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Learning to Generate Chairs, Tables and Cars
with Convolutional Networks

Alexey Dosovitskiy, Jost Tobias Springenberg, Maxim Tatarchenko, Thomas Brox

Abstract—We train generative ’up-convolutional’ neural networks which are able to generate images of objects given object style,
viewpoint, and color. We train the networks on rendered 3D models of chairs, tables, and cars. Our experiments show that the
networks do not merely learn all images by heart, but rather find a meaningful representation of 3D models allowing them to assess the
similarity of different models, interpolate between given views to generate the missing ones, extrapolate views, and invent new objects
not present in the training set by recombining training instances, or even two different object classes. Moreover, we show that such
generative networks can be used to find correspondences between different objects from the dataset, outperforming existing
approaches on this task.

Index Terms—Convolutional networks, generative models, image generation, up-convolutional networks
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1 INTRODUCTION

Generative modeling of natural images is a long stand-
ing and difficult task. The problem naturally falls into
two components: learning the distribution from which the
images are to be generated, and learning the generator
which produces an image conditioned on a vector from
this distribution. In this paper we approach the second sub-
problem. We suppose we are given high-level descriptions
of a set of images, and only train the generator. We propose
to use an ’up-convolutional’ generative network for this task
and show that it is capable of generating realistic images.

In recent years, convolutional neural networks (CNNs,
ConvNets) have become a method of choice in many areas
of computer vision, especially on recognition [1]. Recogni-
tion can be posed as a supervised learning problem and
ConvNets are known to perform well given a large enough
labeled dataset. In this work, we stick with supervised
training, but we turn the standard classification CNN up-
side down and use it to generate images given high-level
information. This way, instead of learning a mapping from
raw sensor inputs to a condensed, abstract representation,
such as object identity or position, we generate images from
their high-level descriptions.

Given a set of 3D models (of chairs, tables, or cars),
we train a neural network capable of generating 2D pro-
jections of the models given the model number (defining
the style), viewpoint, and, optionally, additional transfor-
mation parameters such as color, brightness, saturation,
zoom, etc. Our generative networks accept as input these
high-level values and produce RGB images. We train them
with standard backpropagation to minimize the Euclidean
reconstruction error of the generated image.

A large enough neural network can learn to perform
perfectly on the training set. That is, a network potentially
could just learn by heart all examples and generate these
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perfectly, but would fail to produce reasonable results when
confronted with inputs it has not seen during training. We
show that the networks we train do generalize to previously
unseen data in various ways. Namely, we show that these
networks are capable of: 1) knowledge transfer within an
object class: given limited number of views of a chair,
the network can use the knowledge learned from other
chairs to infer the remaining viewpoints; 2) knowledge
transfer between classes (chairs and tables): the network can
transfer the knowledge about views from tables to chairs;
3) feature arithmetics: addition and subtraction of feature
vectors leads to interpretable results in the image space; 4)
interpolation between different objects within a class and
between classes; 5) randomly generating new object styles.

After a review of related work in Section 2, we describe
the network architecture and training process in Section 3.
In Section 4 we compare different network architectures and
dataset sizes, then in Section 5 we test the generalization
abilities of the networks and apply them to a practical task of
finding correspondences between different objects. Finally,
in Section 6 we analyze the internal representation of the
networks.

2 RELATED WORK

Work on generative models of images typically addresses
the problem of unsupervised learning of a data model
which can generate samples from a latent representation.
Prominent examples from this line of work are restricted
Boltzmann machines (RBMs) [2] and Deep Boltzmann Ma-
chines (DBMs) [3], as well as the plethora of models derived
from them [4, 5, 6, 7, 8, 9]. RBMs and DBMs are undi-
rected graphical models which aim to build a probabilistic
model of the data and treat encoding and generation as
an (intractable) joint inference problem. Most related to our
approach are Convolutional Deep Belief Networks (CDBNs)
of Lee et al. [6] making use of “unpooling” and ShapeNets
of Wu et al. [9] training a 3D variant of CDBN to generate
3D models of furniture.
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A different approach is to train directed graphical mod-
els of the data distribution. This includes a wide variety
of methods ranging from Gaussian mixture models [10, 11]
to autoregressive models [12] and stochastic variations of
neural networks [13, 14, 15, 16, 17]. Among them Rezende
et al. [15] developed an approach for training a generative
model with variational inference by performing (stochastic)
backpropagation through a latent Gaussian representation.
The generative adversarial networks approach presented
in Goodfellow et al. [14] models natural images using a
”deconvolutional” generative network that is similar to our
architecture.

Most unsupervised generative models can be extended
to incorporate label information, forming semi-supervised
and conditional generative models which lie between fully
unsupervised approaches and our work. Examples include:
gated conditional RBMs [5] for modeling image transfor-
mations, training RBMs to disentangle face identity and
pose information using conditional RBMs [18], and learning
a generative model of digits conditioned on digit class
using variational autoencoders [19]. In contrast to our work,
these approaches are typically restricted to small models
and images, and they often require an expensive inference
procedure – both during training and for generating images.

Since the publication of the conference paper this work
is based on [20], there has been a resurgence in research
on using neural networks for generating images. This line
of work includes an increasing amount of papers using
large “up-convolutional” neural networks for modelling
realistic images using architectures that are similar to –
or are derived from – the ones presented in this paper
[21, 22, 23, 24]. Denton et al. [23] and Radford et al. [24]
train conditional convolutional generative models via the
adversarial networks approach. These networks are capable
of generating high-fidelity natural images. Reed et al. [22]
learn to generate animations of computer game characters
based on a learned code that represents image transforma-
tions.

The general difference of our approach to prior work
on learning generative models is that we assume a high-
level latent representation of the images is given and use
supervised training. This allows us 1) to generate relatively
large high-quality images of 128× 128 pixels (as compared
to maximum of 48×48 pixels in most previous works) and 2)
to completely control which images to generate rather than
relying on random sampling. The downside is, of course,
the need for a label that fully describes the appearance of
each image.

This requirement is slightly relaxed by Kulkarni et al.
[21] who learn to generate images of objects, assuming
only partial knowledge about the parameters of the scene
(namely, which parameters are changing and which are
fixed).

Modeling of viewpoint variation is often considered in
the context of pose-invariant face recognition [25]. In a
recent work Zhu et al. [26] approached this task with a
neural network: their network takes a face image as input
and generates a random view of this face together with the
corresponding viewpoint. The network is fully connected
and hence restricted to small images and, similarly to gen-
erative models, requires random sampling to generate a

desired view. This makes it inapplicable to modeling large
and diverse images, such as the chair images we model.

Our work is also loosely related to applications of CNNs
to non-discriminative tasks, such as super-resolution [27] or
inferring depth from a single image [28].

3 MODEL DESCRIPTION

Our goal is to train a neural network to generate accurate
images of objects from a high-level description: style, orien-
tation with respect to the camera, and additional parameters
such as color, brightness, etc. The task at hand hence is the
inverse of a typical recognition task: rather than converting
an image to a compressed high-level representation, we
need to generate an image given the high-level parameters.

Formally, we assume that we are given a dataset of
examples D = {(c1,v1,θ1), . . . , (cN ,vN ,θN )}with targets
O = {(x1, s1), . . . , (xN , sN )}. The input tuples consist of
three vectors: c is the one-hot encoding of the model identity
(defining the style), v – azimuth and elevation of the camera
position (represented by their sine and cosine 1) and θ – the
parameters of additional artificial transformations applied
to the images. The targets are the RGB output image x and
the segmentation mask s. We note that predicting segmen-
tation masks is not a strict requirement for good generative
capabilities but it allows us to easily separate the generated
images from the background – and potentially replace it. In
most figures we use these predicted segmentation masks to
replace black background with white.

We include artificial transformations Tθ described by
the randomly generated parameter vector θ to increase the
amount of variation in the training data and reduce over-
fitting, analogous to data augmentation in discriminative
CNN training [1]. Each Tθ is a combination of the following
transformations: in-plane rotation (up to ±12◦), translation
(up to ±10% of image size), zoom-in (100% to 135%),
stretching horizontally or vertically (up to 10%), changing
hue (arbitrary random additive factor), changing saturation
(25% to 400%), changing brightness (35% to 300%).

3.1 Network architectures
Conceptually the generative network, which we formally
refer to as g(c,v,θ), looks like a usual CNN turned upside
down. It can be thought of as the composition of two
processing steps g = u ◦ h. We experimented with several
architectures, one of them is shown in Figure 1.

Layers FC1 to FC4 first build a shared, high dimensional
hidden representation h(c,v,θ) from the input parameters.
Within these layers the three input vectors are first inde-
pendently fed through two fully connected layers with 512
neurons each, and then the outputs of these three streams
are concatenated. This independent processing is followed
by two fully connected layers with 1024 neurons each,
yielding the response of the fourth fully connected layer
(FC4).

The expanding part u of the network consists of lay-
ers FC5 and upconv1 to upconv4. It generates an image

1. We do this to deal with periodicity of the angle. If we simply used
the number of degrees, the network would have no way to understand
that 0 and 359 degrees are in fact very close.
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Fig. 1. Architecture of a 1-stream deep network (“1s-S-deep“) that generates 128 × 128 pixel images. Layer names are shown above: FC - fully
connected, upconv - upsampling+convolution, conv - convolution.

uRGB(h) and a segmentation mask usegm(h) from the hid-
den representation h. We experimented with two architec-
tures for u. In one of them, as depicted in Figure 1, the
image and the segmentation mask are generated based on
a shared feature representation. A fully connected layer
FC5 outputs a 16384-dimensional vector which is reshaped
to a 8 × 8 multichannel image and fed through 3 ”up-
sampling+convolution“ layers with 4 × 4 filters and 2 × 2
upsampling, each followed by a convolutional layer with
3 × 3 filters. We found that adding a convolutional layer
after each up-convolution significantly improves the quality
of the generated images. The last upconv4 layer predicts
both the RGB image and the segmentation mask. In an
alternative 2-stream architecture, the network splits into two
streams (predicting RGB image and the segmentation mask)
right after the layer FC4. We describe and compare different
architectures in section 4.2.

In order to map the dense 8 × 8 representation to a
high dimensional image, we need to unpool the feature
maps (i.e. increase their spatial span) as opposed to the
pooling (shrinking the feature maps) implemented by usual
CNNs. This is similar to the “deconvolutional” layers used
in previous work [14, 29, 30]. As illustrated in Figure 2 (left),
we perform unpooling by simple “bed of nails” upsampling,
that is, replacing each entry of a feature map by an s × s
block with the entry value in the top left corner and zeros
elsewhere. This increases the width and the height of the
feature map s times. We used s = 2 in our networks. When
a convolutional layer is preceded by such an upsampling
operation we can think of upsampling+convolution (“up-
convolution”) as the opposite of the convolution+pooling
steps performed in a standard CNN, see Figure 2 right. This
figure also illustrates how in practice the upsampling and
convolution steps do not have to be performed sequentially,
but can be combined in a single operation. Implementation-
wise this operation is equivalent to a backward pass through
a usual convolutional layer with stride s.

In all our networks each layer, except the output, is

Fig. 2. Illustration of upsampling (left) and upsampling+convolution
(right) as used in the generative network.

followed by a rectified linear (ReLU) nonlinearity. In most
experiments we generated 128 × 128 pixel images, but we
also experimented with 64× 64 and 256× 256 pixel images.
The only difference in architecture in these cases is one less
or one more up-convolution, respectively.

3.2 Network training
The network parameters W, consisting of all layer weights
and biases, are trained by minimizing the error of recon-
structing the segmented-out chair image and the segmenta-
tion mask (the weights W are omitted from the arguments
of h and u for brevity of notation):

min
W

N∑
i=1

LRGB
(
Tθi(xi · si), uRGB(h(ci,vi,θi))

)
+λ·Lsegm

(
Tθi(si), usegm(h(ci,vi,θi))

)
,

(1)
where LRGB and Lsegm are loss functions for the RGB
image and for the segmentation mask respectively, and λ
is a weighting term, trading off between these two. In our
experiments LRGB was always squared Euclidean distance,
while for Lsegm we tried two choices: squared Euclidean
distance and negative log-likelihood loss preceded by a
softmax layer. We set λ = 0.1 in the first case and λ = 100
in the second case.

3.3 Probabilistic generative modeling
As we show below, the problem formulation described in
the beginning of this section allows us to learn a generator
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Fig. 3. Representative images used for training the networks. Top:
chairs, middle: tables, bottom: cars.

network which can interpolate between different objects.
The learned network, however, implements a deterministic
function from a high-level description (including the object
identity as given by the one-hot encoding c) to a generated
image. The shared structure between multiple objects is
only implicitly learned by the network and not explicitly
accessible. It can be used to generate new “random” objects
by blending between objects from the training set, but this
heuristics comes with no guarantees regarding the quality
of the generated images. To get a more principled way of
generating new objects we train a probabilistic generative
model with an intermediate Gaussian representation. We
replace the independent processing stream for the class
identity c in layer FC2 (the magenta part in Figure 1)
with random samples drawn from an inference network
q(z | c) = N (µz,Σz) that learns to capture the underlying
(latent) structure of different chair images. This inference
network can be learned alongside the generator described
above by maximizing a variational bound on the sample
log-likelihood. A full description of the probabilistic gener-
ative model training is given in Appendix A.

3.4 Datasets

As training data for the generative networks we used
renderings of 3D models of different objects: chairs, made
public by Aubry et al. [31], as well as car and table models
from the ShapeNet [32] dataset.

Aubry et al. provide renderings of 1393 aligned chair
models, each rendered from 62 viewpoints: 31 azimuth an-
gles (with a step of 11◦) and 2 elevation angles (20◦ and 30◦),
with a fixed distance to the chair. We found that the dataset
includes many near-duplicate models, models differing only
by color, or low-quality models. After removing these we
ended up with a reduced dataset of 809 models, which we
used in our experiments. We cropped the renders to have a
small border around the chair and resized to a common size
of 128× 128 pixels, padding with white where necessary to
keep the aspect ratio. Example images are shown in Figure 3.
For training the network we also used segmentation masks
of all training examples, which we produced by subtracting
the monotonous white background.

We took models of cars and tables from ShapeNet, a
dataset containing tens of thousands of consistently aligned
3D models of multiple classes. We rendered a turntable of

each model in Blender2 using 36 azimuth angles (from 0◦

to 350◦ with step of 10◦) and 5 elevation angles (from 0◦

to 40◦ with step of 10◦), which resulted in 180 images per
model. Positions of the camera and the light source were
fixed during rendering. For experiments in this paper we
used renderings of 7124 car models and 1000 table models.
All renderings are 256 × 256 pixels, and we additionally
directly rendered the corresponding segmentation masks.
Example renderings are shown in Figure 3.

4 TRAINING PARAMETERS

In this section we describe the details of training, compare
different network architectures and analyze the effect of
dataset size and data augmentation on training.

4.1 Training details
For training the networks we built on top of the caffe CNN
implementation [33]. We used Adam [34] with momentum
parameters β1 = 0.9 and β2 = 0.999, and regularization pa-
rameter ε = 10−6. Mini-batch size was 128. We started with
a learning rate of 0.0005 for 250, 000 mini-batch iterations,
and then divided the learning rate by 2 after every 100, 000
iterations, stopping after 500, 000 iterations. We initialized
the weights with Gaussian noise with variance computed
based on the input dimensionality, as suggested by Susillo
[35] and He et al. [36] .

In most experiments we trained networks generating
128 × 128 pixel images. In the viewpoint interpolation
experiments in section 5.2 we generated 64×64 pixel images
to reduce the computation time, since multiple networks
had to be trained for those experiments. When working with
cars, we tried generating 256×256 images to check if deeper
networks capable of generating these larger images can be
successfully trained. We did not observe any complications
during training of these deeper networks.

4.2 Comparing network architectures
As mentioned above, we experimented with different net-
work architectures. These include:
“1s-S-deep” – a network shown in Figure 1, with one

stream, negative log-likelihood (NLL) loss on the
segmentation mask and convolutions between up-
convolutions ;

“1s-S” – same as “1s-S-deep”, but without convolutions
between up-convolutions;

“1s-S-wide” – same as “1s-S”, but with roughly 1.3 times
more channels in each up-convolutional layer;

“2s-S” – same as “1s-S”, but with two separate streams for
the RGB image and the segmentation mask;

“2s-E” – same as “2s-S”, but with squared Euclidean loss
on the segmentation mask.

Images generated with these architectures, as well as the
ground truth (GT), are shown in Figure 4. Reconstruction
errors are shown in Table 1. Clearly, the deeper “1s-S-deep”
network is significantly better than others both qualitatively
and quantitatively. For this reason we used this network in
most experiments.

2. https://www.blender.org

https://www.blender.org
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GT 2s-E 2s-S 1s-S 1s-S-wide 1s-S-deep

Fig. 4. Qualitative results with different networks trained on chairs. See
the description of architectures in section 4.2.

Net 1s-S-deep 1s-S 1s-S-wide 2s-S 2s-E
MSE (·10−3) 2.90 3.51 3.41 3.44 3.43
#param 19M 18M 23M 27M 27M

TABLE 1
Per-pixel mean squared error of the generated chair images with

different network architectures and the number of parameters in the
expanding parts of these networks.

#models 500 1000 3000 7124 1000aug
MSE (·10−3) 0.48 0.66 0.84 0.97 1.18

TABLE 2
Per-pixel mean squared error of image generation with varying number

of car models in the training set.

4.3 Training set size and data augmentation

We experimented with the training set size and analyzed
what is the effect of data augmentation. We used cars for
these experiments, since we have more car models available.
While keeping the network architecture fixed, we varied the
training set size. Example generated images are shown in
Figure 5. Each column corresponds to a different number of
models in the training set, and all networks except the one
in the rightmost column were trained without data augmen-
tation. While for a standard car model (top row) there is not
much difference, for difficult models (other rows) smaller
training set leads to better reconstruction of fine details. The
effect of data augmentation is qualitatively very similar to
increasing the training set size. Reconstruction errors shown
in Table 2 support these observations.

Data augmentation leads to worse reconstruction of fine
details, but it is expected to lead to better generalization.
To check this, we tried to morph one model into another
by linearly interpolating between their one-hot input style
vectors. The result is shown in Figure 6. Note how the net-
work trained without augmentation (top row) better models
the images from the training set, but fails to interpolate
smoothly.

5 EXPERIMENTS

We show how the networks successfully model the com-
plex data and demonstrate their generalization abilities by
generating images unseen during training: new viewpoints
and object styles. We also show an application of generative
networks to finding correspondences between objects from
the training set.

GT 500 1000 3000 7124 1000+aug

Fig. 5. Qualitative results for different numbers of car models in the
training set, without and with (rightmost column) data augmentation.

Fig. 6. Interpolation between two car models. Top: without data aug-
mentation, bottom: with data augmentation.

5.1 Modeling transformations
Figure 7 shows how a network is able to generate chairs
that are significantly transformed relative to the original
images. Each row shows a different type of transformation.
Images in the central column are non-transformed. Even
in the presence of large transformations, the quality of the
generated images is basically as good as without transfor-
mation. The image quality typically degrades a little in case
of unusual chair shapes (such as rotating office chairs) and
chairs including fine details such as armrests (see e.g. one
of the armrests in the second to last row in Figure 7).
Interestingly, the network successfully models zoom-out
(row 3 of Figure 7), even though it has never been presented
any zoomed-out images during training.

The network easily deals with extreme color-related
transformations, but has more problems representing large
spatial changes, especially translations. The generation qual-
ity in such cases could likely be improved with a more
complex architecture, which would allow transformation
parameters to explicitly affect the feature maps of con-
volutional layers (by translating, rotating, zooming them),
perhaps in the fashion similar to Gregor et al. [37] or
Jaderberg et al. [38].

5.2 Interpolation between viewpoints
In this section we show that the network is able to generate
previously unseen views by interpolating between views
present in the training data. This demonstrates that the
network internally learns a representation of chairs which
enables it to judge about chair similarity and use the known
examples to generate previously unseen views.

In this experiment we used a 64× 64 network to reduce
computational costs. We randomly separated the chair styles
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Fig. 7. Generation of chair images while activating various transforma-
tions. Each row shows one transformation: translation, rotation, zoom,
stretch, saturation, brightness, color. The middle column shows the
reconstruction without any transformation.

into two subsets: the ’source set’ with 90 % styles and the
’target set’ with the remaining 10 % chairs. We then varied
the number of viewpoints per style either in both of these
subsets together (’no transfer’) or just in the target set (’with
transfer’) and then trained a generative network as before.
In the second setup the idea is that the network may use the
knowledge about chairs learned from the source set (which
includes all viewpoints) to generate the missing viewpoints
of the chairs from the target set.

Figure 8 shows some representative examples of angle
interpolation. For 15 views in the target set (first pair of
rows) the effect of the knowledge transfer is already visible:
interpolation is smoother and fine details are preserved
better, for example a leg in the middle column. Starting
from 8 views (second pair of rows and below) the network
without knowledge transfer fails to produce satisfactory
interpolation, while the one with knowledge transfer works
reasonably well even with just one view presented during
training (bottom pair of rows). However, in this case some
fine details, such as the armrest shape, are lost.

In Figure 9 we plot the average squared error of the
generated missing viewpoints from the target set, both
with and without transfer (blue and green curves). Clearly,
presence of all viewpoints in the source dataset dramatically
improves the performance on the target set, especially for
small numbers of available viewpoints.

One might suppose (for example looking at the bottom
pair of rows of Figure 8) that the network simply learns
all the views of the chairs from the source set and then,
given a limited number of views of a new chair, finds the
most similar one, in some sense, among the known models
and simply returns the images of that chair. To check if

Fig. 8. Examples of view interpolation (azimuth angle). In each pair
of rows the top row is with knowledge transfer and the second row is
without it. In each row the leftmost and the rightmost images are the
views presented to the network during training while all intermediate
ones are new to the network and, hence, are the result of interpolation.
The number of different views per chair available during training is 15, 8,
4, 2, 1 (top-down). Image quality is worse than in other figures because
we used the 64× 64 network.

Fig. 9. Reconstruction error for unseen views of chairs from the target
set depending on the number of viewpoints present during training.
Blue: all viewpoints available in the source dataset (knowledge transfer),
green: the same number of viewpoints are available in the source and
target datasets (no knowledge transfer).
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this is the case, we evaluated the performance of such a
naive nearest neighbor approach. For each image in the
target set we found the closest match in the source set
for each of the given views and interpolated the missing
views by linear combinations of the corresponding views
of the nearest neighbors. For finding nearest neighbors we
tried two similarity measures: Euclidean distance between
RGB images and between HOG descriptors. The results
are shown in Figure 9. Interestingly, although HOG yields
semantically much more meaningful nearest neighbors (not
shown in figures), RGB similarity performs much better nu-
merically. The performance of this nearest neighbor method
is always worse than that of the network with knowledge
transfer, suggesting that the network learns more than just
linearly combining the known chairs, especially when many
viewpoints are available in the target set.

5.3 Elevation transfer and extrapolation
The chairs dataset only contains renderings with elevation
angles 20◦ and 30◦, while for tables elevations between
0◦ and 40◦ are available. We show that we can transfer
information about elevations from one class to another. To
this end we trained a network on both chairs and tables, and
then generated images of chairs with elevations not present
during training. As a baseline we use a network trained
solely on chairs. The results are shown in Figure 10. While
the network trained only on chairs does not generalize to
unseen elevation angles almost at all, the one trained with
tables is able to generate unseen views of chairs very well.
The only drawback is that the generated images do not
always precisely correspond to the desired elevation, for
example 0◦ and 10◦ for the second model in Figure 10. Still,
this result suggests that the network is able to transfer the
understanding of 3D object structure from one object class
to another.

The network trained both on chairs and tables can fairly
well predict views of tables from previously unseen eleva-
tion angles. Figure 11 shows how the network can generate
images with previously unseen elevations from 50◦ to 90◦.
Interestingly, the presence of chairs in the training set helps
better extrapolate views of tables. Our hypothesis is that
the network trained on both object classes is forced to not
only model one kind of objects, but also the general 3D
geometry. This helps generating reasonable views from new
elevation angles. We hypothesize that modeling even more
object classes with a single network would allow to learn a
universal class-independent representation of 3D shapes.

5.4 Interpolation between styles
Remarkably, the generative network can not only imagine
previously unseen views of a given object, but also invent
new objects by interpolating between given ones. To obtain
such interpolations, we simply linearly change the input
label vector from one class to another. Some representa-
tive examples of such morphings for chairs and cars are
shown in Figures 12 and 13 respectively. The morphings of
each object class are sorted by subjective morphing quality
(decreasing from top to bottom). The networks produce
very naturally looking morphings even in challenging cases.
Even when the two morphed objects are very dissimilar, for

0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 70◦

Fig. 10. Elevation angle knowledge transfer. In each pair of rows top
row: trained only on chairs (no knowledge transfer), bottom row:
trained both on chairs and tables (with knowledge transfer). Green
background denotes elevations not presented during training.

0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 70◦ 90◦

Fig. 11. Elevation extrapolation. In each pair of rows top row: trained
only on tables, bottom row: trained both on chairs and tables. Green
background denotes elevations not presented during training.

example the last two rows in Figure 12, the intermediate
chairs look very realistic.

It is also possible to interpolate between more than two
objects. Figure 14 shows morphing between three chairs: one
triple in the upper triangle and one in the lower triangle of
the table. The network successfully combines the features of
three chairs.

The networks can interpolate between objects of the
same class, but can they morph objects of different classes
into each other? The inter-class difference is larger than
the intra-class variance, hence to successfully interpolate
between classes the network has to close this large gap
between different classes. We check if a network trained
on chairs and tables is capable of doing this. Results are
shown in Figure 15. The quality of intermediate images is
slightly worse than for intra-class morphings shown above,
but overall very good, especially considering that during
training the network has not seen anything intermediate
between a chair and a table.

5.5 Feature space arithmetics
In the previous section we have seen that the feature
representation learned by the network allows for smooth
transitions between two or even three different objects.
Can this property be used to transfer properties of one
object onto another by performing simple arithmetics in the
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Fig. 12. Examples of morphing different chairs, one morphing per row.
Leftmost and rightmost chairs in each row are present in the training set,
all intermediate ones are “invented” by the network. Rows are ordered
by decreasing subjective quality of the morphing, from top to bottom.

feature space? Figure 16 shows that this is indeed possible.
By simple subtraction and addition in the feature space (FC2
features in this case) we can change an armchair into a
chair with similar style, or a chair with a stick back into
an identical chair with a solid back. We found that the exact
layer where the arithmetic is performed does not matter: the
results are basically identical when we manipulate the input
style vectors, or the outputs of layers FC1 or FC2.

5.6 Random chair generation
In this section we show results on generating random chair
images using the ideas briefly outlined in Section 3.3. In
particular, we experiment both with networks trained in a
fully supervised manner using the training objective from
Section 3, and with networks trained with the variational
bound objective described in Appendix A.

As mentioned above, there is no principled way to
perform sampling using networks trained in a supervised
manner. Nonetheless there are some natural heuristics that
can be used to obtain “quasi random” chairs. We can first
observe that the style input of the network is a probability
distribution over styles, which at training time is concen-
trated on a single style (i.e. c is a one-hot encoding of the
chair style). However, in the interpolation experiments we
have seen that the network also generates plausible images
given inputs with several non-zero entries. This suggests
generating random images by using random distributions
as input for the network. We tried two families of dis-
tributions: (1) we computed the softmax of a Gaussian

Fig. 13. Examples of morphing different cars, one morphing per row.
Leftmost and rightmost chairs in each row are present in the training set,
all intermediate ones are “invented” by the network. Rows are ordered
by decreasing subjective quality of the morphing, from top to bottom.

Fig. 14. Interpolation between triples of chairs: one triple in the upper
triangle of the table and one in the lower triangle. Models in the corners
are present in the training set, all other images are “invented” by the
network.
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Fig. 15. Interpolation between chairs and tables. The chairs on the left
and the tables on the right are present in the training set.

Fig. 16. Feature arithmetics: simple operations in the feature space lead
to interpretable changes in the image space.

noise vector with the same size as c, with zero mean and
standard deviation σ, and (2) we first randomly selected
M styles, then sampled coefficient for each of them from
uniform([0, 1]), then normalized to unit sum.

Exemplary results of these two experiments are shown in
Figure 17 (a)-(d). For each generated image the closest chair
from the dataset, according to Euclidean distance, is shown.
(a) and (b) are generated with method (1) with σ = 2 and
σ = 4 respectively. The results are not good: when σ is
low the generated chairs are all similar, while with higher
σ they essentially copy chairs from the training set. (c) and
(d) are produced with method (2) with M = 3 and M = 5
respectively. Here the generated chairs are quite diverse and
not too similar to the chairs from the training set.

The model which was trained with a variational bound
objective (as described in Appendix A) directly allows us to
sample from the assumed prior (Gaussian with zero mean
and unit covariance) and generate images from these draws.
That is, we simply replace the FC2 activations of the style
stream by random Gaussian noise. The results are shown
in Figure 17 (e)-(f). The difference between (e) and (f) is

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 17. Random chairs, generated with different methods. In each
pair of rows top: generated chairs, bottom: nearest neighbors from the
training set. (a),(b): from softmax of a Gaussian in the input layer, (c),(d):
interpolations between several chairs from the training set, (e),(f): from
Gaussian noise in FC2 of stochastic networks trained with the variational
bound loss, (g),(h): from Gaussian noise in FC2 of networks trained with
usual loss. See the text for more details.
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that in (e) the KL-divergence term in the loss function was
weighted 10 times higher than in (f). This leads to much
more diverse chairs being generated.

As a control, in Figure 17 (g)-(h) we also show chairs
generated in the same way (but with adjusted standard
deviations) from a network trained without the variational
bound objective. While such a procedure is not guaranteed
to result in any visually appealing images, since the hidden
layer activations are not restricted to a particular regime
during training, we found that it does result in sharp chair
images. However, both for low (g) and high (h) standard
deviations the generated chairs are not very diverse.

Overall, the heuristics with combining several chairs
and the variational-bound-based training lead to generating
images of roughly similar quality and diversity. However,
the second approach is advantageous in that it allows gen-
erating images simply from a Gaussian distribution and it
is more principled, potentially promising further improve-
ment when better optimized or combined with other kinds
of stochastic networks.

5.7 Correspondences

The ability of the generative CNN to interpolate between
different chairs allows us to find dense correspondences
between different object instances, even if their appearance
is very dissimilar.

Given two chairs from the training dataset, we used the
“1s-S-deep” network to generate a morphing consisting of
64 images (with fixed view). We then computed the optical
flow in the resulting image sequence using the code of
Brox et al. [39]. To compensate for the drift, we refined
the computed optical flow by recomputing it with a step
of 9 frames, initialized by concatenated per-frame flows.
Concatenation of these refined optical flows gives the global
vector field that connects corresponding points in the two
chair images.

In order to quantitatively evaluate the quality of the cor-
respondences, we created a small test set of 30 image pairs.
To analyze the performance in more detail, we separated
these into 10 ’simple’ pairs (two chairs are quite similar in
appearance) and 20 ’difficult’ pairs (two chairs differ a lot
in appearance). Exemplar pairs are shown in Figure 18 . We
manually annotated several keypoints in the first image of
each pair (in total 295 keypoints in all images) and asked
9 people to manually mark corresponding points in the
second image of each pair. We then used mean keypoint
positions in the second images as ground truth. At test
time we measured the performance of different methods by
computing average displacement of predicted keypoints in
the second images given keypoints in the first images. We
also manually annotated an additional validation set of 20
image pairs to tune the parameters of all methods (however,
we were not able to search the parameters exhaustively
because some methods have many).

In Table 3 we show the performance of our algorithm
compared to human performance and two baselines: SIFT
flow [40] and Deformable Spatial Pyramid [41] (DSP). On
average the very basic approach we used outperforms both
baselines thanks to the intermediate samples produced by
the generative neural network. More interestingly, while

Fig. 18. Exemplar image pairs from the test set with ground truth
correspondences. Left: ’simple’ pairs, right: ’difficult’ pairs

Method All Simple Difficult
DSP [41] 5.2 3.3 6.3
SIFT flow [40] 4.0 2.8 4.8
Ours 3.4 3.1 3.5
Human 1.1 1.1 1.1

TABLE 3
Average displacement (in pixels) of keypoints predicted by different

methods on the whole test set and on the ’simple’ and ’difficult’ subsets.

SIFT flow and DSP have problems with the difficult pairs,
our algorithm does not. This suggests that errors of our
method are largely due to contrast changes and drift in the
optical flow, which does not depend on the difficulty of the
image pair. The approaches are hence complementary: while
for similar objects direct matching is fairly accurate, for more
dissimilar ones intermediate morphings are very helpful.

6 ANALYSIS OF THE NETWORK

We have shown that the networks can model objects ex-
tremely well. We now analyze the inner workings of net-
works, trying to get some insight into the source of their
success. The “2s-E” network was used in this section.

6.1 Activating single units
One way to analyze a neural network (artificial or real) is
to visualize the effect of single neuron activations. Although
this method does not allow us to judge about the network’s
actual functioning, which involves a clever combination of
many neurons, it still gives a rough idea of what kind of
representation is created by the different network layers.

Activating single neurons of upconv3 feature maps (last
feature maps before the output) is equivalent to simply
looking at the filters of these layers which are shown in
Figure 19 . The final output of the network at each position
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Fig. 19. Output layer filters of the “2s-E” network. Top: RGB stream.
Bottom: Segmentation stream.

Fig. 20. Images generated from single unit activations in feature maps
of different fully connected layers of the “2s-E” network. From top to
bottom: FC1 and FC2 of the class stream, FC3, FC4.

is a linear combination of these filters. As to be expected,
they include edges and blobs.

Our model is tailored to generate images from high-
level neuron activations, which allows us to activate a
single neuron in some of the higher layers and forward-
propagate down to the image. The results of this procedure
for different layers of the network are shown in Figures 20
and 21. Each row corresponds to a different network layer.
The leftmost image in each row is generated by setting all
neurons of the layer to zero, and the other images – by
activating one randomly selected neuron.

In Figure 20 the first two rows show images produced
when activating neurons of FC1 and FC2 feature maps of the
class stream while keeping viewpoint and transformation
inputs fixed. The results clearly look chair-like but do not
show much variation (the most visible difference is chair vs
armchair), which suggests that larger variations are achiev-
able by activating multiple neurons. The last two rows
show results of activating neurons of FC3 and FC4 feature
maps. These feature maps contain joint class-viewpoint-
transformation representations, hence the viewpoint is not
fixed anymore. The generated images still resemble chairs
but get much less realistic. This is to be expected: the further
away from the inputs, the less semantic meaning there is in
the activations.

In the middle of the bottom row in Figure 20 one can
notice a neuron which seems to generate a zoomed chair. By
looking at FC4 neurons more carefully we found that this
is indeed a ’zoom neuron’, and, moreover, for each trans-
formation there is a specialized neuron in FC4. The effect
of these is shown in Figure 22. Increasing the activation
of one of these neurons while keeping all other activations
in FC4 fixed results in a transformation of the generated
image. It is quite surprising that information about trans-
formations is propagated without change through all fully
connected layers. It seems that all potential transformed

Fig. 21. Images generated from single neuron activations in feature
maps of some layers of the “2s-E” network. From top to bottom: upconv2,
upconv1, FC5 of the RGB stream. Relative scale of the images is
correct. Bottom images are 57× 57 pixel, approximately half of the chair
size.

Fig. 22. The effect of specialized neurons in the layer FC4. Each row
shows the result of increasing the value of a single FC4 neuron given
the feature maps of a real chair. Effects of all neurons, top to bottom:
translation upwards, zoom, stretch horizontally, stretch vertically, rotate
counter-clockwise, rotate clockwise, increase saturation, decrease sat-
uration, make violet.

versions of a chair are already contained in the FC4 fea-
tures, and the ’transformation neurons’ only modify them
to give more relevance to the activations corresponding
to the required transformation. The corresponding weights
connecting these specialized neurons to the next layer are
shown in Figure 23 (one neuron per row). Some output
channels are responsible for spatial transformations of the
image, while others deal with the color and brightness.

Images generated from single neurons of the convolu-
tional layers are shown in Figure 21 . A somewhat disap-
pointing observation is that while single neurons in later
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Fig. 23. Some of the neural network weights corresponding to the
transformation neurons shown in Figure 22. Each row shows weights
connected to one neuron, in the same order as in Figure 22. Only a
selected subset of most interesting channels is shown.

layers (upconv2 and upconv3) produce edge-like images,
the neurons of higher deconvolutional layers generate only
blurry ’clouds’, as opposed to the results of Zeiler and Fer-
gus [29] with a classification network and max-unpooling.
Our explanation is that because we use naive regular-grid
upsampling, the network cannot slightly shift small parts
to precisely arrange them into larger meaningful structures.
Hence it must find another way to generate fine details.
In the next subsection we show that this is achieved by a
combination of spatially neighboring neurons.

6.2 Analysis of the hidden layers

Rather than just activating single neurons while keeping all
others fixed to zero, we can use the network to normally
generate an image and then analyze the hidden layer acti-
vations by either looking at them or modifying them and
observing the results. An example of this approach was
already used above in Figure 22 to understand the effect of
the ’transformation neurons’. We present two more results
in this direction here.

First, we study how the blurry ’clouds’ generated by
single high-level deconvolutional neurons (Figure 21 ) form
perfectly sharp chair images. We start with the FC5 feature
maps of a chair, which have a spatial extent of 8 × 8. Next
we only keep active neurons in a region around the center
of the feature map (setting all other activations to zero),
gradually increasing the size of this region from 2 × 2 to
8×8. This means we go from nearly single-neuron activation
level to the whole image level. The outcome is shown in
Figure 24 . Clearly, the interaction of neighboring neurons is
very important: in the central region, where many neurons
are active, the image is sharp, while in the periphery it is
blurry. One interesting effect that is visible in the images
is how sharply the legs of the chair end in the second to
last image but appear in the larger image. This suggests
highly non-linear suppression effects between activations of
neighboring neurons.

Second, interesting observations can be made by taking
a closer look at the feature maps of the upconv3 layer
(the last pre-output layer). Some of them exhibit regular
patterns shown in Figure 25 . These feature maps correspond
to filters which look near-empty in Figure 19 (such as
the 3rd and 10th filters in the first row). Our explanation
of these patterns is that they compensate high-frequency
artifacts originating from fixed filter sizes and regular-grid
upsampling. This is supported by the last row of Figure 25
which shows what happens to the generated image when
these feature maps are set to zero.

Fig. 24. Chairs generated from spatially masked FC5 feature maps (the
feature map size is 8× 8). The size of the non-zero region increases left
to right: 2× 2, 4× 4, 6× 6, 8× 8.

Fig. 25. Top: Selected feature maps from the pre-output layer (upconv3)
of the RGB stream. These feature maps correspond to the filters which
look near-empty in Figure 19. Middle: Close-ups of the feature maps.
Bottom: Generation of a chair with these feature maps set to zero (left
image pair) or left unchanged (right). Note the high-frequency artifacts
in the left pair of images.

7 CONCLUSIONS

We have shown that supervised training of convolutional
neural networks can be used not only for discriminative
tasks, but also for generating images given high-level style,
viewpoint, and lighting information. A network trained for
such a generative task does not merely learn to generate the
training samples, but learns a generic implicit representa-
tion, which allows it to smoothly morph between different
object views or object instances with all intermediate images
being meaningful. Moreover, when trained in a stochastic
regime, it can be creative and invent new chair styles based
on random noise. Our experiments suggest that networks
trained to reconstruct objects of two different classes de-
velop some understanding of 3D shape and geometry. We
expect that training a single network on yet more object
classes would also succeed, and constitutes an interesting
direction for future work. It is fascinating that the relatively
simple architecture we proposed is already able to learn all
these complex behaviors.
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APPENDIX A: TRAINING USING A VARIATIONAL
BOUND

Here we give additional details on the training objective
used the experiment on random chair generation in sec-
tion 5.6. We phrase the problem of generating chairs as that
of learning a (conditional) probabilistic generative model.
Let uRGB and usegm denote the “expanding” part of the
generator and let us assume full knowledge about the view
v, transformation parameters θ and chair identity c. We
further assume there exists a distribution p(z | c) over latent
states z ∈ R512 – which capture the underlying manifold of
chair images – such that the generators uRGB and usegm can
generate the corresponding image using ĥ(z,v,θ) as input.
We define ĥ as the mapping obtained by replacing the inde-
pendent processing stream for the class identity c with the
512 dimensional random vector z in layer FC2 (c.f. Figure 1).
We can then define the likelihood of a segmentation mask
si under transformation Tθi as

p(Tθi(si) | zi,θi,vi) =
∏

usegm
(
ĥ(zi,vi,θi)

)
, (2)

where usegm outputs per-pixel probabilities (i.e. it has a
sigmoid output nonlinearity). Assuming the pixels in an im-
age xi are distributed according to a multivariate Gaussian
distribution the likelihood of xi can be defined as

p
(
Tθi(xi · si) | zi,θi,vi

)
= N

(
uRGB

(
ĥ(zi,vi,θi)

)
,Σ
)
,

(3)
where N (µ,Σ) denotes a Gaussian distribution with mean
µ and covariance Σ. We simplify this formulation by as-
suming a diagonal covariance structure Σ = Iσ. Since all
distributions appearing in our derivation are conditioned
on the augmentation parameters θi and view parameters vi

we will omit them in the following to simplify notation. The
marginal log likelihood of an image and its segmentation
mask is then

log p(si,xi) = Ez

[
p(Tθisi | zi)p

(
Tθi(xi · si) | zi

) ]
,

with zi ∼ p(z | ci).
(4)

Since we, a priori, have no knowledge regarding the struc-
ture of p(z | ci) – i.e. we do not know which shared
underlying structure different chairs posses – we have
to replace it with an approximate inference distribution
q(z | ci) = N (µzi , Iσzi). We parameterize q as a two
layer fully connected neural network (with 512 units each)
predicting mean µzi and variance σzi of the distribution. We
refer to the parameters of this network with φ. Following
recent examples from the neural networks literature [15, 16]
we can then jointly train this approximate inference network
and the generator networks by maximizing a variational
lower bound on the log-likelihood from (4) as

log p(si,xi) ≥

Ez

[
log

p(Tθisi | zi)p
(
Tθi(xi · si) | zi

)
qφ(z | ci)

]
= Ez

[
log p(Tθisi | zi) + log p

(
Tθi(xi · si) | zi

) ]
−KL

(
q(z | ci)‖p(zi)

)
,

with zi ∼ qφ(z | ci) = LV B(xi, si.ci,vi,θi),

(5)

where p(z) is a prior on the latent distribution, which we
always set as p(z) = N (0,1). The optimization problem
we seek to solve can then be expressed through the sum
of these losses over all data points (and M independent
samples from qφ) and is given as

max
W,φ

N∑
i=1

M∑
1

LV B(xi, si.ci,vi,θi),

with z ∼ qφ(z | ci,vi,θi),
(6)

where, for our experiments, we simply take only one sample
M = 1 per data point. Equation (6) can then be opti-
mized using standard stochastic gradient descent since the
derivative with respect to all parameters can be computed
in closed form. For a detailed explanation on how one can
back-propagate through the sampling procedure we refer to
Kingma et al. [16].
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