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Abstract. In this paper we present a method for dense 3D reconstruc-
tion from videos where object silhouettes are hard to retrieve. We intro-
duce a close coupling between sparse bundle adjustment and dense multi-
view reconstruction, which includes surface constraints by the sparse
point cloud and an implicit loop closing via the dense surface. The surface
is computed in a volumetric framework and guarantees a dense surface
without holes. We demonstrate the flexibility of the approach on indoor
and outdoor scenes recorded with a commodity hand-held camera.

1 Introduction

Taking a video camera and walking around an object to automatically build
a 3D object model has been a long-standing dream in computer vision. What
seemed unreachable 20 years ago is now close to our abilities thanks to the many
discoveries in 3D geometry and image matching over the years.

What currently seems to hinder the use of more 3D information in other
domains is the specialization of 3D reconstruction methods to specific settings.
State of the art multi-view stereo methods are able to produce accurate and dense
3D reconstructions. Unfortunately, many of them are tuned to settings like the
Middlebury benchmark [15], where the camera poses are known and silhouette
information can easily be retrieved. One of these methods is the approach of
Kolev et al. [11], which we use as a basis for our approach. On the other hand,
structure from motion approaches allow to estimate camera poses and sparse
point clouds even from unordered photo collections [16, 4].

In this paper we aim to work towards closing the gap between sparse bundle
adjustment and dense volumetric reconstruction by proposing a close coupling
between the two. We build an initial sparse reconstruction of the scene with
incremental bundle adjustment and point correspondences computed with the
point tracker by Sundaram et al. [18]. The resulting point cloud is then integrated
into an energy functional for dense reconstruction. The point cloud constraints
are sufficient to define the coarse object volume. As a consequence, we do not
require any silhouette information, which is hard to get in general scenes.
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Vice versa, the dense surface is used to improve the camera poses following
an idea from Aubry et al. [1]. In our case, this also leads to a refinement of the
point cloud constraints. In contrast to approaches based on depth map fusion, we
obtain a fully consistent 3D object reconstruction without holes in the surface.
In particular, the coupling between dense and sparse reconstruction leads to an
implicit loop closing that corrects the initial errors of bundle adjustment due to
drift in the point trajectories.

We show results on an indoor as well as two outdoor videos taken with a
consumer camera demonstrating the flexibility of the approach.

2 Related Work

Apart from the above mentioned works and the references within the Middlebury
benchmark [15] there are a couple of works, which are closely related to the
approach we present in this paper.

Hiep et al. [9] also aims for dense reconstructions and efficiently handles
large scenes. The first step in their pipeline is the creation of a point cloud with
millions of points. The point cloud is then converted in a visibility consistent
triangle mesh. As a last step, a variational method refines the photoconsistency
of the mesh. In contrast to our approach, none of these steps uses feedback from
the dense reconstruction to improve the initial motion or structure.

A method proposed by Goesele et al. [6] computes depth maps from internet
photo collections. As initialization they use the structure from motion approach
from [16]. The final dense reconstruction step is based on merging the computed
depth maps.

Yezzi and Soatto [21] propose a method where the cameras are refined during
the dense reconstruction process. However, their silhouette based approach is not
well suited for general image sequences. It works best for textureless scenes where
the background can be clearly separated from the object.

Furukawa and Ponce [5] describe an iterative camera calibration and recon-
struction approach. A large set of patches is used to refine the camera poses.
Vice versa the refined camera poses are used to improve the reconstruction. To
compute the dense surface they use the method from Kazhdan et al. [10]. The
resulting surface is fitted to the patches by the solution of a Poisson problem. As
the spatial Poisson problem does not take photoconsistency into account, results
suffer in areas not covered by sufficiently many patches.

Lempitsky and Boykov [12] present a shape fitting approach that maximizes
the flux of the surface and a vector field induced by weakly oriented points in
the min-cut framework.

Newcombe et al. [14] presented an interactive approach that allows for acqui-
sition of dense 3D models in real-time. While [14] is primarily a camera tracker,
the underlying dense depth maps can be used also for scene reconstruction. To
track the camera, the image is aligned to a 2.5D scene representation based on
depth maps. Multiple depth maps are combined to cover the scene. The approach
shares the problems of other methods based on depth map fusion. Additionally,



Dense 3D Reconstruction with a Hand-held Camera 3

since there is no global optimization of the surface, a consistent object recon-
struction from all sides currently seems to be out of reach. A similar method
has been represented in Graber et al. [7]. Instead of modelling the scene with
a collection of depth maps, they fuse generated depth maps into a volumetric
grid.

3 Sparse Initialization

This section describes the computation of initial camera poses C and a sparse
point cloud P roughly indicating the structure of the scene. As input we assume
an image sequence with known camera intrinsics. This is justified if we assume
that the camera intrinsics do not change within the sequence, which is true as
long as we do not use the zoom function.

To compute the structure of the scene we generate point correspondences
using the tracker from Sundaram et al. [18]. The tracker generates point tra-
jectories based on optical flow. Trajectories are generated frame by frame and
errors in the optical flow accumulate, leading to significant drift in long trajec-
tories. We will correct the errors due to this drift in Section 4. Short trajectories
suffer less from drift but generate only small baseline measurements, which is
disadvantageous for bundle adjustment. Therefore, we consider only trajectories
with a minimum length of 50 frames

To reconstruct the whole scene we use a hierarchical approach. We divide
the sequence into parts with up to 150 frames and perform incremental bundle
adjustment on each of the parts. The parts are then recursively merged to obtain
the final reconstruction. For bundle adjustment we use the implementation of
Wu et al. [20]. After adding a new camera, we generate new points from the
trajectories. Among all points we remove those with a reprojection error exceed-
ing 10 pixels on images with a resolution of 1280× 720. Fig. 1 shows the sparse
reconstruction of a scene with multiple objects.

Fig. 1: Left,Center: Sparse reconstruction of the scene. The scene comprises
multiple objects with complex visibility. The reconstruction contains 16125
points and 600 cameras. Right: One of the input images used for the sparse
reconstruction
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4 Dense Reconstruction

As in [11] we pose the reconstruction problem as a segmentation of a volume into
object and empty space. Our energy functional comprises two zero-order terms
and one first-order term. The zero-order terms r1 and r2 correspond to unary
costs in a discrete setting while the first-order term ρ acts as pairwise costs:

E(u) =

∫
(αr1(X) + r2(X))u(X) + βρ(X)‖∇u‖dX . (1)

The sought binary function u ∈ {0, 1} assigns points to either empty space or
object. The function ρ(X) is a photoconsistency measure that indicates the cost
when placing the surface at position X. The term involving ρ can be regarded as
a weighted Total Variation (TV) norm. Since ρ is positive everywhere, it favors
minimal surfaces. The global optimum of the last term alone would be the trivial
solution. This is why it must be accompanied by zero-order terms. r1 imposes
constraints based on the sparse reconstruction and is absolutely necessary to
kick-start the reconstruction, whereas r2 is a zero-order representation of the
photoconsistency and helps in areas that are not sufficiently covered by initial
3D points. The inclusion of r2 allows to set α = 0 in the last iteration (Sec.4.4)
and it yields better results as shown in Fig. 4.

In the two following sections we describe the computation of the functions
r1, r2 and ρ, which we need to solve (1). In Sec. 4.3 we explain how to update the
sparse reconstruction using the dense surface. Our minimization strategy that
iteratively refines the sparse and dense reconstruction is described in Sec. 4.4.

4.1 Constraints by the Sparse Point Cloud

In the beginning of the reconstruction process the surface estimation fully relies
on the sparse reconstruction. This means that the point set P together with
the last term in (1) with ρ = 1 must drive the initial surface. We express the
constraints that the surface should be close to the points P as a voxel-wise cost
that can be integrated elegantly in (1).

A point together with a viewing direction clearly indicates the object’s inte-
rior and exterior in the direct vicinity of the point: the volume in direction of
the camera belongs to the exterior while the volume in the opposite direction
must belong to the object. We mollify this constraint with anisotropic diffusion
[19] where a diffusion tensor emphasizes diffusion in the viewing direction of the
camera. Fig. 2 shows the costs generated from a single point-camera pair.

To compute the cost function r1, all points and all cameras that observe a
point are considered and superposed. We use the distinctive region costs shown
in Fig. 2 as a lookup-table and superpose all point-camera pairs. This way the
cost can be computed voxel-wise and is suitable for implementation on the GPU.

4.2 Photoconsistency Constraints

The photoconsistency function ρ(X) measures the cost of placing the surface at
X. If we take a patch in one image and project it to the correct surface, the
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Fig. 2: Left: Central slice of the region cost volume generated by a point-camera
pair. The size of the depicted volume is 24×23×23. Right: The seed points with
fixed values -1 and 1. The observed point is located between the seed points. The
viewing direction of the observing camera is the negative x-axis

reprojections of the surface to any camera in which the surface is visible should
be identical to the image observed in this camera apart from shading effects. In
contrast, the same projection with a badly placed surface will be different to the
observed image.

We compute the photoconsistency in the image space for each camera. The
photoconsistency P at a pixel x and depth d is computed with normalized cross
correlation in a 7× 7 window

Pi(x, d) =
1

|C′| − 1

∑
j∈C′\i

NCC(Ii(x), Rji (x, d)) , (2)

where Ii is the image of the i-th camera. The corresponding image Rji is a
rendering of a surface at depth d with the projective texture of camera j. We
use normalized cross correlation to be robust to most shading effects.

Computing the photoconsistency is the most expensive part of the dense re-
construction despite the use of the GPU’s rendering functions to project each
image to the surface and back to each camera. Moreover, since we work with a
video, neighboring images are very close together and show very similar content.
Hence, we select only a subset C′ ⊂ C of about 50 cameras. Additionally, we
compute the photoconsistency only near the current surface estimate. In par-
ticular, we compute the signed distance function of the surface and generate
triangle meshes for the level sets {−8,−7, . . . , 8}. We render each of these 17
meshes |C′|(|C′| − 1) times. We use shadow mapping to mask out those parts of
the images that are not visible in the camera providing the texture.

Like in Hernández et al. [8] and Kolev et al. [11], each pixel in each cam-
era casts a vote for the depth with maximal photoconsistency. All votes are
accumulated to yield the cost function

ρ(X) = exp

(
−λ

∑
i∈C′

δ(dmax
i = depthi(X))Pi(πi(X), dmax

i )

)
, (3)

where πi projects to camera i, dmax
i is the depth with maximum photoconsistency

at πi(X) , and the Kronecker δ indicates whether the depth corresponds to the
considered voxel X. λ = 0.1 is a scaling parameter.



6 Benjamin Ummenhofer, Thomas Brox

To provide a zero-order cost r2 based on photoconsistency, we search for each
voxel parallel to the gradient of the signed distance function for the point with
minimum ρ. Let Xmin be the position where ρ is minimal and Φ be the signed
distance function, then the term r2 is defined as

r2(X) =

{
erf
(
Φ(X)−Φ(Xmin)
σρ(Xmin)

)
, −8 < Φ(X) < 8

0, else
, (4)

where σ is another scaling parameter. The photoconsistency cost ρ(Xmin) steers
the slope near the zero-crossing. A high cost indicates a high uncertainty in the
position of the surface and r2 will become flat near the zero-crossing to account
for this. Note that we set r2 to zero in those areas where we did not compute the
photoconsistency. This way we make sure not to bias the reconstruction towards
the current surface estimate.

4.3 Camera and Points Refinement

The reconstruction quality depends much on the accuracy of the estimated cam-
era poses. The initial camera poses from the sparse reconstruction are subject
to the accumulated error in the point trajectories. Fig. 3 shows the influence of
the camera poses on the reconstruction quality.

Fig. 3: Left: Dense, textured reconstruction based on the initial camera poses.
The objects appear to be molten and the texture is blurred. Right: Dense re-
construction after refinement of the cameras

In classical bundle adjustment, the camera parameters are computed by min-
imizing the reprojection error of a sparse set of points. Now that we have a dense
surface estimate, we can use all points on this surface to minimize a dense repro-
jection error. Recently, Aubry et al. [1] proposed to estimate this error by means
of the optical flow between the textured rendering of the surface and the actual
image. We stick to this idea using a GPU implementation of the optical flow
from Brox et al. [3]. To generate the texture we simply average the projections
from all cameras.

Given the optical flow, we minimize the reprojection error by formulating the
problem as a pose estimation problem from 2D-3D point correspondences. The
3D points are generated from the surface estimate such that the projections of
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the points are evenly distributed in the image. The corresponding 2D points are
computed by projecting the 3D points to the image plane and adding the optical
flow vector at that position as a correction. The camera pose, minimizing the
reprojection error in a least squares sense, is computed using the algorithm by
Lu et al. [13].

To account for the uncertainties in the optical flow estimation we verify the
consistency between the forward flow ufwd and the backward flow ubwd, and give
2D-3D point correspondences at inconsistent points less weight. The weight wi
for a 3D point Xi and the corresponding 2D point xi = π(Xi) + ufwd(π(Xi)) is
defined as

wi =
1

1 + b
; b =

‖π(Xi)− ubwd(xi)‖
‖ufwd(π(Xi))‖+ ε

, (5)

where ε is a small constant and b is the endpoint error relative to the length of
the forward flow vector.

The refined camera poses allow us to update the point cloud P. In contrast
to the initial sparse bundle adjustment in Section 3, all cameras are mutually
connected via the dense surface. Hence, we can use shorter trajectories, which
are less affected by drift, to triangulate the 3D points.

4.4 Minimization

To minimize the energy in (1), we relax the binary function u to take values in
the range [0, 1]. This makes it a convex problem for given camera parameters
and photoconsistency ρ. Since the computation of ρ and the refinement of the
camera parameters depends non-linearly on u, the overall problem is non-convex.
Consequently, it can be optimized only locally by iterating the optimization with
respect to u, the camera parameters, and ρ.

To minimize with respect to u we decouple the zero-order terms from the
first-order term

E(u, v) =

∫
(αr1(X) + r2(X)) v(X) +

1

2θ
(u− v)

2
+ βρ(X)‖∇u‖dX . (6)

This leads to a simple point-wise optimization problem in v and a standard
weighted TV regularization problem in u. The latter can be solved efficiently
with the numerical scheme from Bresson et al. [2]. The functions u and v are
coupled by the term 1

2θ (u− v)2. This decoupling approach allows for an efficient
GPU implementation and has been used in many related problems [22, 17, 14].

To deal with the non-convexity of the overall problem, we employ a coarse-
to-fine approach. For image sequences with a resolution of 1280×720 we suggest
three levels with voxel grid resolutions of about 643, 1923 and 3203. Similarly,
we downsample the input images such that the height of the image is twice the
largest extent of the grid.

At each level we repeatedly minimize (6) for fixed functions r1, r2, and ρ.
After each of these inner iterations we refine the cameras C′, the point cloud P,
and recompute the terms r1, r2, ρ as described in the previous sections. We also
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linearly decrease the parameter α from α = 5 in the first iteration to α = 0 in
the last iteration. The idea is to give the sparse reconstruction a high weight in
the beginning while we solely rely on the photoconsistency in the last iteration.
This allows to reintroduce reconstruction details by r1 that may not have been
captured at coarser levels and to avoid reconstruction errors caused by errors in
the points P. Fig. 4 shows an example how the coarse-to-fine scheme may lose
details when we set α = 0 for all iterations on the two finest levels.

Fig. 4: Left: Reconstruction using r1 and r2. Center: Reconstruction without
r1: the head of the goose is too small to be represented at the coarsest voxel
grid and cannot be recovered at finer levels due to local minima in r2. Right:
Reconstruction without r2: the rear part of the shoe has been separated because
the point density there is too low

5 Results

We recorded three sequences in different environments to demonstrate the ro-
bustness and usability of our approach. The sequences contain several images
affected by motion blur and camera shake. Similar sequences could be captured
by any non-expert with their personal camcorder.

Fig. 5 shows the recorded scenes and their reconstructions. The shoe sequence
is an indoor scene with complex visibility as objects mutually occlude each other
and some parts are only seen in few frames. The scene also demonstrates the
effect of the sparse reconstruction that preserves details like the head of the
goose. The bird house sequence highlights the importance of camera refinement
and the implicit loop closing. While the camera motion for the shoe sequence
is a complete ring around the object (see Fig. 1), the motion in bird house
does not describe a closed ring. As a result, the reconstruction on one side is
less accurate and the texture cannot be retrieved for the whole object. Another
outdoor sequence head shows that we can also reconstruct objects that are not
perfectly static.

Problematic for our algorithm are small delicate structures. This can be seen
in the shoe sequence where the beak of the goose is missing or in the head
sequence where the glasses are missing. In both cases the volume of the missing
objects is small and the size of the objects in the images is small which is
disadvantegous when computing the photoconsistency.
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Fig. 5: First, Second Row: Indoor scene shoe with many occlusions. Even
details such as the shoelaces are reconstructed. Grid size: [320 × 199 × 249].
Third Row: Outdoor scene bird house. Green spots on one side of the object
in the textured views indicate missing texture, these parts are not seen in any
image. The reconstruction of this side is less accurate than the others, but still a
consistent reconstruction has been obtained. Grid size: [320×291×300]. Fourth
Row: Outdoor scene head. Grid size: [320× 247× 266]

Table 1 lists the runtimes for the scenes in Fig. 5. All major parts of our algo-
rithm use the GPU. The most time-consuming parts in the dense reconstruction
are the photoconsistency computation (ca. 38%), the optical flow (ca. 22%) and
minimization of (6) (ca. 10%).

Table 1: Runtimes on an Intel Xeon X5675@3GHz + GTX580

Frames Tracking Sparse Dense
(
Iterations
per Level

)
Total

Shoe 600 1h 32m 3m 1h 52m (5) 3h 27m
Bird house 270 0h 56m 2m 1h 59m (5) 2h 57m
Head 251 0h 36m 1m 1h 20m (5) 1h 57m

6 Conclusions

We have presented an approach for dense 3D reconstruction from image se-
quences in the absence of a controlled environment. The approach integrates
sparse bundle adjustment into a dense variational formulation to provide an ini-
tialization that does not require silhouettes and ensures that important details
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are not smoothed away. Thanks to the close coupling, both the sparse and the
dense parameters benefit from mutual refinement.
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