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Abstract— This paper addresses the problem of human body
part segmentation in conventional RGB images, which has
several applications in robotics, such as learning from demon-
stration and human-robot handovers. The proposed solution is
based on Convolutional Neural Networks (CNNs). We present
a network architecture that assigns each pixel to one of a
predefined set of human body part classes, such as head,
torso, arms, legs. After initializing weights with a very deep
convolutional network for image classification, the network
can be trained end-to-end and yields precise class predictions
at the original input resolution. Our architecture particularly
improves on over-fitting issues in the up-convolutional part of
the network. Relying only on RGB rather than RGB-D images
also allows us to apply the approach outdoors. The network
achieves state-of-the-art performance on the PASCAL Parts
dataset. Moreover, we introduce two new part segmentation
datasets, the Freiburg sitting people dataset and the Freiburg
people in disaster dataset. We also present results obtained with
a ground robot and an unmanned aerial vehicle.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have recently
achieved unprecedented results in multiple visual perception
tasks, such as image classification [14], [24] and object
detection [7], [8]. CNNs have the ability to learn effective
hierarchical feature representations that characterize the
typical variations observed in visual data, which makes them
very well-suited for all visual classification tasks. Feature
descriptors extracted from CNNs can be transferred also to
related tasks. The features are generic and work well even
with simple classifiers [25].

In this paper, we are not just interested in predicting
a single class label per image, but in predicting a high-
resolution semantic segmentation output, as shown in Fig. 1.
Straightforward pixel-wise classification is suboptimal for
two reasons: first, it runs in a dilemma between localization
accuracy and using large receptive fields. Second, standard
implementations of pixel-wise classification are inefficient
computationally. Therefore, we build upon very recent work
on so-called up-convolutional networks [4], [16]. In contrast to
usual classification CNNs, which contract the high-resolution
input to a low-resolution output, these networks can take an
abstract, low-resolution input and predict a high-resolution
output, such as a full-size image [4]. In Long et al. [16],
an up-convolutional network was attached to a classification
network, which resolves the above-mentioned dilemma: the
contractive network part includes large receptive fields, while
the up-convolutional part provides high localization accuracy.
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(a) PASCAL Parts (b) MS COCO
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Fig. 1: Input image (left) and the corresponding mask (right)
predicted by our network on various standard datasets.

In this paper, we technically refine the architecture of Long et
al. and apply it to human body part segmentation, where we
focus especially on the usability in a robotics context. Apart
from architectural changes, we identify data augmentation
strategies that substantially increase performance.

For robotics, human body part segmentation can be a very
valuable tool, especially when it can be applied both indoors
and outdoors. For persons who cannot move their upper body,
some of the most basic actions such as drinking water is
rendered impossible without assistance. Robots could identify
human body parts, such as hands, and interact with them
to perform some of these tasks. Other applications such as
learning from demonstration and human robot handovers can
also benefit from accurate human part segmentation. For a
learning-from-demonstration task, one could take advantage
of the high level description of human parts. Each part could
be used as an explicit mapping between the human and joints
of the robot for learning control actions. Tasks such as human-
robot handovers could also benefit. A robot that needs to
hand a tool to its human counterpart must be able to detect
where the hands are to perform the task.

Human body part segmentation has been considered a very
challenging task in computer vision due to the wide variability
of the body parts’ appearance. There is large variation due to
pose and viewpoint, self-occlusion, and clothing. Good results
have been achieved in the past in conjunction with depth
sensors [22]. We show that CNNs can handle this variation
very well even with regular RGB cameras, which can be
used also outdoors. The proposed network architecture yields
correct body part labels and also localizes them precisely.
We outperform the baseline by Long et al. [16] by a large



margin on the standard PASCAL parts dataset.
To evaluate the approach directly in a robotics setting, we

introduce two new datasets for human body part segmentation:
Freiburg Sitting People and Freiburg People in Disaster. They
provide high resolution data for experiments on ground and
aerial robot segmentation applications.

The paper is organized as follows. We first discuss
related work in Section II. In Section III, we present our
methodology for human part segmentation including the
proposed architecture. Experimental results are described
in Section IV. Ongoing work and possible future research
directions are discussed in Section V.

II. RELATED WORK

In the context of semantic segmentation, there are sev-
eral approaches that encode segmentation relations using
Conditional Random Fields (CRFs) [1], [18]–[20]. Plath et
al. [20] present an approach that couples local image features
with a CRF and an image classification approach to combine
global image classification with local segmentation. Another
branch of CRFs called Hierarchical Conditional Random
Fields (HCRF) has been introduced by Boix et al. [1]. They
propose a technique called harmony potential to overcome the
problem of classical HCRFs, that they do not allow multiple
classes to be assigned to a single region. Maire et al. [19] use
an alternative people detection and segmentation approach,
in which they merge the outputs of a top-down part detector
in a generalized eigen problem, producing pixel groupings.
Lucchi et al. [18] present an analysis of the importance of
spatial and global constraints in CRFs when such features
have already extracted information from the whole image.

For semantic segmentation, it is also popular to make use
of pre or post-processing methods, such as superpixels [6],
[11] and region proposals [9], [10]. Farabet et al. [6] classify
superpixels using a CNN. Classification results are combined
to obtain pixel-wise labeling. Gupta et al. [9] sample region
proposals for detection and semantic segmentation. Hariha-
ran et al. [10] introduce an approach that makes use of region
proposals for detection and coarse segmentation. They use
CNN features to describe the proposals and Support Vector
Machines (SVM) to classify them. The results produced
from the SVM are coarse masks and in order to improve
it, a superpixel classification method is used to refine the
initial coarse prediction. Their more recent hypercolumn
representation makes use of an additional description of each
pixel in the network [11]. A similar approach was applied
to segmentation in a robotics context by Liu et al. [15]. All
these approaches are based on CNN features, but due to the
preprocessing, the task of semantic segmentation cannot be
trained end-to-end, but requires some engineering for CNNs
to be applicable.

In contrast, the so-called fully convolutional network (FCN)
developed by Long et al. [16] allows training the network
end-to-end for the semantic segmentation task. This more
elegant approach also led to better performance and provides
the state-of-the-art performance in semantic segmentation.
The approach replaces the fully connected layers of a deep

classification network, e.g. VGG [24], by convolution layers
that produce coarse score maps. A successive up-convolutional
network allows them to increase the resolution of these score
maps. There have been some recent extensions of Long et
al. [16]. Chen et al. [2] use a fully connected CRF to refine
the segmentation maps obtained from [16]. Ronneberger et
al. [21] applied the approach to cell segmentation in the
biomedical context and proposed several technical improve-
ments that allow training from few images and predicting
higher resolution outputs. None of these approaches has been
applied to human body part segmentation.

Literature includes several works on human or animal
part segmentation and person keypoint prediction [12], [23],
[26], [28], [29]. Zhang et al. [28] perform part detection
based on region proposals that are classified using a CNN.
The approach was demonstrated on a bird part segmentation
dataset. Tompson et al. [26] developed an approach that
learns an end-to-end human keypoint detector for pose
estimation using a CNN. Zhang et al. [29] use poselets for
part discovery and calculate features for each region using a
CNN. Jain et al. [12] present a sliding window approach for
part localization with CNNs. They employ a CNN at each
position of the window to detect human body parts. This
requires thousands of CNN evaluations and considering that
the time for each evaluation is not negligible, the method
yields long run times. Simon et al. [23] introduced a CNN
approach called part detector discovery, which detects and
localizes bird parts without training on the specific dataset.
The method is based on analyzing the gradient maps of
the network and finding the spatial regions related to the
annotated parts.

III. METHODOLOGY
A. Problem Definition

Semantic segmentation associates to each pixel of an input
image exactly one out of Ncl pre-defined class labels. In this
paper, the class labels correspond to human body parts at two
different granularity levels. In a coarser task, we consider
four labels (head, torso, arms, legs). In the finer task, we have
14 labels and distinguish also between the left and right side
of the person (head, torso, upper right arm, lower right arm,
right hand, upper left arm, lower left arm, left hand, upper
right leg, lower right leg, right foot, upper left leg, lower left
leg and left foot.

We approach the problem with a CNN that is trained end-
to-end to predict the class labels. Training minimizes the usual
cross-entropy (softmax) loss. The softmax function converts
a score aK for class K into a posterior class probability
PK ∈ [0, 1]:

PK =
exp(aK)∑Ncl

l=1 exp(al)
(1)

At test time, the softmax is replaced by the argmax function
to yield a single class label per pixel.

B. Architecture
The architecture is based on the network from Long et

al. [16], where we replaced their up-convolutional part
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Fig. 2: Proposed architecture. Only convolutional, pooling, and up-convolutional layers are visualized. Up-convolutional
layers have size N = Ncl. We call the network part up to fc7-conv the contractive network part, whereas the part after
fc7-conv is called the expansive network part.

with our own refinement architecture. The whole network
architecture is shown in Fig. 2. Like in Long et al., the
parameters of the contracting part of the network is initialized
with the parameters of the VGG classification network [24].

The proposed refinement architecture is composed of
multiple layers, where each layer combines the upsampled
output of its previous layer with the pooled features of the
corresponding layer of the contracting network part. The first
provides the preliminary class scores at the coarse resolution,
whereas the second contributes information for refining the
resolution. The combination of both is detailed in Fig. 3.
The coarse score map is fed into an up-convolutional layer,
i.e., it is upsampled by a factor 2 via bilinear interpolation
followed by a convolution. We use a ReLU activation function
after each up-convolutional operation to better deal with
the vanishing gradient problem. The feature map from the
contracting network part is fed into a convolutional layer
followed by dropout to improve the robustness to over-fitting.
The effect of applying dropout to all refinement layers is
analyzed in Section IV. Finally, the output of both streams
are summed element-wise to yield the output of the refinement
layer. This output is again the input for the next refinement
layer. Each layer increase the resolution of the segmentation
by a factor 2.

With this refinement architecture we manage to obtain
a high quality output at the resolution of the input image.
This is in contrast to Long et al. [16], who stopped their
refinement after three layers, because they did not observe any
improvement afterwards. A full description of the architecture
is presented at Table I.

C. Feature Map Dropout

Another attribute of our proposed approach is to make
dropout more robust. To this end, we implemented a new
feature map dropout. We expand the random dropout to the
entire feature map, which is based on the Spatial Dropout
method [26]. One singular characteristic of human body part
segmentation is strong spatial correlation, resulting in features
that are likely correlated across the map. Hence, dropout must
also be correlated. Feature map dropout performs a Bernoulli

Fig. 3: Description of the first refinement layer. Successive
refinement layers have the same architecture, but take different
inputs. The upper stream takes the output from the contractive
network (fc7) or from the previous refinement layer as
input. It applies an up-convolution followed by a ReLU.
The lower stream takes high-resolution features from the
corresponding layer in the contractive network as input.
It applies a convolution followed by dropout (only during
training).

trial per output feature during training and propagates the
dropout value across the entire feature map.

Given a network with L hidden layers and l ∈ {1, ..., L}.
Let zl be the vector of inputs into layer l and let yl denote
the vector of outputs from layer l. W l and bl are the weights
and biases at layer l. ∗ denote the element-wise product and
r(l) is the vector of independent Bernoulli random variables
that has probability p of being 1. Feature Map Dropout is
then expressed as

r(l)z ∼ Bernoulli(p)
∼
y
(l)

= r(l) ∗ y(l)

z
(l+1)
i = w

(l+1)
i

∼
y
(l)

+ b
(l+1)
i

y
(l+1)
i = f(z

(l+1)
i )

The variable
∼
y
(l)

is called thinned vector of outputs. This
sets apart the feature map dropout from the standard dropout.
The resulting thinner network

∼
y
(l)

has the entire feature
maps zeroed. For instance, in a convolution layer of size
(1, 64, 20, 20), and a dropout of 0.5, approximately 32 of the
64 feature channels will be zeroed after the input passes the
dropout layer.



name kernel size stride pad output size

data - - - 300 × 300 × 3
conv1_1 3 × 3 1 100 498 × 498 × 64
conv1_2 3 × 3 1 1 498 × 498 × 64
pool1 2 × 2 2 0 249 × 249 × 64
conv2_1 3 × 3 1 1 249 × 249 × 128
conv2_2 3 × 3 1 1 249 × 249 × 128
pool2 2 × 2 2 0 125 × 125 × 128
conv3_1 3 × 3 1 1 125 × 125 × 256
conv3_2 3 × 3 1 1 125 × 125 × 256
conv3_3 3 × 3 1 1 125 × 125 × 256
pool3 2 × 2 2 0 63 × 63 × 256
conv4_1 3 × 3 1 1 63 × 63 × 512
conv4_2 3 × 3 1 1 63 × 63 × 512
conv4_3 3 × 3 1 1 63 × 63 × 512
pool4 2 × 2 2 0 32 × 32 × 512
conv5_1 3 × 3 1 1 32 × 32 × 512
conv5_2 3 × 3 1 1 32 × 32 × 512
conv5_3 3 × 3 1 1 32 × 32 × 512
pool5 2 × 2 2 0 16 × 16 × 512
fc6-conv 7 × 7 1 0 10 × 10 × 4096
fc7-conv 1 × 1 1 0 10 × 10 × 4096
Up-conv1 4 × 4 2 0 22 × 22 × Ncl

Up-conv2 4 × 4 2 0 46 × 46 × Ncl

Up-conv3 4 × 4 2 0 94 × 94 × Ncl

Up-conv4 4 × 4 2 0 190 × 190 × Ncl

Up-conv5 4 × 4 2 0 382 × 382 × Ncl

output - - - 300 × 300 × Ncl

TABLE I: Our architecture in more detail. The Up-conv layers
refer to each refinement step. For brevity reasons ReLUs,
dropout and some layers from the up-convolution step are
omitted from the table.

D. Data Augmentation

We augment the training data by randomly mirroring and
cropping the images. Inspired by the data augmentation
suggested in Dosovitskiy et al. [5], we additionally apply
geometry and color transformations to increase the amount
of training data and the robustness of our network to over-
fitting. In particular, we implemented the following set of
transformations:

• Scaling: Scale the image by a factor between 0.7 and
1.4;

• Rotation: Rotate the image by an angle of up to 30
degrees;

• Color: Add a value between −0.1 and 0.1 to the hue
channel of the HSV representation.

Unlike in the setting of Dosovitskiy et al. [5], where rotation
and scaling had the lowest impact among all transformations,
these spatial augmentation strategies are very important for
the task and data considered here, as shown in Section IV.

E. Network Training

Training is performed in a multi-stage process in order to
save time. We initialize the contracting part of the network
with the 16 layer version of the VGG architecture [24], which
is the same as used by Long et al. [16]. The base network
has small convolution filters (3× 3) and 1 pixel stride. The
network also has 5 max-pooling layers with 2 × 2 pixel

windows with stride 2. We also considered training the whole
network from scratch without initializing it with weights from
the VGG network. However, this was inconvenient in terms
of time, as the base network approximately takes four weeks
to train on a multi-GPU cluster.

The overall network is then trained by backpropagation
using Stochastic Gradient Descent (SGD) with momentum.
Each minibatch consists of just one image. The learning rate
and momentum are fixed to 1e−10 and 0.99, respectively. We
train the refinement layer by layer, which takes two days per
refinement layer. Thus, the overall training starting from the
pre-trained VGG network took 10 days on a single GPU.

IV. EXPERIMENTS

We evaluated the performance of our network on the
PASCAL Parts dataset, a new Freiburg Sitting People dataset,
and a new Freiburg People in Disaster dataset. On all three
datasets we report quantitative results and compare to results
obtained with the state-of-the-art FCN baseline [16]. We fine-
tuned the FCN for each dataset on the same training data that
was used for training our network. Moreover, we conducted
experiments in a direct robotics context with a ground robot
and an unmanned aerial vehicle. The implementation was
based on the publicly available Caffe [13] deep learning
toolbox, and all experiments were carried out with a system
containing an NVIDIA Titan X GPU.

A. PASCAL Parts dataset

The PASCAL Parts dataset [3] includes annotations for
20 PASCAL super classes and part annotations for each of
them. We focused on the person subset of this dataset, which
consists of 3539 images. The annotations even include eyes
and ears, which may not seem relevant in a robotics context
for now. Therefore we merged labels to two granularity levels,
one with just 4 body parts and one with 14 body parts;
see Section III-A. Our experiments were based on a fairly
recent release, so there are not many works reporting part
segmentation results. To the best of our knowledge, the only
works reported so far are [17], [27], though none of them have
reported results on the person category. Therefore, we present
the first quantitative results on person part segmentation for
the PASCAL Parts dataset.

As metrics, we chose pixel accuracy and intersection over
union. Let nij be the number of pixels of class i predicted
to belong to class j, where ti =

∑
j nij be the total number

of pixels of class i. The pixel accuracy Acc =
∑

i nii/
∑

i ti
takes into account also the prediction of background pixels.
Background prediction is important to avoid false positives.

The downside of pixel accuracy as a sole measure, however,
is the dominance of the background in the metric. More than
three quarters of the images are background. Therefore, along
with pixel accuracy, we also report the intersection over union
(IOU), which is a popular metric for computer vision datasets.
It is defined as IOU = (1/N)

∑
i nii/(ti +

∑
j nji − nii).

Unlike pixel accuracy, IOU does not take the background
detection into account and solely measures the semantic



segmentation of the parts. However, it does penalize false
positive pixel assignments.

1) Coarse body parts: We first predicted the coarse
segmentation with four body part classes. We randomly
divided the dataset into 70% training and 30% testing.
Table II shows the results. There is a 5% percentage points
improvement over the state of the art in both metrics.

TABLE II: Results on PASCAL dataset with 4 body parts.
Table also includes the addition of dropout.

Method Accuracy IOU

FCN [16] 71.30 57.35
Ours - No dropout 74.60 61.20
Ours - With dropout 76.58 63.03

Additionally, we also perform experiments without the
feature map dropout at the refinement part of the network.
Table II presents our results for the network without feature
map dropout at the expansive part of the network and when
dropout is included. The addition of the dropout layer brings a
considerable gain, in terms of better mean pixel accuracy and
IOU. This result confirm that a spatial correlated dropout can
benefit from the strong spatial correlation of human body parts.
Based on the obtained results all the following experiments
will report the proposed approach with the inclusion of the
feature map dropout.

TABLE III: Results on the PASCAL dataset with 14 body
parts.

Method Accuracy IOU

FCN [16] 75.60 53.12
Ours 77.00 54.18

2) Detailed body parts: When predicting all 14 body
parts, we randomly divided the dataset into 80% training
and 20% testing. Fig. 4 shows a set of results obtained by
our network. The results are organized column-wise, where
each column is an example and the rows correspond to input
image, ground truth and results obtained using the FCN
of Long et al. The last row constitutes the results using
our network. The results of our approach are closer to the
ground truth than the FCN baseline. Table III contains the
corresponding quantitative numbers. We outperform the FCN
baseline [16] by 1% percentage point in both metrics. The
smaller improvement on the more complex task indicates
that there was not enough training data to exploit the larger
capacity of our network. For the experiments reported so far,
we did not make use of any data augmentation. We shall see
in the next section that the latter is important, especially for
more complex tasks.

B. Effect of Data Augmentation

Apart from the usual mirroring and cropping, we applied
two types of augmentations to our training data: spatial
augmentations and color augmentation; see the detailed

Fig. 4: Qualitative results on the PASCAL dataset (task with
14 body parts). First row: Input image. Second row: Ground
truth. Third row: Result predicted with FCN [16]. Fourth
row: Result predicted by our network. Our approach produces
more accurate segmentation masks, not only for single person
segmentation but also when there are multiple persons in the
image.

description in Section III-D. Table IV shows the impact
of these types of data augmentation on the result. Table
?? and Table VI summarize the IOU along with the pixel
accuracy for the two granularity levels. Clearly, both types
of data augmentation improved results significantly. These
results emphasize the importance of a solid data augmentation
technique when approaching relatively complex tasks with
limited training set sizes. The relative improvement of data
augmentation was bigger on the more difficult task with
14 classes, which can be attributed to the fact that, a more
difficult task requires more training data.

TABLE IV: Augmentation results Accuracy and IOU on the
PASCAL dataset with 4 body parts.

Acc. IOU
Method Head Torso Arms Legs All

FCN [16] 71.30 70.74 60.62 48.44 50.38 57.35
Ours 76.58 75.08 64.81 55.61 56.72 63.03
Ours (Spatial) 82.18 80.49 74.39 67.17 70.39 73.00
Ours (Spatial + Color) 85.51 83.24 79.41 73.73 76.52 78.23



TABLE V: Augmentation results (IOU) on the PASCAL dataset with 14 body parts.

Method Head Torso L U
arm

L LW
arm

L
hand

R U
hand

R LW
arm

R
hand

R U
leg

R LW
leg

R
foot

L U
leg

L LW
leg

L
foot

Mean

FCN [16] 74.0 66.2 56.6 46.0 34.1 58.9 44.1 31.0 49.3 44.5 40.8 48.5 47.6 41.2 53.1
Ours (Spatial) 81.8 78.0 69.5 63.1 59.0 71.2 63.0 58.7 65.4 60.6 52.0 67.9 60.3 50.0 66.9
Ours (Spatial+Color) 84.0 81.5 74.1 68.0 64.0 75.4 67.4 61.9 72.4 67.1 56.9 73.0 66.1 57.7 71.7

R = right, L = left, U = upper, LW = lower.

TABLE VI: Augmentation summary on the PASCAL dataset
with 14 body parts.

Method Accuracy IOU

FCN [16] 75.60 53.12
Ours 77.00 54.18
Ours (Spatial) 84.19 66.93
Ours (Spatial + Color) 88.20 71.71

C. Freiburg Sitting People Part Segmentation Dataset

To evaluate the proposed part segmentation approach in a
robotics task, we created a new dataset 1 that provides high
resolution segmentation masks for people in sitting position,
specifically people in wheelchairs. Fig. 5a, presents the input
sample image and Fig. 5b its groundtruth, while Fig. 5c shows
the segmentation prediction. The dataset has 200 images of
six different people in multiple viewpoints and in a wide range
of orientations. The ground truth annotation contains the 14
body part classes as used for the PASCAL parts dataset.

(a) Input Image (b) Groundtruth (c) Predicted Mask

Fig. 5: Results on the Freiburg Sitting People dataset.

Due to the unavailability of a large amount of data, we
chose two different testing scenarios. First we trained our
network on the PASCAL parts dataset, and used the full
sitting people dataset for testing. Alternatively, we randomly
chose two people from the dataset for training (along with the
data from PASCAL parts) and the remaining four as the test
set. Results are shown in Table VII. Obviously, the network
generalized well to new datasets. The improvement over the
FCN baseline was much larger than the difference between
the network that had seen sitting people for training and the
one that had not. Nonetheless, providing training data that is
specific to the task helped improve the performance.

Another aspect of the network which is of great interest for
robotic tasks is time performance. Our network can process
a single frame in 229ms, so providing more than 4 frames

1 http://www2.informatik.uni-freiburg.de/~oliveira/dataset.html

TABLE VII: Results with and without training on the Freiburg
people dataset.

Method Accuracy IOU

FCN [16] 59.69 43.17
Ours (Trained on PASCAL) 78.04 59.84
Ours (Training with 2 people, Test-
ing with 4)

81.78 64.10

per second. Long et al. [16] provides inference times ranging
from 150 to 175ms. Our approach having a deeper refinement
architecture presents a higher computational load. For an
output smaller than the 300× 300 used in our experiments,
higher frames can be expected.

(a) Input Image (b) FCN [16] (c) Predicted Mask

Fig. 6: Segmentation results on the Microsoft COCO dataset.
Our approach yields more details; see the arm detection and
the line between torso and lower limbs. This is because the
architecture yields the full resolution of the input image also
for the output.

D. Microsoft COCO

Microsoft COCO constitutes a very large dataset for
semantic segmentation. However, its focus is on whole objects
and part annotations are not provided. Therefore, we cannot
report quantitative results. Fig. 6 shows a sample result
obtained on this dataset.

E. Real-World Robot Experiments

In this section we present experimental results performed
using real robots. First, we performed experiments with a
ground robot and measured how robust the technique is to
scale changes. The ground robot used for the experiments is
the Obelix robot, Figure 7a. Obelix is a robot designed for
autonomous navigation in pedestrian environments and it is
useful to mimic the human perspective for perception tasks.

In our experiments, we obtained data from a Bumblebee
stereo camera. The main goal of the experiments performed
with Obelix was to measure the response of the system to

http://www2.informatik.uni-freiburg.de/~oliveira/dataset.html


(a) Obelix ground robot. (b) AR.DRONE 2.0 aerial platform.

Fig. 7: Robotics platforms used in our tests.

(a) 1.0 meter (b) 2.0 meters

(c) 3.0 meters (d) 4.0 meters

(e) 5.0 meters (f) 6.0 meters

Fig. 8: Qualitative results of the range experiment with the
Obelix robot. The lower resolution at one point does not allow
detection of small body parts. However, the larger parts, such
as the torso and head, are still detected correctly even at 6m
distance.

different observation distances, as shown at Figure 8. For
that, we segmented outdoor images of two different people on
distances ranging from 0.8 m to 6.0 m, capturing images every
20 cm. Fig. 9 presents the results. There was no indication
of a scale bias. The performance dropped proportionally with
the decreasing resolution of the person in the image, which
was expected, as there are fewer details of body parts visible
at lower resolutions.

For a second experiment with a real robot we used an
AR.DRONE 2.0 aerial platform, Figure 7b. Since the platform
lacks a high definition downward facing camera, we mounted
a GoPro HERO 4 to collect the Freiburg People in Disaster

Fig. 9: Quantitative performance in terms of IOU with the
Obelix robot taking pictures from 0.8 m to 6.0 m distance to
the segmented person. The performance drops proportionally
with the resolution of the person in the image.

(a) Input Image (b) Groundtruth (c) Segmentation mask

Fig. 10: Prediction of our network for the Freiburg People in
Disaster Dataset.

dataset. The dataset consists of images and corresponding
segmentation masks for a set of 4 people in an environment
that mimics a disaster scenario, with clutter and heavy
occlusion around. Figure 10 shows an example with the
groundtruth and the results obtained using our approach.

As the dataset is rather small, we did not use it for
training the network but just for testing. We used the network
trained on the PASCAL dataset with 4 body parts. Table VIII
presents the results for this dataset. Our approach performed
28% better than the state of the art FCN. While the FCN
performance would be too weak for a robot to rely on, the
results obtained with our network and data augmentation can
already be useful in practice.

TABLE VIII: Results for Freiburg People in Disaster dataset.

Method Head Torso Arms Legs IOU

FCN [16] 52.71 62.49 35.04 43.25 43.20
Ours 80.56 79.45 63.93 64.91 71.99

V. CONCLUSION AND FUTURE WORK
We presented a deep learning methodology for human part

segmentation that uses refinements based on a stack of up-
convolutional layers. It yielded semantically accurate results
and well-localized segmentation maps. We identified augmen-
tation strategies that substantially increased performance of



the network. We also demonstrated that adding feature map
dropout to each refinement step boosts the overall system
performance. In addition, we presented results on the PASCAL
Parts, Microsoft COCO datasets and on two new robotics
segmentation datasets: Freiburg Sitting People and Freiburg
People in Disaster. Our approach advances the state of the art
on all the above datasets. To the best of our knowledge our
approach also is the first to tackle human part segmentation at
this level of granularity (14 parts) with a single RGB camera.

Future work will include investigating the potential of our
architecture for human keypoint prediction. A method that
can accurately find body joints will have direct applications
in human pose estimation and activity recognition. There
are also many aspects of the method that we intend to
refine, such as having multiple filters per class in the coarse
refinement modules of the network. We also intend to work
on simplifying the architecture for real-time part segmentation
on smaller hardware. Another future line of research will
be performing human part segmentation in videos while
exploiting the temporal context.
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