
following local connections transfer the local convergence results:
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• The Heavy-ball method applied to the sum of distance functions to prox-regular sets
(resp. the sum of Moreau envelopes of prox-regular functions) coincides with the in-
ertial averaged projection method (resp. the inertial averaged proximal minimization)
for these prox-regular sets (resp. functions).

• iPiano applied to the sum of the distance function to a prox-regular set (resp. the
Moreau envelope of a prox-regular function) and a simple non-convex set (resp. func-
tion) leads to the inertial alternating projection method (resp. inertial alternating
proximal minimization) for these two sets (resp. functions).

Of course, these algorithms are only efficient when the associated proximal mappings or
projections are simple (efficient to evaluate). Beyond these local results, we obtain global
convergence guarantees for the following methods:

• The (relaxed) alternating projection method for the feasibility problem of a convex set
and a non-convex set.

• iPiano applied to the distance function to a convex set over a non-convex constraint
set (inertial alternating projection method).

• iPiano applied to the sum of the Moreau envelope of a convex function and a non-
convex function(inertial alternating proximal minimization).

Moreover, we transfer local convergence rates depending on the KL exponent of the
involved functions to the methods listed above. This result builds on a recent classification
of local convergence rates depending on the KL exponent from [33, 23] (which extends results
from [21]).

Outline. Section 2 introduces the notation and definitions that are used in this paper.
In Section 3.1 the conditions for global convergence of abstract descent methods [43, 41]
are recapitulated. The main result for abstract descent methods, the attraction of local (or
global) minima, is developed and proved in Section 3.2. Then, the abstract local convergence
results are verified for iPiano (hence the Heavy-ball method) in Section 4. The equivalence
to inertial averaged/alternating minimization/projection methods is analyzed in Section 5.
Section 5.4 shows a numerical example of a feasibility problem.

2 Preliminaries

Throughout this paper, we will always work in a finite dimensional Euclidean vector space RN

of dimension N ∈ N, where N := {1, 2, . . .}. The vector space is equipped with the standard
Euclidean norm | · | that is induced by the standard Euclidean inner product | · | =

√
〈·, ·〉.

As usual, we consider extended real-valued functions f : RN → R, where R := R∪{+∞},
which are defined on the whole space with domain given by dom f := {x ∈ RN : f(x) <
+∞}. A function is called proper if it is nowhere −∞ and not everywhere +∞. We define

— 4 —



Preliminaries

the epigraph of the function f as epi f := {(x, µ) ∈ RN+1 : µ ≥ f(x)}. A set-valued mapping
T : RN ⇒ RM , with M,N ∈ N, is defined by its graph GraphT := {(x, v) ∈ RN ×RM : v ∈
T (x)}. The range of a set-valued mapping is defined as rgeT :=

⋃
x∈RN T (x).

A key concept in optimization and variational analysis is that of Lipschitz continuity.
Sometimes, also the term strict continuity is used, which we define as in [48]:

Definition 1 (strict continuity [48, Definition 9.1]). A single-valued mapping F : D → RM

defined on D ⊂ RN is strictly continuous at x̄ if x̄ ∈ D and the value

lipF (x̄) := lim sup
x,x′→x̄
x 6=x′

|F (x′)− F (x)|
|x′ − x|

is finite and lipF (x̄) is the Lipschitz modulus of F at x̄. This is the same as saying F is
locally Lipschitz continuous at x̄ on D.

For convenience, we introduce f -attentive convergence: A sequence (xk)k∈N is said to

f -converge to x̄ if (xk, f(xk))→ (x̄, f(x̄)) as k →∞, and we write xk
f→ x̄.

Definition 2 (subdifferentials [48, Definition 8.3]). The Fréchet subdifferential of f at x̄ ∈
dom f is the set ∂̂f(x̄) of those elements v ∈ RN such that

lim inf
x→x̄
x 6=x̄

f(x)− f(x̄)− 〈v, x− x̄〉
|x− x̄|

≥ 0 .

For x̄ 6∈ dom f , we set ∂̂f(x̄) = ∅. The so-called (limiting) subdifferential of f at x̄ ∈ dom f
is defined by

∂f(x̄) := {v ∈ RN : ∃xn f→ x̄, vn ∈ ∂̂f(xn), vn → v} ,

and ∂f(x̄) = ∅ for x̄ 6∈ dom f .

A point x̄ ∈ dom f for which 0 ∈ ∂f(x̄) is a called a critical point. As a direct consequence
of the definition of the limiting subdifferential, we have the following closedness property:

xk
f→ x̄, vk → v̄, and for all k ∈ N : vk ∈ ∂f(xk) =⇒ v̄ ∈ ∂f(x̄) .

Definition 3 (Moreau envelope and proximal mapping [48, Definition 1.22]). For a function
f : RN → R and λ > 0, we define the Moreau envelope

eλf(x) := inf
w∈RN

f(w) +
1

2λ
|w − x|2 ,

and the proximal mapping

Pλf(x) := arg min
w∈RN

f(w) +
1

2λ
|w − x|2 .
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For a general function f it might happen that eλf(x) takes the values +∞ and the
proximal mapping is empty, i.e. Pλf(x) = ∅. Therefore, the analysis of the Moreau envelope
is usually coupled with the following property.

Definition 4 (prox-boundedness [48, Definition 1.23]). A function f : RN → R is prox-
bounded, if there exists λ > 0 such that eλf(x) > −∞ for some x ∈ RN . The supremum of
the set of all such λ is the threshold λf of prox-boundedness for f .

In this paper, we focus on so-called prox-regular functions. These functions have many
favorable properties locally, which otherwise only convex functions exhibit.

Definition 5 (prox-regularity, [48, Definition 13.27]). A function f : RN → R is prox-regular
at x̄ for v̄ if f is finite and locally lsc at x̄ with v̄ ∈ ∂f(x̄), and there exists ε > 0 and λ > 0
such that

f(x′) ≥ f(x) + 〈v, x′ − x〉 − 1

2λ
|x′ − x|2 ∀x′ ∈ Bε(x̄)

when v ∈ ∂f(x), |v − v̄| < ε, |x− x̄| < ε, f(x) < f(x̄) + ε .

When this holds for all v̄ ∈ ∂f(x̄), f is said to be prox-regular at x̄. The largest value λ > 0
for which this property holds is called the modulus of prox-regularity at x̄.

For the proof of the Lipschitz property of the Moreau envelope, it will be helpful to con-
sider a so-called localization. A localization of ∂f around (x̄, v̄) is a mapping T : RN ⇒ RN

whose graph is obtained by intersecting Graph ∂f with some neighborhood of (x̄, v̄), i.e.
GraphT = Graph ∂f ∩U for a neighborhood U of (x̄, v̄). We talk about an f -attentive local-
ization when GraphT = {(x, v) ∈ Graph ∂f : (x, v) ∈ U and f(x) ∈ V } for a neighborhood
U of (x̄, v̄) and a neighborhood V of f(x̄).

Finally, the convergence result we build on is only valid for functions that have the KL
property at a certain point of interest. This property is shared for example by semi-algebraic
functions, globally analytic functions, or, more general, functions definable in an o-minimal
structure. For details, we refer to [8, 10].

Definition 6 (Kurdyka– Lojasiewicz property / KL property [4]). Let f : RN → R be an
extended real valued function and let x̄ ∈ dom ∂f . If there exists η ∈ [0,∞], a neighborhood
U of x̄ and a continuous concave function ϕ : [0, η[→ R+ such that

ϕ(0) = 0, ϕ ∈ C1(0, η), and ϕ′(s) > 0 for all s ∈]0, η[,

and for all x ∈ U ∩ [f(x̄) < f(x) < f(x̄) + η] holds the Kurdyka– Lojasiewicz inequality

ϕ′(f(x)− f(x̄))‖∂f(x)‖− ≥ 1 , (1)

then the function has the Kurdyka– Lojasiewicz property at x̄, where ‖∂f(x)‖− := infv∈∂f(x) |v|
is the non-smooth slope (note: inf ∅ := +∞).

If, additionally, the function is lsc and the property holds for each point in dom ∂f , then
f is called a Kurdyka– Lojasiewicz function.
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If f is semi-algebraic, it is well-known [25, 10] that f has the KL property at any point
in dom ∂f , and the desingularization function ϕ in Definition 6 has the form ϕ(s) = c

θ
sθ for

θ ∈]0, 1] and some constant c > 0. The parameter θ is known as the KL exponent.

3 Abstract Convergence Result for KL Functions

In this section, we establish a local convergence result for abstract descent methods , i.e.,
the method is characterized by properties (H1), (H2), (H3) (see below) instead of a specific
update rule. The local convergence result is inspired by a global convergence result proved
in [43] for KL functions (see Theorem 7), which itself is motivated by a slightly different
result in [4]. The abstract setting in [4], can be used to prove global and local convergence
of gradient descent, proximal gradient descent and other (single-step) methods. However, it
does not apply directly to inertial variants of these methods. Therefore, in this section, we
prove the required adaptation of the framework in [4] to the one in [43]. We obtain a local
convergence theory that also applies to the Heavy-ball method and iPiano (see Section 4).

3.1 Global Convergence Results

The convergence result in [43] is based on the following three abstract conditions for a
sequence (zk)k∈N := (xk, xk−1)k∈N in R2N , xk ∈ RN , x−1 ∈ RN . Fix two positive constants
a > 0 and b > 0 and consider a proper lower semi-continuous (lsc) function F : R2N → R.
Then, the conditions for (zk)k∈N are as follows:

(H1) For each k ∈ N, it holds that

F(zk+1) + a|xk − xk−1|2 ≤ F(zk) .

(H2) For each k ∈ N, there exists wk+1 ∈ ∂F(zk+1) such that

|wk+1| ≤ b

2
(|xk − xk−1| + |xk+1 − xk|) .

(H3) There exists a subsequence (zkj)j∈N such that

zkj → z̃ and F(zkj)→ F(z̃) , as j →∞ .

Theorem 7 (abstract global convergence, [43, Theorem 3.7]). Let (zk)k∈N = (xk, xk−1)k∈N
be a sequence that satisfies (H1), (H2), and (H3) for a proper lsc function F : R2N → R
which has the KL property at the cluster point z̃ specified in (H3).
Then, the sequence (xk)k∈N has finite length, i.e.

∞∑
k=1

|xk − xk−1| < +∞ ,

and converges to z̄ = z̃ where z̄ = (x̄, x̄) is a critical point of F .

Remark 1. In view of the proof of this statement, it is clear that the same result can be
established when (H1) is replaced by F(zk+1) + a|xk+1 − xk|2 ≤ F(zk) .
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3.2 Local Convergence Results

The upcoming local convergence result shows that, once entered a region of attraction
(around a local minimizer), all iterates of a sequence (zk)k∈N satisfying (H1), (H2) and
the following growth condition (H4) stay in a neighborhood of this minimum and converge
to a minimizer in the same neighborhood (not just a stationary point). For the convergence
to a global minimizer, the growth condition (H4) is not required.

In the following, for z ∈ R2N we denote by z1, z2 ∈ RN the first and second block of
coordinates, i.e. z = (z1, z2). The same holds for other vectors in R2N .

(H4) For any δ > 0 there exist 0 < ρ < δ and ν > 0 such that

z ∈ Bρ(z
∗) , F(z) < F(z∗) + ν , y2 6∈ Bδ(z

∗
2) ⇒ F(z) < F(y) +

a

4
|z2 − y2|2 .

A simple condition that implies (H4) is provided by the following lemma:

Lemma 8. Let F : R2N → R be a proper lsc function and z∗ = (x∗, x∗) ∈ domF a local
minimizer of F . Suppose, for any δ > 0, F satisfies the growth condition

F(y) ≥ F(z∗)− a

16
|y2 − z∗2 |2 ∀y ∈ R2N , y2 6∈ Bδ(z

∗
2) .

Then, F satisfies (H4).

Proof. Let δ > ρ and ν be positive numbers. For y = (y1, y2) ∈ R2N with y2 6∈ Bδ(z
∗
2) and

z = (z1, z2) ∈ Bρ(z
∗) such that F(z) < F(z∗) + ν, we make the following estimation:

F(y) ≥ F(z∗)− a

16
|y2 − z∗2 |2

> F(z)− ν − a

8
|y2 − z∗2 |2 +

a

16
|y2 − z∗2 |2

≥ F(z)− ν − a

4
|y2 − z2|2 −

a

4
|z2 − z∗2 |2 +

a

16
|y2 − z∗2 |2

≥ F(z)− a

4
|y2 − z2|2 + (−ν − a

4
ρ2 +

a

16
δ2) .

For sufficiently small ν and ρ the term in the parenthesis becomes positive, which implies
(H4).

We need another preparatory lemma, which is proved in [43]

Lemma 9 ([43, Lemma 3.5]). Let F : R2N → R∪{∞} be a proper lsc function which satisfies
the Kurdyka– Lojasiewicz property at some point z∗ = (z∗1 , z

∗
2) ∈ R2N . Denote by U , η and

ϕ : [0, η[→ R+ the objects appearing in Definition 6 of the KL property at z∗. Let σ, ρ > 0 be
such that Bσ(z∗) ⊂ U with ρ ∈]0, σ[, where Bσ(z∗) := {z ∈ R2N : |z − z∗| < σ}.
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Furthermore, let (zk)k∈N = (xk, xk−1)k∈N be a sequence satisfying (H1), (H2), and

∀k ∈ N : zk ∈ Bρ(z
∗)⇒ zk+1 ∈ Bσ(z∗) with F(zk+1),F(zk+2) ≥ F(z∗) . (2)

Moreover, the initial point z0 = (x0, x−1) is such that F(z∗) ≤ F(z0) < F(z∗) + η and

|x∗ − x0| +
√
F(z0)−F(z∗)

a
+
b

a
ϕ(F(z0)−F(z∗)) <

ρ

2
. (3)

Then, the sequence (zk)k∈N satisfies

∀k ∈ N : zk ∈ Bρ(z
∗),

∞∑
k=0

|xk − xk−1| <∞, F(zk)→ F(z∗), as k →∞ , (4)

(zk)k∈N converges to a point z̄ = (x̄, x̄) ∈ Bσ(z∗) such that F(z̄) ≤ F(z∗). If, additionally,
(H3) is satisfied, then 0 ∈ ∂F(z̄) and F(z̄) = F(z∗).

Under Assumption (H4), the following theorem establishes the local convergence result.
Note that, thanks to Lemma 8, a global minimizer automatically satisfies (H4).

Theorem 10 (abstract local convergence). Let F : R2N → R be a proper lsc function which
has the KL property at some local (or global) minimizer z∗ = (x∗, x∗) of F . Assume (H4)
holds at z∗.
Then, for any r > 0, there exist u ∈]0, r[ and µ > 0 such that the conditions

z0 ∈ Bu(z
∗) , F(z∗) < F(z0) < F(z∗) + µ , (5)

imply that any sequence (zk)k∈N that starts at z0 and satisfies (H1) and (H2) has the finite
length property and remains in Br(z

∗) and converges to some z̄ ∈ Br(z
∗), a critical point of

F with F(z̄) = F(z∗). For r sufficiently small, z̄ is a local minimizer of F .

Proof. Let r > 0. Since F satisfied the KL property at z∗ there exist η0 ∈]0,+∞],
δ ∈]0, r/

√
2[ and a continuous concave function ϕ : [0, η0[→ R such that ϕ(0) = 0, ϕ is

continuously differentiable and strictly increasing on ]0, η0[, and for all

z ∈ B√2δ(z
∗) ∩ [F(z∗) < F(z) < F(z∗) + η0]

the KL inequality holds. As z∗ is a local minimizer, by choosing a smaller δ if necessary, one
can assume that

F(z) ≥ F(z∗) for all z ∈ B√2δ(z
∗) . (6)

Let 0 < ρ < δ and ν > 0 be the parameters appearing in (H4) with δ as in (6). We
want to verify the implication in (2) with σ =

√
2δ. Let η := min(η0, ν) and k ∈ N.

Assume z0, . . . , zk ∈ Bρ(z
∗), with zk =: (zk1 , z

k
2 ) = (xk, xk−1) ∈ RN×2 and w.l.o.g. F(z∗) <

F(z0), . . . ,F(zk) < F(z∗) + η (note that if F(zk) = F(z∗) the sequence is stationary and
the result follows directly).
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z2

z1

z∗ = (x∗, x∗)

δ
√

2δ
ρ

zk = (xk, xk−1)

zk+1 = (xk+1, xk)zk+2 = (xk+2, xk+1)

Figure 1: An essential step of the proof of Theorem 10 is to show: zk ∈ Bρ(z∗) = Bρ(x
∗, x∗) implies

xk+2, xk+1 ∈ Bδ(z∗2) = Bδ(x
∗) which restricts zk+1 and zk+2 to the rectangle in the plot and thus

to B√2δ(z
∗).

See Figure 1 for the idea of the following steps. First, note that xk ∈ Bδ(z
∗
2) as zk ∈

Bδ(z
∗). Suppose zk+2

2 = xk+1 6∈ Bδ(z
∗
2). Then by (H4) and (H1) we observe (use (u+ v)2 ≤

2(u2 + v2))

F(zk) < F(zk+2) +
a

4
|xk−1 − xk+1|2

≤ F(zk)− a
(
|xk+1 − xk|2 + |xk − xk−1|2

)
+
a

4
|xk−1 − xk+1|2 ≤ F(zk) ,

which is a contradiction and therefore zk+2
2 ∈ Bδ(z

∗
2).

Hence, due to the equivalence of norms in finite dimensions, zk+1 = (xk+1, xk) ∈ B√2δ(z
∗).

Thanks to (6), we have F(zk+1) ≥ F(z∗). In order to verify (2), we also need F(zk+2) ≥
F(z∗), which can be shown analogously, however we need to consider three iteration steps
(that’s the reason for the factor a

4
instead of a

2
on the right hand side of (H4)). Assuming

zk+3
2 = xk+2 6∈ Bδ(z

∗
2) yields the following contradiction:

F(zk) < F(zk+3) +
a

4
|xk−1 − xk+2|2

≤ F(zk)− a
(
|xk+2 − xk+1|2 + |xk+1 − xk|2 + |xk − xk−1|2

)
+
a

4
|xk−1 − xk+2|2

≤ F(zk)− a
(
|xk+2 − xk+1|2 + |xk+1 − xk|2 + |xk − xk−1|2

)
+
a

4

(
2|xk+2 − xk+1|2 + 4|xk+1 − xk|2 + 4|xk − xk−1|2

)
≤ F(zk) .

Therefore, F(zk+1),F(zk+2) ≥ F(z∗) holds, which is exactly property (2) with σ =
√

2δ.
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Now, choose u, µ > 0 in (5) such that

µ < η , u <
ρ

6
,

√
µ

a
+
b

a
ϕ(µ) <

ρ

3
.

If z0 satisfies (5), we have

|x∗ − x0| +
√
F(z0)−F(z∗)

a
+
b

a
ϕ(F(z0)−F(z∗)) <

ρ

2
,

which is (3) with µ in place of η. Using Lemma 9 we conclude that the sequence has the
finite length property, remains in Bρ(z

∗), converges to z̄ ∈ Bσ(z∗), F(zk) → F(z∗) and
F(z̄) ≤ F(z∗), which is only allowed for F(z̄) = F(z∗). Therefore, the sequence also has
property (H3), and thus, z̄ is a critical point of F . The property in (6) shows that z̄ is a
local minimizer for sufficiently small r.

Remark 2. The assumption in (H4) and Lemma 8 only restrict the behavior of the function
along the second block of coordinates of z = (z1, z2) ∈ R2N . This makes sense, because, for
sequences that we consider, the first and second block dependent on each other.

Remark 3. Unlike Theorem 7, the local convergence theorem (Theorem 10) does not require
assumption (H3) explicitly. If Theorem 7 assumes the KL property at some z∗ (not the cluster
point z̃ of (H3)), convergence to a point z̄ in a neighborhood of z∗ with F(z̄) ≤ F(z∗) can
be shown. However, F(z̄) < F(z∗) might happen, which disproves F -attentive convergence
of zk → z̄, thus z̄ would not be a critical point. Assuming z̃ = z∗ by (H3) assures the
F -attentive convergence, and thus z̄ is a critical point. Because of the local minimality of
z∗ in Theorem 10 F(z̄) < F(z∗) cannot occur, and therefore (H3) is implied.

Before deriving the convergence rates, we apply Theorem 10 and Lemma 8 to show a
useful example of a feasibility problem.

Example 4 (semi-algebraic feasibility problem). Let S1, . . . , SM ⊂ RN be semi-algebraic sets
such that

⋂M
i=1 Si 6= ∅ and let F : RN → R be given by F (x) = 1

2

∑M
i=1 dist(x, Si)

2. For a
constant c ≥ 0, we consider the function F(z) = F(z1, z2) = F (z1) + c|z1 − z2|2. Suppose
z∗ = (x∗, x∗) is a global minimizer of F , i.e., x∗ ∈

⋂M
i=1 Si. Then, for z0 = (x0, x−1)

sufficiently close to z∗, any algorithm that satisfies (H1) and (H2) and starts at z0 generates
a sequence that remains in a neighborhood of z∗, has the finite length property, and converges
to a point z̄ = (x̄, x̄) with x̄ ∈

⋂M
i=1 Si.

Finally, we complement our local convergence result by the convergence rate estimates
from [23, 33]. Assuming the objective function is semi-algebraic, in [23, Theorems 2 and 4]
which build on [21, Theorem 3.4], a list of qualitative convergence rate estimates in terms
of the KL-exponent is proved. For estimations on the KL-exponent, the interested reader
is referred to [33, 12, 31, 30], which include estimations of the KL-exponent for convex
polynomials, functions that can be expressed as maximum of finitely many polynomials,
functions that can be expressed as supremum of a collection of polynomials over a semi-
algebraic compact set under suitable regularity assumptions, and relations to the Luo–Tseng
error bound.
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Local and Global Convergence of iPiano

Theorem 11 (convergence rates). Let (zk)k∈N = (xk, xk−1)k∈N be a sequence that satisfies
(H1), (H2), and (H3) for a proper lsc function F : R2N → R which has the KL property at
the critical point z̃ = z∗ specified in (H3). Let θ be the KL-exponent of F .

(i) If θ = 1, then zk converges to z∗ in a finite number of iterations.

(ii) If 1
2
≤ θ < 1, then F(zk)→ F(z∗) and xk → x∗ linearly.

(iii) If 0 < θ < 1
2
, then F(zk)−F(z∗) ∈ O(k

1
2θ−1 ) and |xk − x∗| ∈ O(k

θ
2θ−1 ).

Proof. Using Theorem 7 the sequence (zk)k∈N converges to z∗ and F(zk)→ F(z∗) as k →∞.
W.l.o.g. we can assume that F(zk) > F(z∗) for all k ∈ N. By convergence of (zk)k∈N and
(H1), there exists k0 such that the KL-inequality (1) with f = F holds for all k ≥ k0. Let U ,
ϕ, η be the objects appearing in Definition 6. Now, using (u+ v)2 ≤ 2(u2 + v2) for u, v ∈ R
to bound the terms on the right hand side of (H2) and substituting (H1) into the resulting
terms, the squared KL-inequality (1) at index k yields

b2

2a

(
ϕ′(F(zk)−F(z∗))

)2(F(zk−1)−F(zk+1)
)
≥ 1 .

As ϕ′(s) = csθ−1 is non-increasing for θ ∈ [0, 1], we have ϕ′(F(zk)−F(z∗)) ≤ ϕ′(F(zk+1)−
F(z∗)). The remainder of the proof is identical to [23] starting from [23, Inequality (7)].

In the following, we prove the rates for (xk)k∈N. We make use of an intermediate result
from the proof of [43, Lemma 3.5] (cf. Lemma 9). The starting point is [43, Inequality (6)]
restricted to terms with index k ≥ K for some K ∈ N:∑

k≥K

|xk − xk−1| ≤ 1

2
|xK − xK−1| + b

a
ϕ(F(zK)−F(z∗)) .

The triangle inequality shows that the left hand side is an upper bound for |xK − x∗|.
Using (H1) to bound the right side of the preceding inequality yields:

|xK − x∗| ≤
∑
k≥K

|xk − xk−1| ≤ c′′
(
ϕ(F(zK)−F(z∗)) +

√
F(zK)−F(z∗)

)
for some constant c′′ > 0. If the KL-exponent is θ ∈ [1

2
, 1[, for F(zK)−F(z∗) < 1, the second

term upper-bounds the first one, and F(zK)→ F(z∗) is linear. For θ ∈]0, 1
2
[ convergence is

dominated by the first term, hence |xK − x∗| ∈ O(ϕ(F(zK)− F(z∗))), which concludes the
proof.

4 Local and Global Convergence of iPiano

In this section, we briefly review the method iPiano and verify that the abstract convergence
results from Section 3 hold for this algorithm.
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Local and Global Convergence of iPiano

iPiano applies to structured non-smooth and non-convex optimization problems with a
proper lower semi-continuous (lsc) extended-valued function h : RN → R, N ≥ 1:

min
x∈RN

h(x) , h(x) = f(x) + g(x) (7)

that satisfies the following assumptions.

Assumption 12. • The function f : RN → R is assumed to be C1-smooth (possibly
non-convex) with L-Lipschitz continuous gradient on dom g, L > 0.

• The function g : RN → R is proper, lsc, possibly non-smooth and non-convex, simple
and prox-bounded.

• The function h is coercive and bounded from below by some value h > −∞.

Remark 5. Simple refers to the fact that the associated proximal map can be solved efficiently
for the global optimum. The coercivity property could be replaced by the assumption that
the sequence that is generated by the algorithm is bounded.

iPiano is outlined in Algorithm 1. For g = 0, iPiano coincides with the Hevay-ball method
(inertial gradient descent method or gradient descent with momentum).

In [41], functions g that are semi-convex received special attention. The resulting step
size restrictions for semi-convex functions g are similar to those of convex functions. A
function is said to be semi-convex with modulus m ∈ R, if m is the largest value such that
g(x)− m

2
|x|2 is convex. For convex functions, m = 0 holds, and for strongly convex functions

m > 0. We assume m < L. According to [48, Theorem 10.33], saying a function g is
(locally) semi-convex on an open set V ⊂ dom g is the same as saying g is lower-C2 on V .
Nevertheless, the function g does not need to be semi-convex. This property is just used to
improve the bounds on the step size parameters.

Remark 6. For simplicity, we describe the the constant step size version of iPiano. However,
all results in this paper are also valid for the backtracking line-search version of iPiano.

The following convergence results hold for iPiano.

Theorem 13 (global convergence of iPiano [41, Theorem 6.6]). Let (xk)k∈N be generated by
Algorithm 1. Then, the sequence (zk)k∈N with zk = (xk, xk−1) satisfies (H1), (H2), (H3) for
the function (for some κ > 0)

Hκ : R2N → R ∪ {∞} , (x, y) 7→ h(x) + κ|x− y|2 . (9)

Moreover, if Hκ(x, y) has the Kurdyka– Lojasiewicz property at a cluster point z∗ =
(x∗, x∗), then the sequence (xk)k∈N has the finite length property, xk → x∗ as k → ∞,
and z∗ is a critical point of Hκ, hence x∗ is a critical point of h.

Theorem 14 (local convergence of iPiano). Let (xk)k∈N be generated by Algorithm 1. If x∗

is a local (or global) minimizer of h, then z∗ = (x∗, x∗) is a local (or global) minimizer of Hκ

(defined in (9)). Suppose (H4) holds at z∗ and Hκ has the KL property at z∗.
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Local and Global Convergence of iPiano

Algorithm 1. iPiano

• Optimization problem: (7) with Assumption 12.

• Initialization: Choose a starting point x0 ∈ domh and set x−1 = x0.

• Iterations (k ≥ 0): Update:

yk = xk + β(xk − xk−1)

xk+1 ∈ arg min
x∈RN

g(x) +
〈
∇f(xk), x− xk

〉
+

1

2α
|x− yk|2 .

(8)

• Parameter setting: See Table 1.

Then, for any r > 0, there exist u ∈]0, r[ and µ > 0 such that the conditions

x0 ∈ Bu(x
∗) , h(x∗) < h(x0) < h(x∗) + µ ,

imply that the sequence (xk)k∈N has the finite length property and remains in Br(x
∗) and

converges to some x̄ ∈ Br(x
∗), a critical point of h with h(x̄) = h(x∗). For r sufficiently

small, z̄ is a local minimizer of h.

Proof. Theorem 13 shows that Algorithm 1 generates a sequence that satisfies (H1), (H2),
(H3) with Hκ. Therefore, obviously, Theorem 10 can be applied.

Theorem 15 (convergence rates for iPiano). Let (xk)k∈N be generated by Algorithm 1 and
set zk := (xk, xk−1). If Hκ, defined in (9), has the KL property at z∗ = (x∗, x∗) specified in
(H3) with KL-exponent θ, then the following rates of convergence hold:

(i) If θ = 1, then xk converges to x∗ in a finite number of iterations.

(ii) If 1
2
≤ θ < 1, then h(xk)→ h(x∗) and xk → x∗ linearly.

(iii) If 0 < θ < 1
2
, then h(xk)− h(x∗) ∈ O(k

1
2θ−1 ) and |xk − x∗| ∈ O(k

θ
2θ−1 ).

Proof. Theorem 13 shows that Algorithm 1 generates a sequence that satisfies (H1), (H2),
(H3) forHκ. Therefore, the statement follows from Theorem 11 and the facts thatHκ(x

∗, x∗) =
h(x∗) and h(xk) ≤ H(xk, xk−1).

Remark 7. In [33, Theorem 3.7], Li and Pong show that, if h has the KL-exponent θ ∈]0, 1
2
]

at x∗, then H has the same KL-exponent at z∗ = (x∗, x∗).
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Inertial Averaged/Alternating Minimization

Method f g α β

Gradient Descent f ∈ C1+ g ≡ 0 α ∈]0, 2
L

[ β = 0

Heavy-ball method f ∈ C1+ g ≡ 0 α ∈]0, 2(1−β)
L

[ β ∈ [0, 1[

PPA f ≡ 0 g convex α > 0 β = 0

FBS f ∈ C1+ g convex α ∈]0, 2
L

[ β = 0

FBS (non-convex) f ∈ C1+ g non-convex α ∈]0, 1
L

[ β = 0

iPiano f ∈ C1+ g convex α ∈]0, 2(1−β)
L

[ β ∈ [0, 1[

iPiano f ∈ C1+ g non-convex α ∈]0, (1−2β)
L

[ β ∈ [0, 1
2
[

iPiano f ∈ C1+ g m-semi-convex α ∈]0, 2(1−β)
L−m [ β ∈ [0, 1[

Table 1: Convergence of iPiano as stated in Theorems 13, 14 and 15 is guaranteed for the parameter
settings listed in this table (for g convex, see [43, Algorithm 2], otherwise see [41, Algorithm 3].
Note that for local convergence, also the required properties of f and g are required to hold only
locally. iPiano has several well-known special cases, such as the gradient descent method, Heavy-
ball method, proximal point algorithm (PPA), and forward–backward splitting (FBS). C1+ denotes
the class of functions whose gradient is strictly continuous (Lipschitz continuous).

5 Inertial Averaged/Alternating Minimization

In this section, we transfer the convergence result developed for iPiano in Section 4 to
various non-convex settings (Section 5.1, 5.2 and 5.3). This yields inertial algorithms for
non-convex problems that are known from the convex setting as averaged or alternating
proximal minimization (or projection) methods. Key for the generalization to the non-convex
and inertial setting are an explicit formula for the gradient of the Moreau envelope of a prox-
regular function (Proposition 17), which is well-known for convex functions (Proposition 16),
and the local convergence result in Theorem 10. For completeness, we state the formula in
the convex setting, before we devote ourselves to the prox-regular setting.

Proposition 16 ([5, Proposition 12.29]). Let f : RN → R be a proper lower semi-continuous
(lsc) convex function and λ > 0. Then eλf is continuously differentiable and its gradient

∇eλf(x) =
1

λ
(x− Pλf(x)) , (10)

is λ−1-Lipschitz continuous.

Proposition 17. Suppose that f : RN → R is prox-regular at x̄ for v̄ = 0, and that f is
prox-bounded. Then for all λ > 0 sufficiently small there is a neighborhood of x̄ on which

(i) Pλf is monotone, single-valued and Lipschitz continuous and Pλf(x̄) = x̄.

(ii) eλf is differentiable with ∇(eλf)(x̄) = 0, in fact ∇(eλf) is strictly continuous with

∇eλf = λ−1(I − Pλf) = (λI + T−1)−1 (11)
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Inertial Averaged/Alternating Minimization

for an f -attentive localization T of ∂f at (x̄, 0), where I denotes the identity mapping.
Indeed, this localization can be chosen so that the set Uλ := rge (I + λT ) serves for all
λ > 0 sufficiently small as a neighborhood of x̄ on which these properties hold.

(iii) There is a neighborhood of x̄ on which for small enough λ the local Lipschitz constant
of ∇eλf is λ−1. If λ0 is the modulus of prox-regularity at x̄, then λ ∈]0, λ0/2[ is a
sufficient condition.

(iv) Any point x̃ ∈ Uλ with ∇eλf(x̃) = 0 is a fixed point of Pλf and a critical point of f .

Proof. While Item (i) and (ii) are proved in [48, Proposition 13.37], Item (iii) (estimation of
the local Lipschitz constant) and (iv) are not explicitly verified. In order to prove Items (iii)
and (iv), we develop the basic objects that are required in the same way as [48, Proposition
13.37]. Thus, the first part of the proof coincides with [48, Proposition 13.37].

Without loss of generality, we can take x̄ = 0. As f is prox-bounded the condition for
prox-regularity may be taken to be global [48, Proposition 8.36(f)], i.e., there exists ε > 0
and λ0 > 0 such that

f(x′) > f(x) + 〈v, x′ − x〉 − 1

2λ0

|x′ − x|2 ∀x′ 6= x (12)

when v ∈ ∂f(x), |v| < ε, |x| < ε, f(x) < f(0) + ε . (13)

Let T : RN ⇒ RN be the f -attentive localization of ∂f specified in (13), i.e. the set-valued
mapping defined by GraphT = {(x, v) : v ∈ ∂f(x), |v| < ε, |x| < ε, f(x) < f(0) + ε}.
Inequality (12) is valid for any λ ∈]0, λ0[. Setting u = x+λv the subgradient inequality (12)
(with λ instead of λ0) implies

f(x′) +
1

2λ
|x′ − u|2 > f(x) +

1

2λ
|x− u|2 .

Therefore, Pλf(x + λv) = {x} when v ∈ T (x). In general, for any u sufficiently close to 0,
thanks to Fermat’s rule on the minimization problem of Pλf(u), we have for any x ∈ Pλf(u)
that v = (u− x)/λ ∈ T (x) holds. Thus, Uλ = rge (I + λT ) is a neighborhood of 0 on which
Pλf is single-valued and coincides with (I + λT )−1.

(iii) Now, let u = x+λv and u′ = x′+λv′ be any two elements in Uλ such that x = Pλf(u)
and x′ = Pλf(u′). Then (x, v) and (x′, v′) belong to GraphT . Therefore, we can add two
copies of (12) where in the second copy the roles of x and x′ are swapped. This sum yields
for any λ1 ∈]0, λ0[ instead of λ0 in (12):

0 ≥ 〈v − v′, x′ − x〉 − 1

λ1

|x′ − x|2 . (14)

In this inequality, we substitute v with (u− x)/λ and v′ with (u′ − x′)/λ which yields

0 ≤ 1

λ1

|x′ − x|2 +
1

λ
〈(u′ − x′)− (u− x), x′ − x〉 =

1

λ
〈u′ − u, x′ − x〉+

(
1

λ1

− 1

λ

)
|x′ − x|2
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Heavy-ball Method on the Moreau Envelope

or, equivalent to that 〈u′ − u, x′ − x〉 ≥ (1− λ
λ1

)|x′ − x|2.
This expression helps to estimate the local Lipschitz constant of the gradient of the

Moreau envelope. Using the closed form description of ∇eλf on Uλ, we verify the λ−1-
Lipschitz continuity of ∇eλf as follows:

λ2|∇eλf(u)−∇eλf(u′)|2 − |u− u′|2 = |(u− u′)− (Pλf(u)− Pλf(u′))|2 − |u− u′|2

= |x− x′|2 − 2 〈u− u′, x− x′〉
≤ (2 λ

λ1
− 1)|x− x′|2 ≤ 0

when λ ≤ 1
2
λ1.

(iv) Now, let x̃ ∈ Uλ be a point for which ∇eλf(x̃) = 0 holds. Then, according to (11),
we have x̃ = Pλf(x̃) or x̃ = (I + λT )−1(x̃) for the localization selected above. Inverting the
mapping shows that x̃ ∈ x̃+ λT (x̃), which implies that 0 ∈ T (x̃), thus 0 ∈ ∂f(x̃).

Remark 8. The proof of Item (iii) of Proposition 17 is motivated by a similar derivation
for distance functions and projection operators in [28]. See [24], for a recent analysis of the
differential properties of the Moreau envelope in the infinite dimensional setting.

5.1 Heavy-ball Method on the Moreau Envelope

Proposition 18 (inertial proximal minimization method). Suppose f : RN → R is prox-
regular at x∗ for v∗ = 0 with modulus λ0 > 0 and prox-bounded with threshold λf > 0. Let
0 < λ < min(λf , λ0/2), β ∈ [0, 1[, and α ∈]0, 2(1 − β)λ[. Suppose that h = eλf has the KL
property at a local minimizer x∗ and Hκ, defined in (9), satisfies (H4) at (x∗, x∗).

Let x0 = x−1 with x0 ∈ RN and let the sequence (xk)k∈N be generated by the following
update rule

xk+1 ∈ (1− αλ−1)xk + αλ−1Pλf(xk) + β(xk − xk−1) .

If x0 is sufficiently close to x∗, then sequence (xk)k∈N

• is uniquely determined,

• has the finite length property,

• remains in a neighborhood of x∗,

• and converges to a critical point x̃ of f with f(x̃) = f(x∗).

If f is proper, lsc, convex, and λ > 0, β ∈ [0, 1[, and α ∈]0, 2(1 − β)λ[, then the sequence
has finite length and converges to a global minimizer x̃ of f for any x0 ∈ RN .

Proof. The statement is an application of the results for the Heavy-ball method (i.e. (7)
with g ≡ 0) to the Moreau envelope eλf of the function f .

We verify Assumption 12. Since f is prox-bounded with threshold λf , the function is
bounded from below and coercive for λ < λf . As λ < λ0/2, Proposition 17 can be used to
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Heavy-ball Method on the Sum of Moreau Envelopes

conclude that there exists a neighborhood Uλ of x∗ such that eλf is differentiable on Uλ and
∇eλf is λ−1-Lipschitz continuous.

There exists a neighborhood U ⊂ Uλ of x∗ which contains x0 and Theorem 14 can be
applied. Therefore, the Heavy-ball method (Algorithm 1 with g ≡ 0) with 0 < α < 2(1−β)λ
and β ∈ [0, 1[ generates a sequence (xk)k∈N that lies in U . Using the formula in (11), the
update step of the Heavy-ball method applied to eλf reads as follows:

xk+1 = xk − α∇eλf(xk) + β(xk − xk−1)

= xk − αλ−1(xk − Pλf(xk)) + β(xk − xk−1)

= (1− αλ−1)xk + αλ−1Pλf(xk) + β(xk − xk−1) .

By Proposition 17(i) Pλf is single-valued and by Proposition 17(iv) 0 ∈ ∂f(x̃). The remain-
ing statements follow follow from Theorem 14.

The statement about convex functions f follows analogously by using Proposition 16
instead of Proposition 17 and Theorem 13 instead of Theorem 14.

Remark 9. Theorem 15 provides a list of convergence rates for the method in Proposition 18.

5.2 Heavy-ball Method on the Sum of Moreau Envelopes

Proposition 19 (inertial averaged proximal minimization method). Suppose fi : RN → R,
i = 1, . . . ,M are prox-regular functions at x∗ for v∗ = 0 with modulus λ0 > 0 and prox-
bounded with threshold λf > 0. Let 0 < λ < min(λf , λ0/2), β ∈ [0, 1[, and α ∈]0, 2(1− β)λ[.

Suppose that h =
∑M

i=1 eλfi has the KL property at a local minimizer x∗ and Hκ, defined in
(9), satisfies (H4) at (x∗, x∗).

Let x0 = x−1 with x0 ∈ RN and let the sequence (xk)k∈N be generated by the following
update rule

xk+1 ∈ (1− αλ−1)xk +
α

M
λ−1

M∑
i=1

Pλfi(x
k) + β(xk − xk−1) .

If x0 is sufficiently close to x∗, then sequence (xk)k∈N

• is uniquely determined,

• has the finite length property,

• remains in a neighborhood of x∗,

• and converges to a critical point x̃ of h with h(x̃) = h(x∗).

If all fi, i = 1, . . . ,M are proper, lsc, convex, and λ > 0, β ∈ [0, 1[, and α ∈]0, 2(1−β)λ[, then
the sequence has finite length and converges to a global minimizer x̃ of h for any x0 ∈ RN .
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iPiano on an Objective Involving a Moreau Envelope

Proof. The proof is analogously to that of Proposition 18 except for the fact that the Heavy-
ball method is applied to

∑M
i=1 eλfi:

xk+1 = xk − α

M

M∑
i=1

∇eλfi(xk) + β(xk − xk−1)

= xk − α

M
λ−1

M∑
i=1

(xk − Pλfi(xk)) + β(xk − xk−1)

= (1− αλ−1)xk +
α

M
λ−1

M∑
i=1

Pλfi(x
k) + β(xk − xk−1) .

Instead of scaling the feasible range of step sizes for α, the scaling 1
M

is included in the
update formula.

Remark 10. Theorem 15 provides a list of convergence rates for the method in Proposition 19.

Remark 11. In contrast to Proposition 18, the sequence of iterates converges to a point x̃
for which

∑M
i=1∇eλfi(x̃) = 0 holds. We cannot directly conclude that 0 ∈ ∂(

∑
i fi)(x̃).

However, if ∇eλfi(x̃) = 0 for all i = 1, . . . ,M , then under a suitable qualification condition
(see [48, Corollary 10.9]), we can conclude that x̃ is a critical point of

∑M
i=1 fi.

Example 12 (inertial averaged projection method for the semi-algebraic feasibility problem).
The algorithm described in Proposition 19 can be used to solve the semi-algebraic feasibility
problem of Example 4. The conditions in Example 4 are satisfied.

5.3 iPiano on an Objective Involving a Moreau Envelope

Proposition 20 (inertial alternating proximal minimization method). Suppose f : RN → R
is prox-regular at x∗ for v∗ = 0 with modulus λ0 > 0 and prox-bounded with threshold λf > 0.
Let 0 < λ < min(λf , λ0/2). Moreover, suppose that g : RN → R is proper, lsc, and simple.
Let x0 = x−1 with x0 ∈ RN and let the sequence (xk)k∈N be generated by the following update
rule

xk+1 ∈ Pαg
(
(1− αλ−1)xk + αλ−1Pλf(xk) + β(xk − xk−1)

)
.

We obtain the following cases of convergence results:

(i) Assume that h = g+ eλf has the KL property at a local minimizer x∗ and Hκ, defined
in (9), satisfies (H4) at (x∗, x∗). If x0 is sufficiently close to x∗, and α, β are selected
according the property of g in one of the last three rows of Table 1 with L = λ−1, then
the sequence (xk)k∈N

• has the finite length property,

• remains in a neighborhood of x∗,

• and converges to a critical point x̃ of h with h(x̃) = h(x∗).
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iPiano on an Objective Involving a Moreau Envelope

(ii) Assume that f is convex and h = g + eλf has the KL property at a cluster point x∗ of
(xk)k∈N. Then, for any x0 ∈ RN , and α, β selected according the property of g in one
of the last three rows of Table 1 with L = λ−1, the sequence (xk)k∈N

• has the finite length property,

• and converges to a critical point x̃ of h with h(x̃) = h(x∗).

If g is convex, the sequence (xk)k∈N is uniquely determined.

Proof. The proof follows analogously to that of Proposition 18 by, either invoking Proposi-
tion 17 and Theorem 14 or Proposition 16 and Theorem 13.

Remark 13. Theorem 15 provides a list of convergence rates for the method in Proposition 20.

Example 14 (inertial alternating projection for the semi-algebraic feasibility problem).

• The algorithm described in Proposition 20 can be used to solve the semi-algebraic
feasibility problem of Example 4 with M = 2. The conditions in Example 4 are
satisfied.

• If S1 is non-convex and S2 is convex, then the second case of Proposition 20 yields a
globally convergent relaxed alternating projection method with g = δS1 and f = δS2 .
Table 1 requires the step size conditions β ∈ [0, 1

2
[ and α ∈]0, 1−2β[ (note that λ = 1),

which for β = 0 yields α ∈]0, 1[, which leads to the following update step:

xk+1 ∈ projS1
((1− α)xk + α projS2

(xk))

Example 15. The algorithm described in Proposition 20 can be used to solve a relaxed version
of the following problem:

min
x1,...,xM∈RN

M∑
i=1

gi(xi) , s.t. x1 = . . . = xM ,

where the convex constraint is replaced by the associated distance function. The functions
gi : RN → R, i = 1, . . . ,M , M ∈ N, are assumed to be proper, lsc, simple, and x =
(x1, . . . , xM) ∈ RN×M is the optimization variable. This problem belongs to case (ii) of
Proposition 20, i.e. the sequence generated by the inertial alternating proximal minimization
method converges globally to a critical point x∗ of

∑M
i=1 gi(xi) + 1

2
(dist(x,C))2 where C :=

{(x1, . . . , xM) ∈ RN×M : x1 = . . . = xM}. The proximal mapping of 1
2
(dist(x,C))2 is the

projection onto C, which is a simple averaging of x1, . . . , xM .
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5.4 Application: A Feasibility Problem

We consider the example in [27] that demonstrates (local) linear convergence of the alter-
nating projection method. The goal is to find an N ×M matrix X of rank R that satisfies
a linear system of equations A(X) = B, i.e.,

find X in {X ∈ RN×M : A(X) = B}︸ ︷︷ ︸
=:A

∩{X ∈ RN×M : rank(X) = R}︸ ︷︷ ︸
=:R

,

where A : RN×M → RD is a linear mapping and B ∈ RD. Such feasibility problems are well
suited for split projection methods, as the projection onto each set is easy to conduct. The
projections are given by

projA (X) = X −A∗(AA∗)−1(A(X)−B) and projR(X) =
R∑
i=1

σiuiv
>
i ,

where USV > is the singular value decomposition of X with U = (u1, u2, . . . , uN), V =
(v1, v2, . . . , vM) and singular values σ1 ≥ σ2 ≥ . . . ≥ σN sorted in decreasing order along the
diagonal of S. Note that the set of rank r matrices is a C2-smooth manifold [26, Example
8.14], hence prox-regular [48, Proposition 13.33].

We perform the same experiment as in [27], i.e. we randomly generate an operator A
by constructing random matrices A1, . . . , AD and setting A(X) = (〈A1, X〉 , . . . , 〈AD, X〉),
〈Ai, X〉 := trace(A>X), selecting B such that A(X) = B has a rank R solution, and the
dimensions are chosen as M = 110, N = 100, R = 4, D = 450. The performance is measured
w.r.t. |A(X)−B| where X is the result of the projection onto R in the current iteration.

We consider the alternating projection method Xk+1 = projR(projA (Xk)), the averaged
projection method Xk+1 = 1

2

(
projA (Xk) + projR(Xk)

)
, the globally convergent relaxed

alternating projection method from Example 14 (glob-altproj, α = 0.99), and their iner-
tial variants proposed in Sections 5.2 and 5.3. For the Heavy-ball method/inertial averaged
projection (loc-heavyball-avrgproj-bt, β = 0.75) in Section 5.2 applied to the objective
dist(X,A )2 + dist(X,R)2, we use the backtracking line-search version of iPiano [43, Algo-
rithm 4] to estimate the Lipschitz constant automatically. For iPiano/inertial alternating
projection (glob-ipiano-altproj) in Section 5.3 applied to minX∈R

1
2
(dist(X,A ))2 (i.e.

g non-convex, f smooth convex), we use β = 0.45 ∈ [0, 1
2
[ and α = 0.99(1 − 2β)/L with

L = 1, which guarantees global convergence to a stationary point, and a backtracking ver-
sion (glob-ipiano-altproj-bt) [41, Algorithm 5]. Moreover, for the same setting, we use
a heuristic version (heur-ipiano-altproj, β = 0.75, theoretically infeasible) with α such
that αλ−1 = 1 in Proposition 20. Finally, we also consider the locally convergent version
of iPiano in Proposition 20 (loc-ipiano-altproj-bt, β = 0.75) applied to the objective1

minX∈A
1
2
(dist(X,R))2 (i.e. g convex, f prox-regular, non-convex) with backtracking. For

the local convergence results, we assume that we start close enough to a feasible point.
Experimentally, all algorithms converge to a feasible point.

1The error is measured after projecting the current iterate to the set of rank R matrices.
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Figure 2: Convergence plots for the feasibility problem in Section 5.4. The inertial methods de-
veloped in this paper significantly outperforms all other methods with respect to the number of
iterations (left plot) and the actual computation time (right plot).

We also compare our method against the recently proposed globally convergent Douglas-
Rachford splitting for non-convex feasibility problems [34]. The algorithm depends on a
parameter γ, which in theory is required to be rather small: γ0 :=

√
3/2−1. The basic model

Douglas-Rachford uses the maximal feasible value for this γ-parameter. Douglas-Rachford
75 is a heuristic version2 proposed in [34].

Figure 2 compares the methods with respect to the number of iterations and the actual
computation time. All methods successfully compute a feasible point. This seems to be true
also for the heuristic methods Douglas-Rachford 75 and heur-ipiano-altproj, which
shows that there is still a gap between theory and practice. The inertial algorithms that use
backtracking significantly outperform methods without backtracking or inertia. Considering
the actual computation time makes this observation even more significant, since backtracking
algorithms require to compute the objective value several times per iteration. Interestingly,
the globally convergent version of iPiano converged the fastest to a feasible point.

2The heuristic version of Douglas–Rachford splitting in [34] guarantees boundedness of the iterates. We
set γ = 150γ0 and update γ by max(γ/2, 0.9999γ0) if ‖yk− yk−1‖ > t/k. We refer to [34] for the meaning of
yk. Since the proposed value t = 1000 did not work well in our experiment, we optimized t manually. t = 75
worked best.
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6 Conclusions

In this paper, we proved a local convergence result for abstract descent methods, which is
similar to that of Attouch et al. [4]. This local convergence result is applicable to an in-
ertial forward–backward splitting method, called iPiano [43]. For functions that satisfy the
Kurdyka– Lojasiewicz inequality at a local optimum, under a certain growth condition, we
verified that the sequence of iterates stays in a neighborhood of a local (or global) minimum
and converges to the minimum. As a consequence, the properties that imply convergence
of iPiano is required to hold locally only. Combined with a well-known expression for the
gradient of Moreau envelopes in terms of the proximal mapping, relations of iPiano to an
inertial averaged proximal minimization method and an inertial alternating proximal mini-
mization method are uncovered. These considerations are conducted for functions that are
prox-regular instead of the stronger assumption of convexity. For a non-convex feasibility
problem, experimentally, iPiano significantly outperforms the alternating projection method
and a recently proposed non-convex variant of Douglas–Rachford splitting.
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[36] J. Liang, J. Fadili, and G. Peyré. A multi-step inertial forward–backward splitting method for
non-convex optimization. arXiv:1606.02118 [math], June 2016.
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Recherche Scientifique.
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