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Abstract. The matching of point sets that are characterized only by
their geometric configuration is a challenging problem. In this paper,
we present a novel point registration algorithm for robustly identifying
objects represented by two dimensional point clouds under affine distor-
tions. We make no assumptions about the initial orientation of the point
clouds and only incorporate the geometric configuration of the points
to recover the affine transformation that aligns the parts that originate
from the same locally planar surface of the three dimensional object. Our
algorithm can deal well with noise and outliers and is inherently robust
against partial occlusions. It is in essence a GOODSAC approach based
on geometric hashing to guess a good initial affine transformation that is
iteratively refined in order to retrieve a characteristic common point set
with minimal squared error. We successfully apply it for the biometric
identification of the bluespotted ribbontail ray Taeniura lymma.

1 Introduction

Euclidean motion of planar objects in 3D is equivalent to affine transformations
in 2D if we assume parallel projection neglecting occlusion. It is often possible
to robustly extract interest points from images that suffice to uniquely identify
a class of objects or even individual entities [1–3]. The identity of two clouds
under some transformation model can be established by a global invariant feature
[2, 4] or by aligning the two clouds [5]. Global features for point clouds like
shape contexts [6] or features derived by integrating a local feature over the
whole structure [4] are fast to compare as we only need to compute distances
in the feature space. Such features, however, cannot deal well with outliers as
every point affects the value in the feature space. Point registration performs
much better in the presence of outliers: once a valid transformation is found, a
similarity measure based on point correspondences is not affected. Rigid motion
of non-planar objects generally requires the construction of a 3D model to be able
to model the transformation in two dimensions [2]. In this paper we exploit the
fact that many objects possess partly planar surfaces and therefore can be partly
modeled with an affine transformation[7]. Sample applications are depicted in
Fig. 1.
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Fig. 1. Possible applications of the point registration algorithm include noninvasive
wildlife monitoring (a,b) and place recognition in mobile robotics (c).

Formalization of the Problem Let C be a point cloud containing points
pi = (x, y, 1)T in homogeneous coordinates. Let the common point set of two
clouds Ci under the affine transformation A be:

XA(C1, C2) = {(p1, p2) | p1 ∈ C1, p2 ∈ C2 : ‖Ap1 − p2‖ < δcorr} . (1)

We assume a correspondence (p1, p2) if the Euclidean distance of p2 and the
transformed point p1 is smaller than a threshold δcorr. We define the character-
istic common point set

X̂A(C1, C2) ⊆ XA(C1, C2), |X̂A(C1, C2)| ≥ #min (2)

as a subset of XA, holding enough correspondences to identify the object that
the point clouds originate from.

The minimum cardinality #min of X̂A(C1, C2) depends on the application.
For biometric identification, #min usually is a small value: The Battley System
reports two fingerprints identical when seven correspondences between minutiae
have been found[8], the seven most significant Eigenface coefficients suffice to
describe a face[9].

A fast and well understood method for aligning point clouds is the Iterative
closest Point algorithm[10] (ICP). The ICP needs a good initial alignment of the
point clouds and is hence not suitable for our problem by itself, but it is useful
to refine a transformation once a coarse initial guess has been made.

For recovering an affine transformation we need to find at least three corre-
sponding points. Local descriptors like SIFT[1], Spin Images[7] or orientation of
surface normals[11] are popular features to solve this task. In absence of such
descriptors, one can use invariant features based on the geometric configuration
of the points. [3, 12, 13] encode the points of a cloud relative to all possible 3
point bases and use a generalized hough voting to find a corresponding basis.
Aiger et al.[14] use a feature based on area ratios to find a corresponding basis
to a fixed basis of 4 points. A popular philosophy to speed up the search for
correspondences is is geometric hashing [3, 11, 12]: Points or groups of points are
indexed with with a feature that remains invariant under the assumed trans-
formation. When using groups of points two additional problems arise: 1. One
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has to make sure that the sampling strategy remains unaffected by the allowed
transformations of the cloud. Sampling all

(
n
3

)
combinations [3, 12] is only prac-

ticable for small clouds. 2. The feature for indexing also has to be invariant
against permutations of the input – to the best of our knowledge none of the
existing affine invariant features fulfills this property.

Contribution and Overview In this paper we present a novel algorithm to
find a characteristic common point set of two point clouds under the assumption
of an affine transformation. Our contributions are:

1. a family of affine invariant descriptors Tρ for sets of four points in arbitrary
order based on area ratios,

2. a novel strategy to partition the point cloud into a linear number of those
local four-point-neighborhoods based on a Voronoi decomposition, and

3. a point registration algorithm based on geometric hashing to identify a char-
acteristic common point set.

The remainder of the paper is organized as follows: In Section 2 we will introduce
the invariant mapping Tρ, in Section 3 we present our cloud partition algorithm,
and in section 4 we introduce the point registration based on the former two
sections. In section 5 we show the applicability of our algorithm for the biometric
identification of blue spotted ribbontail rays and conclude in Section 6.

2 Affine Invariants for 4 Points

An invariant mapping T of a pattern x is a function that maps all members of
an equivalence class εG under a transformation group G into one point of the
feature space:

xi
G∼ xj ⇒ T (xi) = T (xj) . (3)

As this necessary condition for invariance can already be achieved by a simple
constant function that maps the same value to every input, we also require

T (x1) = T (x2)⇒ x1
G∼ x2 , (4)

which would assure completeness [15]. This is difficult to achieve and might also
be difficult to prove in a domain with possibly infinite different patterns. We
therefore aim to construct invariants with a high degree of separability, which is
completeness on a subset of relevant patterns. Furthermore, we demand conti-
nuity of the invariant mapping T to be able to deal with noisy data, i.e. small
changes in the pattern result in small changes in the feature space.

Four not all collinear points pi
1

P = {p1, p2, p3, p4} (5)

1 in homogeneous coordinates like in Eqn. 1
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define four triangles 4i with at most one degenerate triangle having an area of
zero. We will call such a point set P a 4 point affine set (4PAS). Without loss
of generality we order the triangles ascending based on the area:

Area(4i) ≤ Area(4j)⇔ i < j. (6)

The sequence of triangles with equal areas is not important. We compute six
area ratios

Rij =
Area(4i)
Area(4j)

∀i < j. (7)

The Area ratio fulfills the following properties:

1. Due to the sorting, we have Rij ∈ [0, 1].
2. The area can be computed using the determinant which is a continuous

function in the point coordinates. Hence the area ratio is also continuous. It
can be shown that this also holds in the case of a change in the ordering of
triangles caused by coordinate noise.

3. The area ratio Area(41)
Area(42)

= Area(N1)
Area(N2)

, with Ni being an affine transformed

version of 4i, is invariant under affine transformations[16].

In the following, we will index the six ratios Rij with a single index for ease
of notation as the order is not important. We can now introduce the invariant
mapping function Tρ : R3×4 → [0, 1]

Tρ(P ) = Tρ(R1, . . . , R6) =
1

6!

∑
π∈S6

Rρ1π(1) · . . . ·R
ρ6
π(6) . (8)

The mapping Tρ is a symmetric polynomial parameterized with a set of expo-
nents ρ ∈ [0,∞)6, i.e. the positive part of the R6. We need this restriction to
assure that Rij ∈ [0, 1]. In order to be invariant to a permutation of the input
we integrate over the symmetric group S6.

We want to use Tρ as an indexing function for a hash table. Therefore we
aim to find a parameterization ρ that yields an invariant distribution as uniform
as possible, as this is optimal for hashing[13]. The shape of the distribution
depends on the underlying population of 4PAS and the parameterization ρ. Fig. 2
illustrates the impact of the parameterization ρ. Note that the hashing will work
with any kind of distribution, the degree of uniformity only has an impact on the
number of candidates within a tolerance level. We did not elaborately analyze
this part of the problem and choose ρ = [1, 1, 0, 0, 0, 0] as parameterization for
the further experiments, as it yields the most uniform distribution among the
parameterizations tested.

3 Voronoi Decomposition

With geometric hashing, we want to establish an initial pairing between two
4PAS P that lie on a characteristic common point set (Eqn. 2) of two objects.
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Fig. 2. The histograms show invariant distributions for 10.000 4PAS (see Sec. 3), sam-
pled from a typical population of Taeniura lymma (see Sec. 5) under different param-
eterizations ρ. The distribution (c) is not suitable for hashing.

As we do not make any assumptions for the initial configurations of the point
clouds, we need to partition the cloud into local neighborhoods2 of four points
independent of the cloud’s orientation.

The Voronoi decomposition partitions the R2 into disjunct cells based on a
set of centroids ci. For each cell holds that every point of the cell is closer to its
centroid ci ∈ C than to every other centroid cj ∈ C:

Vcell(ci) = {p | ∀j 6= i ‖ci − p‖ < ‖pj − p‖} . (9)

Note that all the Vcell(ci) are disjoint, but their union does not equal the R2 as
the borders of the cells are not part of the cell. These borders are referred to as
Voronoi segments and can be defined in the following way:

Vseg(C) = R2 \
⋃
ci∈C
Vcell(ci) (10)

These segments represent the borders of the distinct Voronoi cells. All points on
a segment are equidistant to at least two Voronoi sites. The intersection points
of the borders define a Voronoi node:

Vnodes(C) = {v | ∃ci, cj , ck ∈ C : ‖ci − v‖ = ‖cj − v‖ = ‖ck − v‖} . (11)

We will construct the set P containing the 4PAS P by extracting the four nearest
neighbors for every Voronoi node v ∈ Vnodes(C) (See Fig. 3 for an illustration).
The construction of a Voronoi decomposition takesO(n log(n)) time and contains
O(n) Voronoi nodes. The distance queries are issued on a kd-tree that also takes
O(n log(n)) for construction and O(log(n)) for a nearest neighbor query. The
overall preprocessing time for a point cloud hence is in O(n log(n)).

This partitioning strategy is canonical for similarity transformations as rela-
tive point distances do not change. It therefore is also valid for affine distortions
that do not contain strong skews or strong anisotropic scaling. The number of
4PAS ∈ P is linear in the number of points in the point cloud.

2 The points of the characteristic common point set originate from a locally planar
part of the object.
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Fig. 3. A Voronoi node with its four nearest neighbors.

4 Point Registration

The goal of the point registration is to find the affine transformation A that
defines a characteristic common point set (Eqn.2) of two point clouds Ci. We
use geometric hashing to establish an initial correspondence between two 4PAS
that are indexed by the invariant Tρ (Eqn. 8). This seed is used to compute an
initial transformation which is iteratively refined to obtain the transformation
that minimizes the quadratic error between the assumed point correspondences.
This can be seen as a GOODSAC [17] approach as we make an informed guess
(through hashing) for a good initial alignment. To achieve robustness against
bin-jumping, we use a kd-tree for indexing the set of 4PAS instead of fixed bin
sizes. For a 4PAS P 1 we consider every P 2 that lies within a certain tolerance
δ as a candidate correspondence: |Tρ(P 1)− Tρ(P 2)| ≤ δ.

4.1 Pseudoinverse Matrix

We define the affine transformation A and two 4PAS:

A =

a1 a2 a3
a4 a5 a6
0 0 1

 ,P 1 = {p1, . . . ,p4} ⊂ C1, P 2 = {p1, . . . ,p4} ⊂ C2. (12)

Without loss of generality we align C1 → C2, i.e. A(P 1) = P 2, with point
correspondences pi1 ∼ pi2. Therefore, we have to solve:

p1x p1y 1 0 0 0
0 0 0 p1x p1y 1
...

...
...

...
...

...
pnx pny 1 0 0 0
0 0 0 pnx pny 1


︸ ︷︷ ︸

M


a1
a2
a3
a4
a5
a6


︸ ︷︷ ︸

a

=


p̃1x
p̃1y

...
p̃nx
p̃ny


︸ ︷︷ ︸

b

. (13)

This overdetermined linear system of equations (Eqn. 13) encodes a point cor-
respondence in two lines, as the x– and y–coordinates of a point each impose
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a condition. For the initial pairing, the number of correspondences is n = 4.
It can be solved using the Moore-Penrose Pseudoinverse M+, minimizing the
quadratic Euclidean error between the corresponding points:

a = M+b . (14)

In general we do not know the corresponding points initially. Therefore we have
to check all 4! permutations of P 1 against P 2. We return the candidate trans-
formation with minimal error (Eqn. 15).

4.2 Iterative Refinement

Once we have an initial guess for the affine transformation A, we iteratively add
more correspondences to the Eqn. 13. We continue adding correspondences as
long as a maximum likelihood classification of the error ofA indicates its validity.
We find the next correspondence by checking a small number k of candidates in
the neighborhood of the already found correspondences and take the one with
the smallest error (Alg. 1, lines 3 and 5). With this strategy, we find the next
most likely corresponding points without explicitly specifying a threshold δcorr
(Eqn. 1). The goal of the refinement is to estimate the size of the common point
set XA(C1, C2) that is implied by A. We accept two objects as identical once its
size reaches the application specific threshold #min. Naturally, the more common
points we find, the more confident we can be about the identity of the objects.

We define the error of a mapping of two sets of n correspondences K1 →K2

with respect to A as

eA(K1,K2) =
1

η2

n∑
i=1

‖A(Ki
1)−Ki

2‖2 , (15)

with normalizer η being the average distance of neighboring points in C2. We
need to normalize the error to account for different scalings in the data. The
error rises if the assumed correspondences can not be modeled well by an affine
transformation which usually is the case if they do not originate from a common
point set. This error measure enables us to to deal with noisy data well: By
learning the distributions of the expected error of A for a given number of
correspondences n, the registration algorithm adapts optimally to the noise-level
present in the application. With noise we refer to errors in the point coordinates
due to detector inaccuracies and not perfectly planar surfaces.

We have two classes: ωpos for correspondences that originate from a common
point set and ωneg for assumed correspondences that do not originate from a
common point set. We continue adding correspondences as long as maximum
likelihood classification of the error eA of the transformation

p(eA| ωpos, n) < p(eA| ωneg, n) (16)

indicates its validity. The distributions p(eA|ω{pos,neg}, n) for the positive and
negative cases with n points have to be learned on a set of labeled correspon-
dences originating from the population that we wish to work on.
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Algorithm 1 [K1,K2,A] = refineTransformation(A, C1, C2,K1,K2)

1: for n ∈ 4, . . . ,#min do
2: µ = mean(K2) {center of gravity}
3: B ← KNN(C2,K2, k) {k nearest neighbors to K2 on C2}
4: for c2 ∈ B do
5: c1 = KNN(A ◦ C1, c2, 1)
6: K1 ← c1,K2 ← c2 {add to correspondences}
7: A = computeAFF(K1,K2) {using Eqn. 14}
8: if p(eA| ωpos, n) < p(ea| ωneg, n) then {ML classification of quality}
9: remove ci from Ki

10: else
11: break
12: end if
13: end for
14: if no new correspondence found then
15: return K1,K2,A
16: end if
17: end for

4.3 Complexity

The complexity of the registration algorithm is directly proportional to the size
of the queue holding the candidate pairings. For each pairing we have to run the
iterative refinement (Alg. 1) that runs at most #min iterations. We can assume
that this is a rather small value in real world applications (See Sect. 5). Therefore
we estimate the cost of one refinement with O(#min). The size of the queue is
dependent on the discrimination power of Tρ and the noise level of the data. The
best case, i.e. a characteristic common point set exists, is achieved in constant
time. The worst case (negative matching on a repetitive pattern) is quadratic in
the number of points as we have to try all possible pairings. The average case
for the negative matching is linear in the number of points, if the hashing yields
few possible candidate pairings. This usually is the case for random patterns.

5 Experiments

We test the algorithm for the biometric identification of the bluspotted ribbontail
ray, working with a total of 42 underwater pictures from 6 different individuals
(7 pictures each). We extract the point pattern using a multi scale LoG detector.
The extracted point data contains nearly no false positives on the surface of the
ray, but may contain lots of outliers. The average point cloud contains 140 points
and is partitioned into 180 4PAS. We learn the positive distribution p(eA|ωpos, n)
on one hand labeled set of 7 pictures for n ∈ 4, . . . , 21, retrieving around 500 error
measurements eA for each n. The negative case ωneg is learned on point clouds
of two different individuals by sampling iteratively increasing neighborhoods of
n points on the clouds.
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Fig. 4. A positively identified sting ray with its characteristic common point set (red)
and the initial pairing of 4PAS (green).

We perform a pairwise comparison on the remaining 5 sets conducting a to-
tal of 595 tests. Fig. 5 shows the precision–recall diagram of our classification
results. We achieve a precision of 1 with a recall of 0.75 which validates our
algorithm for the biometric identification. With #min = 17 we would achieve
perfect confidence on this population. The points that lie outside of the charac-
teristic common point set can be regarded as outliers, although they most likely
represent a real blue spot on the ray’s surface – but not from the same planar
surface patch. To the best of our knowledge, no other point registration algo-
rithm exists that can handle point clouds under affine distortions with ∼ 90%
outliers in arbitrary initial positions.

For the positive cases we find the solution after an average of 69 pairings.
The algorithm was implemented using MATLAB R2009a on a Intel Core 2 Duo.
Absolute timings for the positive matching are ∼ 3 sec. and ∼ 15 sec. for the
negative case. The learning of p(eA|ω{pos,neg}, n) takes less than one second for
every n.

Fig. 5. A cardinality of #min = 17 for the characteristic common point set identifies
an individual of Taeniura lymma unambiguously on our dataset.
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6 Conclusion

We presented a novel point registration algorithm for matching two dimensional
point clouds originating from partly planar surfaces under affine distortions. It
can handle a huge amount of outliers and is able to deal with noisy data well.
We successfully apply it for the biometric identification of Taeniura lymma.
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