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Contributions

Self-contained refinement step,
improving initial matchings by:

adding new matches
resolve ambiguities in
homogenous regions
correction of wrongly estimated
outliers
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Additional Edges

extend 4 / 8 neighborhood
identify homogenous
regions
remove small regions
connect similar regions
(HSV-color-histogram)

Combinatorial Refinement

E(L) = EA(L) + EM(L)︸ ︷︷ ︸
Data terms

+ ES(L)︸ ︷︷ ︸
Smoothness

Appearance term:

EA(L) =
∑

x

−max

(
〈FA(x),FB(HL(x)x)〉

‖FA(x)‖2 · ‖FB(HL(x)x)‖2
, α

)
· σ(x)

σ(x) = structureness

Matching term:

EM(L) =
∑

x

min(‖(HL(x)x− x)−M(x)‖2, θ) · C(x)

C(x) = confidence/indicator of matching
Smoothness term [4] :

ES(L) =
∑

(x1,x2)∈E

ω(x1,x2) ·min
(∣∣∣∣HL(x1)

x1 + x2

2
− HL(x2)

x1 + x2

2

∣∣∣∣
1
, β

)

ω(x1,x2) = λ · exp−‖FA(x1)−FA(x2)‖2
ν

metric regularization
→ submodular binary problems

Optimization:
MRF with Fast PD. Parameters (α, β, θ, λ, ν) are optimized on a subset
using the downhill-simplex algorithm of Nelder and Mead.

Scoring

Forward-backward checking removes in-
consistent matches. Remaining matches
are weighted according to their color and
structure tensor.

Results Matching

Method EPE Points
LDOF 3.4627 2.14 · 103

LDOF+R 3.4537 6.19 · 103

Deep 3.5073 5.87 · 103

Deep+R 3.1757 6.56 · 103

(a)

Component EPE
4-connected 5.484
affine hypotheses 5.397
add edges 5.4127
affine & edges 5.303

(b)

Part LDOF DeepFlow EpicFlow
matching 22.4 126.7
refinement 13.1 11.9
optical flow 26 40.7 4.3
total 61.5 179.3 142.8

(c)

(a): EPE on matches (same points) and the number of (confident) points, before and
after refinement. (b): Evaluation of the different steps. (c): Runtime in sec.

Optical Flow on Sintel Dataset

Method EPE

Tr
ai

ni
ng

Ldof [1] 6.026
Ldof+R 5.616
Deep [2] 4.022
Deep+R 3.852
Epic [3] 3.566
Epic+R 3.497

Te
st Deep [2] 7.212

Deep+R 6.769
(a) (b)

(a) Evaluation on the final pass of the Sintel (training/test) dataset. The refinement
improves all methods. (b) & (c): Qualitative results for LDOF, DeepFlow and
EpicFlow.
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