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Abstract. In this paper we present a novel approach for expanding
spherical 3D-tensor fields of arbitrary order in terms of a tensor valued
local Fourier basis. For an efficient implementation, a two step approach
is suggested combined with the use of spherical derivatives. Based on this
new transformation we conduct two experiments utilizing the spherical
tensor algebra for computing and using rotation invariant features for
object detection and classification. The first experiment covers the suc-
cessful detection of non-spherical root cap cells of Arabidopsis root tips
presented in volumetric microscopical recordings. The second experiment
shows how to use these features for successfully detecting α−helices in
cryo-EM density maps of secondary protein structures, leading to very
promising results.

1 Introduction

With the increasing performance of modern computers and the rapid develop-
ment of new 3D image recording techniques, the amount of volumetric image
data has drastically increased during the last years. Due to this fact, there is a
need for adapting existing techniques from 2D image analysis to the third di-
mension. One major problem in image analysis is the extraction of information
which is reduced in size as much as possible while still containing all characteris-
tics necessary to describe, analyze, detect, compare or classify different objects.
Many methods widely used for extracting features from 2D images make use
of the gradient direction to get rid of the rotation. These approaches can often
be directly adapted into the 2D+time domain (e.g. SIFT [1]). However, when
working with volumetric images the gradient direction gives us only information
about two rotation angles leaving the third angle undetermined.

In this work, we introduce a new method for realizing a fast voxel-wise lo-
cal spherical Fourier transformation of spherical tensor-valued 3D images. The
expansion coefficients are used to compute rotation invariant features in an an-
alytical way. From a practical point of view, our method does exactly this: For
each Gaussian windowed surrounding of each voxel of a tensor-valued volume, we
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simultaneously compute the expansion coefficients of a spherical Fourier tensor
expansion up to a certain band. Using spherical tensor algebra (the interested
reader is referred to [2,3]), the resulting expansion coefficients can be combined
to analytically form rotation invariant features. These voxel-wise features can be
used for e.g. object detection, segmentation or object classification. The method
proposed here needs a small number of image convolutions followed by suc-
cessively applying point-wise operations that can run in parallel in a memory
efficient way. Outperforming all existing methods we are aware of doing voxel-
wise spherical harmonic expansions realized by a huge number of convolutions
(e.g. [4]).

This paper is organized as follows: In section 2 we recapitulate the basics
and requirements necessary for our mathematical framework. In section 3 we
introduce the fast spherical Fourier tensor transformation. Finally, in section
4, two applications are introduced where local rotation invariant features are
computed and used for successfully detecting and classifying objects.

2 Preliminaries

We denote scalars in unbold latin face and vectors in latin bold face. Typically,
vectors are elements of C2`+1 whose basis is written as {e`m}m=−`...`. Depending

on the context we will express the coordinate vector r = (x, y, z)
T ∈ R3 in

spherical coordinates (θ, φ, r), where θ = arccos(z/‖r‖), φ = atan2(y, x) and r =
‖r‖. By Y `m(θ, φ) we denote the usual spherical harmonics [2] in Schmidt semi-
normalized form. All harmonics for a fixed ` are arranged in a vector Y` ∈ C2`+1.
The functions Y `m build a complete orthogonal basis for representing functions
on the 2-sphere, with 〈Y `m, Y `

′

m′〉 = 4π
2`+1δ``′δmm′ . Furthermore, we denote by

R` : R3 → C2`+1 the commonly known solid harmonics [2], whose (2` + 1)
components R`m are defined by R`m(r) = r`Y `m(θ, φ).

2.1 Spherical Tensor Fields

In the following we give a short introduction on spherical tensor algebra based on
the definitions and notation used in [5]. The spherical tensor algebra is necessary
for expanding higher order tensor fields (e.g. vector fields) in terms of tensor-
valued Fourier basis functions. We also use spherical tensor algebra for computing
rotation invariant features in an analytical way [6].

The central role of spherical tensor algebra play the Wigner D-matrices
D`
g ∈ C(2`+1)×(2`+1) which are the unitary irreducible representations of the

3D rotation group. Each D-matrix is associated with an element g of the ro-
tation group. They behave like ordinary rotation matrices in the sense that
D`
gD

`
h = D`

gh, but act on the high-dimensional complex Hilbert space C2`+1. A
fundamental property of the Wigner D-matrices is their behavior with respect
to spherical harmonic expansion coeffcients. Suppose you have expanded some
function f in spherical harmonics a` = 〈Y`, f〉. Then the expansion coefficients
of the rotated function gf are related to the a` just by the Wigner D-matrices
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a`
′

= D`
ga
`. Spherical Tensor algebra utilizes this behavior in a much more gen-

eral way. We call a function f : R3 → C2`+1 a spherical tensor field of rank ` if
it transforms with respect to rotations as

∀g ∈ SO(3) : (gf)(r) := D`
gf(UT

g r) (1)

where Ug ∈ R3×3 is the corresponding real valued ordinary rotation matrix.
The space of all spherical tensor fields of rank ` is denoted by T`. Note that
for ` = 1 a spherical tensor field is just an ordinary vector field. Interpreting
solid harmonics (or spherical harmonics) as spherical tensor fields shows their
importance, namely (due to eq. (1)) gR` = R`, i.e. they are ’fix’ with respect to
rotations.

Similar to Cartesian tensor fields, where Kronecker products connect tensor
fields of different rank, there exist spherical products [5,2] that connect spherical
tensor fields of different rank. In fact, for two given spherical tensor fields v ∈ T`1
and w ∈ T`2 , there exists a whole set of different products ◦` to build new
spherical tensor fields. More precisely, for every ` ≥ 0 that obeys the triangle
inequality |`1 − `2| ≤ ` ≤ `1 + `2 there is a bilinear form ◦` : C2`1+1 ×C2`2+1 →
C2`+1 that takes two spherical tensors and gives a new one, i.e

(D`1
g v) ◦` (D`2

g w) = D`
g(v ◦` w) (2)

holds for any v ∈ T`1 and w ∈ T`2 . Again the spherical harmonics show a
special behavior. In fact, multiplying two spherical harmonics results in another
harmonic, i.e. Y`1 ◦` Y`2 = c`,`1,`2Y

`, where c`,`1,`2 is a constant related to the
Clebsch Gordan coefficients (for details see [2]).

Finally, we present the third important ingredient of spherical tensor calculus:
the spherical derivative. In ordinary vector calculus differential operators like the
gradient, divergence or the Hessian connect Cartesian tensor fields of different
rank. There are also spherical counterparts. In the following we need just one
type of spherical derivative, the spherical up-derivative ∇1, which increases the
rank of the spherical field (see [7] for further details and proofs). If f ∈ T` is a
tensor-field of order `, then the spherical up-derivative ∇1 : T` → T`+1 maps f
onto a field of rank `+ 1. For multiple application of the spherical derivative we
write ∇` : T`0 → T`0+`. For example, applying ∇1 on a scalar field gives just the
spherical counterpart of an ordinary gradient of the field. The result of applying
∇1 twice is linearly related to the traceless Hessian of the scalar field.

Relation between Cartesian and Spherical Tensors. The theories of Carte-
sian and spherical tensors are basically equivalent. Up to rank 2 the relations
connecting both worlds are well known and reported e.g. in [2] or [8]. To get an
impression; a general real Cartesian tensor of rank 2 (basically a 3 × 3 matrix)
can be decomposed into a spherical tensor of rank 0 (the trace), of rank 1 (the
antisymmetric part) and of rank 2 (the traceless symmetric part).
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3 Spherical Fourier Tensor Transformation

In this section, we introduce the Fourier basis which we use for spherical tensor
field expansion. This basis can be seen as an extension to [9], replacing the
spherical harmonics by tensorial harmonics. With this we are able to decompose
spherical tensor fields of any order into basic Fourier patterns.We further show
how to expand fast and efficiently by utilizing the spherical derivatives.

3.1 Tensorial Bessel Harmonics

In order to obtain a representation of spherical tensor fields with tensor valued
Fourier basis functions having the same convenient rotation properties known
from the spherical harmonics, we perform a spherical tensor field expansion based
on tensorial harmonics [5]. In addition to the tensorial harmonic expansion given
in [5] for representing spherical tensor fields on the 2-sphere, we use the spherical
Bessel function j`(r) for representing the radial part (see [10] for definition). This
directly extends the spherical Fourier basis B`

k(r) := Y`(r)j`(kr) presented in [9]
to higher order tensor fields, where k ∈ R>0 represents the frequency in radial
direction. The spherical Fourier tensor field expansion of f ∈ TJ in terms of ◦
and the Fourier basis B`

k is given by

f(r) =

∫ ∞
0

∞∑
`=0

j=J∑
j=−J

c`jk ◦J (α
1
2

`jkB
`
k(r))dk , (3)

where α`jk = 2k2

π
2(`+j)+1

2J+1
2`+1
4π are scalar valued normalization factors, and c`jk ∈

C2(`+j)+1 are the spherical tensor valued expansion coefficients of f .
The expansion coefficients c`jk can be computed by directly projecting onto

tensorial Bessel harmonics, with c`jkm = 〈f , e`+jm ◦J B`
k〉. However, it would be

quite expensive to do this voxel by voxel in a large volume. According to [8], we
suggest to compute the expansion coefficients c`jk of f ∈ T` in two steps. First,
we separately transform all 2J + 1 components of f into the harmonic domain,
i.e. we express each component of fM in terms of B`

k, with

fM (r) =

∫ ∞
0

∞∑
`=0

a`Mk
T
B`
k(r)dk , (4)

where a`Mk are the expansion coefficients representing the M -th component of f .
Given the coefficients a`Mk we then compute the expansion coefficients c`jk:

c`jkm = 2(`+j)+1
2J+1

∑
M a`Mkn 〈(`+ j)m, `n |JM〉 , (5)

where m = −2(`+j), . . . , 2(`+j) and n = M−m. Until now we have not reached
any computational benefit, but we show in the following section that we can use
the spherical derivatives for the computation of the expansion coefficients a`Mkn
. This avoids explicit convolutions and pre-computation of convolution kernels,
which makes the computation practical in terms of speed and memory consump-
tion.
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3.2 Differential Formulation of the Tensorial Bessel Expansion

In this section we show how to compute the expansion coefficients a`k (eq. (4))
with respect to all positions x ∈ R3 of a given 3D image simultaneously by uti-
lizing the spherical derivatives. As a consequence of having a fast transformation
for computing the coefficients a`k we directly get a fast method for computing
the tensorial Bessel harmonic coefficients c`jk (see eq. (5)).

One possible solution to transform efficiently is separately convolving a func-
tion f ∈ T0 with all (2`+ 1) scalar valued components B`kn ∈ T0 of all B`

k ∈ T` .
In our scenario, doing a transformation using K different values for k and an an-
gular expansion up to the L-th band, we would need K(L+ 1)2 convolutions! In
contrast, the method proposed here makes use of an iterative differential formu-
lation of the B`

k for realizing the transformation in angular direction. Hence we
only need K convolutions followed by L times applying the spherical derivative
operator ∇. In this case, the number of convolutions does not depend on the pa-
rameter L. Furthermore, the spherical derivative operator can be implemented
efficiently using finite differences, widely used for fast computing derivatives
from scalar valued fields which can be executed in parallel in a memory efficient
way. This enables us to process huge volumetric images in seconds rather than
minutes (e.g. given an image of size 2563 and doing the voxel-wise expansion
up to order 15 (double precision) takes 1.3 minutes by convolutions using the
multi-threaded fft [11] with planning flag FFTW MEASURE and 14.1 seconds
using our approach. The experiments are run on a 6×quad-core system, each
core with 2,7 GHz.). The relation between the convolution based approach and
our differential based approach is given by:

a`k(x) = 〈fx,B`
k〉 = (f ∗B

`

k)(x)︸ ︷︷ ︸
(2`+1) scalar

valued convolutions

= (−1)`
k`
〈fx,∇`B0

k〉 =

ï
∇1

(−k)

ò`
(f ∗B

0

k)(x)︸ ︷︷ ︸
1 scalar

valued convolution

,

where fx(r) := f(r + x) and ∇`
is the complex conjugate of ∇` (for proof see

appendix A). As a result the expansion coefficients a0
k, . . .a

`
k can be computed

iteratively by ` times applying the spherical derivative operator:

a`k(x) = (−1k ∇1
. . . (−1k ∇1

(−1k ∇1
(f ∗B

0

k)︸ ︷︷ ︸
= a0

k

)

︸ ︷︷ ︸
)

= a1
k

)

︸ ︷︷ ︸
= a`

k

(x) , (6)

We finally obtain the expansion coefficients c`jk(x) of the spherical tensor field by
first doing a component-wise transformation of the tensor field (eq. (4)) utilizing
the spherical derivatives (eq. (6)) followed by coupling the expansion coefficients
according to eq. (5).
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Fig. 1. Left image: a) Training dataset. b) Test dataset. Right PR-graph: Comparing
the performance of our detection and classification to the detection rate of the spherical
hough transformation.

4 Applications & Experiments

We conduct two experiments demonstrating the performance of our method. In
the first experiment we detect nuclei of root cap cells of Arabidopsis root tips.
In the second experiment we detect α-helices in secondary protein structures.
Since we aim to describe local image structures and further need a finite convo-
lution kernel, we use a Gaussian windowed Bessel function in both experiments.
The Gaussian windowed convolution kernel is given by (gσ(r)j`(kr))Y

`(θ, φ) =
B0
k(r)gσ(r) where σ determines the width of the Gaussian window function

gσ(r) = e−
r2

σ . Scaling is done by assuming different voxel sizes. Considering
the Fourier transform of this function, the parameter k determines the distance
of a spherical harmonic from the origin, while the parameter σ determines the
size of the Gaussian with which the spherical harmonic is convolved.

There are several ways for obtaining rotation invariant features based on
spherical tensor fields (see e.g. [3,9,6]). Similar to [6] we are utilizing the spherical
tensor product (eq. (2)) for coupling expansion coefficients of equal rank. By cou-
pling coefficients with themselves we obtain the power-spectrum known from or-
dinary Fourier analysis, with ( 1√

2`+1
(ak` ◦0ak` ))

1
2 = 〈ak` ,ak` 〉

1
2 = ‖ak` ‖. We further

can couple expansion coefficients corresponding to Bessel functions j`(rk1) and

j`(rk2) of different frequencies k1 and k2, with ( 1√
2`+1

(ak1` ◦0a
k2
` ))

1
2 = 〈ak1` ,a

k2
` 〉

1
2 .

In the experiments this feature is called the Phase-feature.

First Experiment: Detection and Classification of Cells. In this exper-
iment we aim to detect DAPI1-stained nuclei of root cap cells represented in
volumetric images of Arabidopsis root tips. The data was recorded using a con-
focal laser-scanning microscope. Experiments have shown, that, in contrast to
inner cells, root cap cells can hardly be detected by strategies suitable for detect-
ing roundish structures, e.g. using the spherical Hough transform [12]. For this

1 4’-6-Diamidino-2-phenylindole
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scenario a voxel-wise feature computation and classification approach is suitable
for first learning the shape and structure of root cap cells using rotation invariant
features, followed by a detection and classification of cells in unclassified data
sets. The experiment is organized as follows: We select one image for training
(size 461 × 470 × 101) and one further image for testing (size 239 × 522 × 105)
(depicted in the left image of figure 1 a) and b) ). The voxel size of each images
is 1µm. Each image contains several hundred cells. The center of the nuclei of
the cells were labeled manually and divided into two classes: Root Cap Cells and
Inner Cells. We compute rotation invariant voxel-wise features for k = 1, 3, 5, 7, 9
and a band-with limit ` ≤ 5. σ is set to 2π. The kernel is scaled by a factor of
6 approximately covering a whole cell. We separately normalize each feature di-
mension with respect to the mean and the variance of the whole set of features
computed for a single dataset. For training we select all features representing
cells from the training image. We further randomly select features describing lo-
cations not belonging to cells representing the background. We train a two-class
cSVM [13] using an RBF kernel with γ=1 and cost=1. We first conduct exper-
iments comparing features based on the power-spectrum to the phase-features.
For the voxel-wise classification we use the local maxima of the decision values
of the SVM. We have a true positive detection if correctly classifying a root
cap cell in a 3µm surrounding of a positive label and a false negative for each
root cap cell, which is not detected. All remaining voxels, wrongly classified as
root cap cells count as false positives. Results are depicted in the upper left PR-
graph shown in figure 2. Surprisingly the phase-feature performs much better
than the power-spectrum feature. We belief that this is caused by the textural
information of cells in radial direction which is better preserved in the features
when coupling coefficients representing different radial frequency components.
However, as expected, coupling all possible coefficients leads to the best re-
sults (Powerspectrum+Phase). Although we often successfully use the spherical

Fig. 2. Left: Comparing the features obtained by only coupling coefficients with them-
self (power-spectrum), coupling all possible coefficients (phase+power) and finally only
coupling coefficients with different values of k (phase). Middle: Performance for different
band-width limits `. Right: Performance for different numbers of radial functions.

Hough transformation for cell detection, it is not possible using it to detect more
than 60% of the cells due to their non-roundish shape. In the right PR-graph
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of figure 1 we show the performance of our method outperforming the detection
rate of the spherical Hough transformation significantly.

We further conduct experiments for different numbers of radial and angular
frequency components. As expected the performance increases when considering
further higher frequency components. This is true for both increasing the number
of spherical Bessel functions and increasing the order of the spherical harmonics.
The results are depicted in the middle and right graph of figure 2.

Second Experiment: α-Helices in Secondary Structures of Proteins.
Electron cryomicroscopy is a powerful technique for analyzing the dynamics and
functions of large flexible macromolecule assemblies. One major challenge in
analyzing such density maps is the detection of subunits and their conformations.
One important step in this procedure is the detection of secondary structure
elements, mainly the α-helices.

The database for our experiments consists of simulated electron microscopic
volumes of 56 polymers with an EM-resolution of 10Å and 1Å per voxel [14]. The
data is divided into a training set (4 files) and a test set (52 files). We first try
to detect helices using Helixhunter [15], mainly based on an eigen-analysis of the
second moment tensor of local structures. We further use a harmonic filter of or-
der 5 [7]. For pre- and post-smoothing we use a Gaussian with σ = 1.5. Finally we
perform experiments using our own rotation invariant power-spectrum-features,
based on the coefficients of the Fourier tensor transformation. We compute fea-
tures directly based on the intensity values. We further compute a second order
tensor field by computing the structure tensor at each voxel position. We use
eq. 2.1 for representing the traceless, symmetric parts of the resulting Cartesian
tensor field in terms of a spherical tensor field. We compute features for both
the intensity values and the structure-tensor field with k = 1, 3, 5 and ` ≤ 5. We
scale the kernel by a factor of 2 and use σ = 2 for the Gaussian window function.
The features are normalized by weighting the components with respect to their
frequency using the weights kλk`λ` . We obtain the best results when suppressing
the lower frequency components by amplifying the higher frequency components
using λ` = 3 and λk = 5. For voxel-wise classification we use a 20KNN-classifier
using the l1-norm. We only count voxels correctly classified as α-helices as true
positives. The results of our experiments are depicted in figure 3. In our ex-
periments Helixhunter has major problems to determine the exact locations of
helices. For the experiments based on the harmonic filter, we vary the size of the
Gaussian convolution kernels as well as the order of the filter. The order which
works best here is 5. Increasing the order to a higher extent does not noticeable
increase the performance. This is caused by the low resolution of the data. The
same behavior can be observed for our features, too. Similar to the order of
the harmonic filter, the bandwidth limit ` ≤ 5 restricts the number of tensorial
harmonics representing the signal in angular directions. We experienced that in
contrast to the intensity features, it is much easier to obtain good results without
having much effort for finding good parameters using the structure-tensor based
features.
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Fig. 3. From left to right: PR-graph showing the performance of the detection proce-
dures used in the experiments. Surface rendering representing the secondary structure
with PDB code 1m3z. Corresponding detections of helices using our method.

5 Conclusion

In this paper we extended the spherical Fourier transformation presented in [9]
to higher order tensor fields and further presented a new method for performing
the transformation in a fast and memory efficient way. We have shown how to
utilize the spherical tensor algebra to compute rotation invariant features from
the Fourier coefficients in an analytical way. We introduced all details necessary
for an implementation, and gave two examples where our rotation invariant local
features are used for successfully detecting and classifying objects in volumetric
images leading to very promising results.

A Differential Formulation of Spherical Fourier Functions

We obtain B`
k by ` times applying ∇1 to B0

k. Proof:

〈eik
T r, B`k′m(r)〉 = 2

π

∫∞
0

(i)`
′
(2`′ + 1) j`′(kr)j`(k

′r)r2
∑
`′ Y

`′

m (k) 1
(2`+1)δ``′dr

= 2
π (−i)`Y `m(k)

∫∞
0

j`(kr)j`(k
′r)r2dr︸ ︷︷ ︸

π
2k2

δ(k−k′)

= (−i)`Y `m(k) 1
k2 δ(k − k

′) . (7)

This means that a Bessel function B`
k in the Fourier domain is a spherical har-

monic living on a sphere with radius k. Consider the representation of both
the Bessel function B0

k and the operator ∇` in the frequency domain (eq. (7)

and according to [5] ›∇` = i `R`(k)). In this scenario we can observe, that‡∇`B0
k′ = i `R`(k) 1

k2 δ(k − k
′). Performing the inverse transformation into the

spatial domain we obtain

〈e−ik
T r,‡∇`B0

k′〉 = (−1)`k′
`
j`(rk

′)Y`(r) = (−1)`k′
`
B`
k′(r) .

It follows, that we obtain higher order Bessel functions B`
k by iteratively applying

the spherical derivative operator ∇1 to B0
k, namely ∇`B0

k = (−1)`k`B`
k ut.
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