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Abstract

With volumetric data from widefield fluorescence mi-
croscopy, many emerging questions in biological and bio-
medical research are being investigated. Data can be
recorded with high temporal resolution while the specimen
is only exposed to a low amount of phototoxicity. These ad-
vantages come at the cost of strong recording blur caused
by the infinitely extended point spread function (PSF). For
widefield microscopy, its magnitude only decays with the
square of the distance to the focal point and consists of an
airy bessel pattern which is intricate to describe in the spa-
tial domain. However, the Fourier transform of the incoher-
ent PSF (denoted as Optical Transfer Function (OTF)) is
well localized and smooth. In this paper, we present a blind
deconvolution method that improves results of state-of-the-
art deconvolution methods on widefield data by exploiting
the properties of the widefield OTF.

1. Introduction
To analyze living cells, widefield fluorescence mi-

croscopy plays an important role, because it is prevalently
available and, compared to confocal microscopy, has advan-
tages concerning temporal resolution and phototoxicity. In
contrast to confocal laser scanning microscopy, where the
sample is scanned point by point, the 3D information of the
specimen is recorded in a stack of 2D images. Since the
whole specimen is illuminated for every image, light is al-
ways recorded from in-focus and from out-of-focus planes.
Thus, the resolution along the optical axis is very limited
[23]. The recorded out-of-focus light also determines the
impulse response, the point-spread function (PSF) of the
imaging system. The image formation of fluorescence mi-
croscopes can be approximated by a convolution of the orig-
inal specimen function s with the PSF h and a voxelwise

Figure 1. As for widefield microscopy the convolution of the signal
with the PSF makes the data hard to process, the aim is to correct
for the effect of the PSF by a deconvolution technique.

noise function n : R+ → R+ as given in the following
equation (see figure 1)

o = n(s ∗ h). (1)

The objective function o is the recorded image data. As
for widefield microscopy the convolution of the signal
with the PSF makes the data hard to process, the aim is
to correct for the effect of the PSF by a deconvolution
technique. In principle, the PSF can be determined for
each combination of objective, filters and light path in a
specific microscope by a calibration procedure. However, it
depends on many parameters, is subjected to changes in the
recording system like thermal expansions, aberrations, or
the optical properties of the recorded specimen. Therefore,
it is beneficial to use the calibration outcome only as an
initial estimate for blind image deconvolution, where the
PSF h is refined while estimating the specimen s in a joint
optimization procedure.
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Deconvolution of 3D data from widefield microscopy
is particularly hard because a part of the information is
lost in the recording even if the perfect PSF was given
[23]. Due to the so-called missing cone of the widefield
recording system, certain spatial frequencies simply can
not be captured. Along the optical axis, even low frequency
information is lost.

1.1. Related Work

Image deconvolution in general is a vast topic with ap-
plications in the fields of microscopic image reconstruc-
tion, motion deblurring, or the deblurring of astronomic im-
ages. The algorithms depend on the assumptions on the
noise function n. We refer to [23] for a survey on sev-
eral deconvolution methods in widefield microscopy. In
[3] several nonlinear deconvolution methods as the Lucy-
Richardson method [17, 22], the Maximum Likelihood Ex-
pectation Maximization (MLEM) method [26], and a max-
imum entropy method [19] are described in detail. A state-
of-the-art motion deblurring method for natural images is
given for example in [12].
For the deconvolution of widefield microscopic data,
MLEM deconvolution methods have proven to be very ef-
ficient [23, 10, 4, 14]. However, they require regularization
of both the specimen function and the deconvolution ker-
nel. Otherwise they do not converge and tend to amplify
noise and to introduce ringing artifacts [23, 25]. Common
methods use prior models on the specimen function such as
the Tikhonov-Miller penalizer [30] or Total Variation (TV)
regularization [5], enforcing smoothness in the deconvolved
data and thus reducing noise. In [4], an intensity penaliza-
tion for the data term is used, hindering the data from taking
too high values.
For the regularization of the reconstructed PSF, usually
some specific prior knowledge on the image formation is
used. In [18, 14] the regularization is done by a projection
of the current estimate onto a given PSF model. In [18], the
parameters of the PSF model (given in [6]) are estimated
in each step. In [14], the current estimate is projected onto
the space spanned by all simulated PSFs [29] using a kernel
PCA. With this method, different PSFs with and without
spherical aberrations can be continuously modeled. How-
ever, there is no guarantee that the reconstructed kernel is
actually a valid PSF.
In [11], an adaptive image deconvolution algorithm (AIDA)
is presented: a blind deconvolution framework for 2D and
3D data. The basic assumption is that the PSF of the opti-
cal system is approximately known and either given in the
form of the optical transfer function (OTF) or as several
OTFs (computed for example from given PSF simulations),
of which the true OTF is expected to be a linear combina-
tion. During the deconvolution process, the PSF estimation

(a) Airy pattern (b) Simulated PSF (xz-section) using [16, 6].

(c) Simulated OTF (kx-kz-section) using [21].

Figure 2. PSF and OTF simulations. While the PSF is not smooth
and has an infinitely large support, the OTF has a limited support
and varies smoothly.

is bound to these given OTFs by the L2-norm. Also the data
fidelity term in [11] is based on the L2-norm and in contrast
to MLEM does not assume Poisson statistics. As [14], [20]
use the PSF model of [29] in the blind MLEM deconvolu-
tion framework. Similarly to [11], they bind the estimated
PSF with a quadratic term to the simulated PSF.
All the before mentioned deconvolution methods describe
the PSF in the spatial domain. This has major disadvan-
tages in the case of widefield microscopy: the widefield PSF
has an infinitely large support in the spatial domain and is
not smooth (compare figure 2), such that discrete sampling
of the PSF in the spatial domain leads to artifacts. In this
paper, we present a regularization method of the deconvo-
lution kernel, that is based on imposing constraints on the
PSF in the frequency domain, where it is easy to describe
and well localized. We thus propose to use a regulariza-
tion of the Fourier transform of the deconvolution kernel,
employing its frequency domain properties.

2. Physical Model
The PSF of a fluorescence microscope depends on sev-

eral parameters of the recording system such as the Numeri-
cal Aperture, the emission wavelength λ, and the position of
the recorded object. The Numerical Aperture is defined as
NA = nimm · sin Θ, where nimm is the refractive index of the
immersion medium, and 2Θ is the angular aperture of the
objective. Most importantly, the finite lens aperture intro-
duces diffraction ring patterns in the recorded xy-sections
[23], the so called Airy pattern (see figure 2(a)), that limits
the resolution of the recording system. Because of the Airy
pattern, the PSF of widefield microscopes does not have a
compact support [6, 1] and usually has values of an unnegli-
gible range in the whole image domain Ω. There are several



methods to theoretically model the recording system and
thus model the PSF, e.g. [29, 6, 1] or its Fourier domain
equivalent, the optical transfer function (OTF) [27, 21, 24].
A theoretical PSF according to [6] computed with [16] is
depicted in figure 2(b).
While other deconvolution methods focus on modeling the
PSF, we show the advantages of working with the OTF. The
OTF directly describes the properties of an imaging system.
Frequencies outside the OTF support are cut off during the
imaging process. The OTF support of a widefield micro-
scope is depicted in figure 3. The recorded light field is
assumed to be nearly monochromatic with constant wave-
length λ. The corresponding wave-number is k = 2π/λ
for the whole field, which means that the Fourier transform
of the field amplitude has non-zero values only on a shell
with radius 2π/λ (figure 3(a)). Since only the light from a
limited angle Θ can be recorded (figure 3(b)), the recorded
information is limited to a “cap” of the spherical shell in
the Fourier space (figure 3(c)). The autocorrelation of this
spherical cap is the region from which intensity information
is accessible, i.e. the support of the OTF (figure 3(d)). Com-
pare [9, 21] for more detailed information.
The OTF is rotation symmetric around the kz frequency
axis. An algorithm for computing the OTF values for non-
aberrated optical systems is given in [21]. An example OTF
is shown in figure 2(c).
It can be observed that in kz-direction, the OTF drops to
zero very quickly. The conical region where the OTF is zero
is called missing cone and explains the significant amount
of blur in z-direction. Here, even low frequency informa-
tion is cut off. Inside its support, the OTF varies smoothly,
allowing for a regularization using a total variation (TV)
prior.

3. Blind Maximum Likelihood Expectation
Maximization Deconvolution

In the following, we briefly sketch the blind Maxi-
mum Likelihood Expectation Maximization Deconvolution
(MLEM) algorithm. A more detailed derivation is given in
[3]. The aim of this algorithm is to find the specimen func-
tion estimate ŝ and point spread function estimate ĥ that
maximize the conditional probability of the measured ob-
jective function:

ŝ, ĥ = arg max
s,h
{p(o|s, h)}, (2)

where o denotes the objective function, s the specimen func-
tion, and h the PSF from equation (1). Since photon noise
is Poisson distributed [2], the recorded objective function
o(x) at voxel x can be viewed as a sample of a Poisson dis-
tribution with mean (s ∗ h)(x). Since the intensity at each
voxel in o is drawn from an independent Poisson process,
the objective function o given the specimen s and the PSF
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Figure 3. Illustration of the support of the widefield OTF [9, 21].
(a) The spherical shell on which the Fourier transform of the
monochromatic light field amplitudes is non-zero. (b) The objec-
tive lens with a finite acceptance angle Θ. (c) The spherical cap
containing the recorded amplitude information. (d) The resulting
OTF support. The conical area in kz direction, where even low
frequency information is lost, is called the missing cone.

h can be expressed in an ML way as the product

p(o|s, h) =
∏

x∈Ω⊆R3

((s ∗ h)(x))o(x) exp (−(s ∗ h)(x))

o(x)!
,

(3)
where Ω ⊆ R3 is the recording domain. Instead of maxi-
mizing (3), we minimize the negative log-likelihood func-
tion

JMLEM(s, h) =

∫
Ω

s ∗ h− o · log(s ∗ h) + log(o!)dx. (4)

The minimization is done by differentiating (4) with respect
to s and h and set the derivative to zero. The resulting iter-
ative, multiplicative scheme is given by alternating:

ŝk+1(x) = ŝk(x) ·
(
hm ∗ o

(h ∗ ŝk)

)
(x) and (5)

ĥk+1(x) =
ĥk(x)∫

Ω
ŝk(y)dy

·

(
ŝmk ∗

o

(ĥk ∗ ŝk)

)
(x), (6)

where hm(x) = h(−x) is the mirrored PSF, sm(x) =
s(−x) denotes the mirrored specimen function, and the PSF
h is assumed to integrate to one:

∫
Ω
hm(x)dx = 1.

This update scheme, which is for the specimen function up-
date equivalent to the Lucy-Richardson deconvolution, has
some desired properties such as conservation of the posi-
tivity of the radiant flux [3]. To avoid numerical problems
when the denominator becomes zero, we set ŝk+1(x) = 0
if (h ∗ ŝk)(x) = 0.



3.1. Residual Denoising

The effect of noise can be reduced by denoising the
residual Rk derived as

o = ŝk ∗ ĥk +Rk ↔ Rk = o− ŝk ∗ ĥk (7)

Since the function h is considered a blurring kernel and
ĥk is an approximation of h, ŝk ∗ ĥk should be noise-free
such that all the noise of o is contained in Rk [14]. Rk can
be denoised with any denoising function, such as wavelet
denoising [28] or median filtering [14]. We follow [14] and
compute the denoised residual R̄k using a 3× 3× 3 median
filter. This allows for the computation of the residual
denoised objective function ō = ŝk ∗ ĥk + R̄k, which
replaces o in the update scheme (5) and (6).

3.2. Regularization

In the blind deconvolution setting, the above ML formu-
lation is ill-posed. Regularization must be added, leading
to a maximum a-posteriori formulation known as penalized
MLEM [7, 8]

ŝ, ĥ = arg max
s,h
{p(s, h|o)}. (8)

The penalized MLEM functional is given by [13]

JPMLEM(s, h) = JMLEM(s, h) + λsPs(s) + λhPh(h). (9)

where p(s) = exp(−λsPs(s)) and p(h) =
exp(−λhPh(h)) are general prior probability func-
tions for the specimen function and the deconvolution
kernel respectively. Ps(s) and Ph(h) can be arbitrary
penalty functionals, returning high values for inputs that do
not match the prior knowledge and low values for inputs
that do. λs and λh are positive constants, that serve as
weights for the penalty terms. Usually, the optimization
is implemented using Greens multiplicative one step late
algorithm [8], yielding the update

ŝk+1(x) =
ŝk(x) ·

(
ĥmk ∗ o

(ĥk∗ŝk)

)
(x)

1 + λs
(
∂
∂sPs

)
(ŝk(x))

(10)

and

ĥk+1(x) =
ĥk(x) ·

(
ŝmk ∗ o

(ĥk∗ŝk)

)
(x)∫

Ω
ŝk(y)dy + λh

(
∂
∂hPh

) (
ĥk(x)

) . (11)

Many statistical priors for the specimen function have been
investigated in literature, from simple intensity regulariza-
tions to more elaborate priors as the Gaussian prior or the
entropy prior [4, 31, 30]. The total variation regulariza-
tion [5] has the desired property of preserving the edges

in the data while suppressing noise and oscillations and
is therefore most often employed. For the TV regulariza-

tion, Ps(s) =

∫
Ω

‖∇s(x)‖dx and the derivative is given by(
∂

∂s
Ps

)
(ŝk(x)) = −div

(
∇ŝk(x)

‖∇ŝk(x)‖

)
, where div(s) =

∂s
∂x1

+ ∂s
∂x2

+ ∂s
∂x3

is the divergence.

3.3. TV Regularization in the Frequency Domain

For widefield recordings, we know that the PSF is not
smooth, such that a regularization of the kernel by impos-
ing smoothness is not reasonable. In contrast, we have seen
in section 2 that the Fourier transform of the PSF, the OTF
F(h), has a well defined support region and is smooth in-
side this region.
To develop a regularizer that acts on the OTF, we decom-
pose the OTF into amplitude and phase:

F(h) = |F(h)|︸ ︷︷ ︸
amplitude

· F(h)

|F(h)|︸ ︷︷ ︸
eıφ

. (12)

and penalize the variation of the amplitude:

Ph(h) =

∫ ∥∥∇|F(h)|(ξ)
∥∥dξ. (13)

The optimum of this TV energy, a constant amplitude of
the OTF, does not account for the fact that the support of
the OTF is limited. We therefore enforce a limited support
by shrinking all values outside the support region to zero
[10]. To make sure that valid frequencies are not cut off,
we compute the largest theoretically possible OTF support
for a widefield microscope according to [21]. The OTF is
largest for the smallest possible emission wavelength and
the largest possible sin(Θ) where Θ is the angle of the max-
imum cone of light that can enter the objective lens (see
section 2, figure 3). We thus compute the maximal OTF-
support with wavelength λ = 380nm and Θ = π

2 − ε; see
figure 4. Values outside this support are set to zero in every
iteration of the deconvolution update. This operation can
introduce negative values in the current PSF estimate. In
order to reestablish the non-negativity of the PSF estimate,
[10] proposed to cut off negative PSF values and set them to
zero. This non-linear operation caused numerical problems
in our data. It reintroduces frequencies outside the OTF sup-
port. Additionally, PSF values that are cut off can not take
on any value different from zero in the multiplicative update
scheme. Instead of setting negative values to zero, we nor-
malize the PSF to a valid range to avoid these problems.
For minimizing the resulting functional with TV regular-
ization of the kernel in the frequency domain (KFTV), we
compute the gradient with the calculus of variations. Since
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the Fourier transform is linear, a variation in the spatial do-
main can be written in the Fourier domain as∫ ∥∥∇|F(h+ εg)|(ξ)

∥∥dξ =

∫ ∥∥∇|F(h) + εF(g)|(ξ)
∥∥dξ.
(14)

It results in(
∂
∂hPh

) (
ĥk(x)

)
=

−F−1

(
div
(
∇|F(ĥk)|∥∥∇|F(ĥk)|

∥∥) · F(ĥk)

|F(ĥk)|

)
(x),

(15)
that can be used in the multiplicative update for the decon-
volution kernel (11). For the detailed derivation of the gra-
dient, we refer to the supplemental material.

Implementation For efficiency reasons, we implement
the convolutions using the Fast Fourier transform1. Since
the OTF has a limited support, the true PSF does not. In
practice, only a finite array is available to represent the
PSF. If this array is too small, the reconstructed PSF can
have non-zero values at the array boundaries such that zero-
padding for the convolutions introduces artifacts. In our
implementation, we initially extend the array by padding it
with zeros, assuming that the initial PSF estimate drops to
zero at the array boundaries. During the deconvolution pro-
cess, we update the PSF in the whole, extended array, even
though we know that this might again lead to aliasing ef-
fects after applying a circular convolution, if the PSF grows
too large. With this implementation, we did not encounter
any problems.

4. Experiments and Results
We conducted experiments on synthetic data as well as

on real microscopic recordings. All results are reported in
terms of the root mean squared error (RMSE)

RMSE =

(
1

N

N∑
i=1

(
d(i)− c · d̂(i)

)2
) 1

2

, (16)

1We use the FFTW implementation from http://www.fftw.org.
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Figure 5. Development of the RMSE during the iterations on the
synthetic data sim.1 (top) and sim.2 (bottom). KIP [15] converges
already after 400 iterations and the dash-dotted line indicates its
RMSE value at convergence. With KIP, the RMSE increases again
after some iterations while the KFTV model converges to the so-
lution with smallest RMSE.

where d̂ is the final estimate for the reconstructed data d and

c =

∑N
i=1 d(i)∑N
i=1 d̂(i)

. (17)

The normalization by c accounts for different scalings of
the data and has previously been used for the evaluation of
state-of-the-art deconvolution methods (e.g. in [14]).

4.1. Synthetic Data

In a first experiment we compared to the KIP method
from [15] on their dataset2. It consists of two widefield mi-
croscopic recordings with different levels of Poisson noise
of a synthetic HeLa cell nucleus (sim.1 with SNR=1.63 and
sim.2 with SNR=1.61 in figure 6). KIP [15] uses a simple
intensity regularization on the reconstructed PSF preventing
the reconstructed kernel from collapsing. Figure 6 shows
results for the baseline method KIP computed for the pa-
rameter λKIP = 35, an OTF masking without TV regulariza-
tion (OTF mask), and our method KFTV in two orthogonal
views. Residual denoising (RD) has been used to regular-
ize the specimen function. As expected, a kernel regular-
ization in the frequency domain has clear advantages over
the simple KIP [15] baseline, both visually and in terms
of RMSE. While the resulting RMSE with OTF mask and
KFTV is quite similar for sim.1, KFTV brings a significant
improvement on the noisier data sim.2. The development
of the RMSE of the reconstructed specimen function over

2The dataset can be downloaded from lmb.informatik.
uni-freiburg.de/people/keuper/data

http://www.fftw.org
lmb.informatik.uni-freiburg.de/people/keuper/data
lmb.informatik.uni-freiburg.de/people/keuper/data


(a) Ground Truth (b) sim.1

RMSE=5897.6

(c) KIP [15]

RMSE=4863

(d) RD+
OTF mask
RMSE=2596.3

(e) RD+KFTV
λh = 0.8
RMSE=2596.2

(f) sim.2

RMSE=5907.4

(g) KIP [15]

RMSE=4908.1

(h) RD+
OTF mask
RMSE=3013.2

(i) RD+KFTV
λh = 0.9
RMSE=2925.5

Figure 6. KFTV blind deconvolution results on the synthetic datasets sim.1 (SNR=1.63) and sim.2 (SNR=1.61) displayed in the central
xy-section (top row) and the central xz-section (bottom row). The specimen function has been regularized using RD. The reduced blur in
z-direction obtained by OTF mask and KFTV shows the advantage of constraining the kernel function in the frequency domain.
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Figure 7. RMSE depending on the regularization parameter λh for
RD+KFTV on the torus data set [14] (compare figure 8(b)). The
method is stable for a large parameter range. However, OTF mask
(λh = 0) performs signifcantly worse than higher λh weightings.

the iterations is plotted in figure 5. With KIP [15], we ob-
serve that the RMSE increases again after some iterations
even though the energy JMLEM converges. In [23], this un-
desired property has been described as a common effect in
MLEM-deconvolution. It indicates that the model is a poor
approximation of the actual problem. In contrast, our model
based on OTF regularization reaches its optimum close to
the solution with the smallest RMSE.

Comparison to Methods with complex State-of-the-Art
PSF Models In a second experiment we compare to the
sophisticated learning based method from [14] on their test
data. We further show the results using the method from
[11] on this same data. 3. [14] perform blind MLEM decon-
volution with RD in the specimen function and in the kernel
update. In their work, the space of possible kernel functions
is learned a priori. It is spanned using kernel PCA computed
on a synthetically generated library of PSFs. In every itera-
tion, the current kernel estimate is projected onto this space.
The synthetic datasets used in [14] are 129 × 129 × 129
voxel volumes with a voxel size of 0.1µm3 that are blurred

3Thanks to Tal Kenig who kindly let us use his data for evaluation.

(a) Ground truth (b) Blurred and
noisy data.
RMSE=35.81

(c) AIDA [11]

RMSE=25.47

(d) kernel PCA
[14]
RMSE=19.30

(e) RD+KFTV
λh = 200
RMSE=19.10

Figure 8. Toy data used in [14] and the deconvolution results with
the different methods AIDA [11], kernel PCA [14], and our pro-
posed method KFTV. Two orthogonal views are displayed: the
xy-view (top row) and the xz-view (bottom row). KFTV provides
superior results without system specific PSF models. Sub-figures
(a) - (d), and the respective RMSE values are taken from [14].

with synthetically generated PSFs and corrupted by Poisson
noise. All synthetic PSFs are generated using the method
from [29]. The initialization is done using a symmetric PSF
support computed according to [13]. For the comparison to
[14] and [11], we also use RD for the specimen function
and the kernel update. Our initialization is done as in [14]
with the symmetric PSF support. The results after 400 iter-
ations are displayed in figure 8. For the highly asymmetric
data, where the PSF is only initialized with its support, we
chose a high KFTV weighting with λh = 200. In figure
7, the development of the RMSE with respect to the chosen
weighting is displayed. In a qualitative evaluation as well
as in terms of RMSE, our method shows convincing results
on the dataset.

4.2. Drosophila S2 Cell Recordings

Real widefield microscopic recordings were taken from
fixed samples of DAPI stained Drosophila S2 cell nuclei.
For the widefield microscope, a voxel size of 0.0642 ×
0.0642 × 0.2µm3 was used. With the same settings, a
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(g) RMSE depending on the chosen parameter λh for
KFTV with residual denoising (RD) of the data.

Figure 9. Blind deconvolution results on a Drosophila S2 cell nucleus recording shown in the central xy-section (top row) and the yz-section
indicated by the yellow line (bottom row). With KFTV, the superior blur reduction in z-direction is clearly visible.

TetraSpeck 0.2µm fluorescent point marker (bead) was
recorded four times. The average of the bead recordings
contains less noise than the single bead recordings and
can therefore be used as initial PSF estimate.The identi-
cal Drosophila S2 cell nuclei were recorded with a spin-
ning disk confocal microscope for comparison. The spin-
ning disk recording was taken with a voxel size of 0.1 ×
0.1 × 0.2µm3. Since the PSF of the spinning disk micro-
scope is very small, this data can be used as pseudo ground
truth to evaluate the deconvolution result from the wide-
field data. The recordings were registered with normalized
cross-correlation. The whole dataset consists of 22 recorded
nuclei that were cropped from five original recordings into
separate volumes of about 100 × 100 × 100 voxels before
the deconvolution. The central slice and an xz-section of
the spinning disk recording of one nucleus after registra-
tion is shown in figure 9(a), the same views of the widefield
recording are displayed in figure 9(b). The results of our
method KFTV with RD and TV regularization of the speci-
men function are shown in figure 9(c) - (f) for this nucleus.
For the TV term, we choose λs = 0.001. As expected,
the results with the TV-regularized specimen function are
smoother than the results with RD, such that very fine struc-
tures in the central xy-plane are not restored. In terms of
RMSE, the TV regularized OTF mask yields better results
than the residual denoised OTF mask. With KFTV, residual
denoising is sufficient to suppress noise in the reconstructed
specimen function, yielding clearer structures in the recon-
structed specimen and a lower RMSE.
To evaluate the influence of the parameter choice on the real
dataset, we have computed the KFTV deconvolution with
RD for different parameters λh on the recording from 9(b).
The resulting RMSE is given in figure 9(g). The RMSE
changes smoothly with the chosen parameter for λh ≤ 4
and drops to a minimum at λh = 5 for the example cell
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Figure 10. KFTV results on the 22 Drosophila S2 cell nucleus
recordings in terms of RMSE.

nucleus. The resulting RMSE with λh = 4 on the whole
dataset of 22 nuclei with RD and TV regularization of the
specimen function is given in figure 10. With KFTV and
a TV-regularized specimen function, the average RMSE
could be decreased from 23.02 to 18.58, with RD to 18.89.

5. Conclusion
We have presented a blind deconvolution method for

widefield microscopic data that exploits the frequency do-
main properties of the widefield PSF. Accounting for the
fact that the widefield OTF has a limited support and varies
smoothly within this support, the presented KFTV method
is based on a TV prior on the OTF values and a mask indi-
cating the maximally possible OTF support. KFTV outper-
forms state-of-the-art deconvolution methods both visually
and in terms of RMSE on two evaluation datasets, while it
is independent from specific PSF simulation methods. On a
new dataset of real widefield microscopic recordings show-
ing Drosophila S2 cell nuclei, KFTV also shows convincing
results.
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