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Abstract—When using deformable models for the segmen-
tation of biological data, the choice of the best weighting
parameters for the internal and external forces is crucial.
Especially when dealing with 3D fluorescence microscopic data
and cells within dense tissue, object boundaries are sometimes
not visible. In these cases, one weighting parameter set for the
whole contour is not desirable. We are presenting a method
for the dynamic adjustment of the weighting parameters, that
is only depending on the underlying data and does not need
any prior information. The method is especially apt to handle
blurred, noisy, and deficient data, as it is often the case in
biological microscopy.
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I. INTRODUCTION

For the analysis of inter- and intra cell signaling processes
from 3D microscopic data, an exact knowledge about the
anatomy of the individual cells is needed. Using active sur-
faces in order to perform segmentation or to fit models to the
data is a widely employed method. In [2], an active surface
model for the detection and segmentation of Drosophila
Schneider cell (also called S2 cell) nuclei from strongly
blurred 3D widefield microscopic data is presented. Because
of the especially adapted force field, this method is able to
deal with the low data quality caused by the microscopy
technique as well as problem inherent difficulties like touch-
ing cells. Still, finding the best active surface parameters
is crucial, and in most cases the same parameters do not
work for different datasets. Thus, an automatic adjustment
of these weighting parameters is desirable. For the special
task of segmenting cell nuclei, it is also often the case that
the contour of the object we want to segment is not fully
visible because of bad contrast or staining artifacts. E.g
cell nucleoli are often not stained and thus cause holes in
the nucleus boundaries, whereas regions of dense chromatin
result in very bright image regions and thus hamper a good
segmentation. This is why we additionally want our method
to locally adapt the weighting parameters for every surface

point separately - thus promoting smooth surfaces where the
data is lacking. The method we present here is based on the
assumption, that the boundaries of the objects we want to
segment are in some way similar over the whole object’s
surface. The external, data driven active surface forces are
thus strongly weighted if this constraint is fulfilled. If a
boundary estimate looks much different from the rest of the
boundary, the data is considered deficient and high weights
are assigned to the internal active surface forces. Thus we
are replacing the classical low level weighting parameters by
one high level parameter, which is the ratio of the boundary
that is surely not missing in the recording.
The main difference to the active appearance models as
e.g. presented in [5], where the relationship between model
parameter displacements and residual errors is learned in a
training step, is that for our method no prior knowledge
about the concrete boundary appearance is included and
no training has to be done. In [4], a dynamic combination
of boundary and region information for 2D segmentation
problems is presented, which is, as our approach, based
on probability maximization. Unlike in our method, the
dynamic weighting is there included into a level set frame-
work and used to combine region and edge information in
2D color images. The internal forces are not dynamically
regulated. In [3], a level set segmentation algorithm handling
missing edges is presented, that is based on gradient flow.
Unlike our algorithm, this method relies on a user-defined
initial guess.
We are applying our method to the segmentation of two
types of cell nuclei, to DAPI stained cultures of Drosophila
S2 cells from 3D widefield microscopic recordings and
to cells in a DAPI stained Arabidopsis Thaliana root tip
recorded with a confocal laser scanning microscope (CLSM)
(see fig. 1).

II. SEGMENTATION WITH 3D ACTIVE SURFACES

Active surfaces are a common method for the segmenta-
tion of biological data. Given a rough estimate of the objects



(a) 3D CLSM recording of DAPI
stained Arabidopsis Thaliana root tip
cell nuclei in xy-view.

(b) DAPI stained Drosophila S2
cell nuclei from 3D wide field mi-
croscopy in xy-view.

(c) The same slice with the initial
active surface grid of one nucleus.

Figure 1. Raw data and initial surface grid.

position and size, i.e. centers c and radii r, an accurate fitting
of the model to the underlying data can be performed.
The 3D active surface can be described as a function X
which is placed on a 3D dataset I . Active surfaces have
internal energies, depending only on the shape of the model
itself, and are subjected to external energies coming from
the underlying dataset to which the model shall be adapted.
The total energy of an active surface is thus E(X) =
Eint(X) +Eext(X). The adaption takes place in minimizing
this energy [1].
Mesh Design In 3D space, we need a mesh structure
to sample the surface. As we focus on the segmentation
of 2-sphere like objects, we choose a spherical grid for
the segmentation. An equidistant sampling of the sphere
can be done by an icosahedron structure. As we want to
have a higher resolution, we are initializing our surfaces
with a subdivided icosahedron, i.e. a triangle mesh, with
162 vertices vi ∈ V, where V is the set of all vertices
with cardinality |V|. Initially, all vertices vi are located at
positions xi that have distance r from the object’s center c
(compare fig. 1(c)).
Internal Forces As Eint, the weighted first and second
derivative of the surface are used, preventing the surface
from stretching and bending too much. The minimization
of E leads to an Euler-Lagrange equation that can be
considered as a force balance system [1]:

αFint + βFext = 0. (1)

with the internal forces Fint := ∂2X
∂s2 − ∂2

∂s2
∂2X
∂s2 =: Felasticity +

Frigidity. These energies are minimal for planar surfaces.
Therefore, on spherical structures, Felasticity acts as shrinking
force. To avoid shrinking effects, we allow Felasticity only to
pull the surface vertices on the tangent space of a sphere
around the objects centers, i.e. we project the force onto
this tangent space.
External Forces The external forces are responsible for
the attraction of the active surface to the underlying data.
For the segmentation of the nuclei, some application specific
challenges are given. To allow for good segmentation results,
we include the fact that our objects are sphere-like as
a prior assumption into the force field. In [2], we have
presented an external force field Fext that is based on the

(a) Fext (b) α = 0.9, β = 0.1

(c) α = 0.5, β = 0.5 (d) α = 0.1, β = 0.9

Figure 2. External force field and segmentation results with fixed
parameters.

idea of projectiong the dataset gradients onto their radial
component, and we have shown there, that this force field
has some major advantages compared to standard gradient
based force fields: it promotes 2-spherical shapes, and its
capture range is much larger. This is important, because of
the touching cells in the datasets. Compare fig. 2(a) for an
example.
Having these force fields defined, a good segmentation can
still only be performed, if a suitable parameter set is given
(compare fig. 2(b)-(d)).

III. DYNAMIC PARAMETER ADJUSTMENT

In most cases when segmentation of biological data is
done, we are searching for certain boundary properties,
e.g. edge profiles, texture, etc., which are in most cases
homogeneous over the whole object surface. This is why
we have based our method for the dynamic parameter
adjustment on a homogeneity constraint on the boundary
profile.
Since we are assuming 2-sphere like objects, we are consid-
ering the grayvalue profiles rxi ∈ Rl of the surface vertices
vi in radial direction, where l is the number of sampling
points on the profile. For arbitrary shapes, the boundary
profiles along the model surface normals should be taken
instead. In every iteration step, we compare the possibly
new profiles given external forces only to the profiles of
the previous step. This is done to encourage the surface to
move according to external forces whenever the resulting
position fits into the average of the profiles. If a new vertex
profile is similar to the other profiles, the underlying data
contains valuable information and thus the external forces
shall have high weights. If a new vertex profile is not similar
to the other profiles, the underlying data is considered to
be deficient. In these cases, we want to promote smooth,
sphere-like model surfaces and thus assign high weights to
the internal forces. This main idea is formalized as follows.
To model the vertex similarities we have chosen a mul-



tivariate normal distribution over the vertex profiles. The
probability density function (PDF) is given by

f(rxi) =
1

(2π)l/2|Σ|1/2
· e− 1

2 (rxi
−µr)TΣ−1(rxi

−µr), (2)

where Σ is the covariance matrix of all |V| profiles rxi and
µr the expected value. Considering the joint distribution is
necessary because of the high correlation of the grayvalues
on the profiles. The PDF f allows to compute the probability
of a profile P (rxi). The vertices lie on valid data with the
probability P (B), which is the only, high level parameter
we use. Since we assume that the majority of vertices, e.g.
80%, lie on valid data, we compute a second PDF gf (rxi) to
describe the appearance of the 80% of the profiles r̄xi that
are most probable according to f , i.e. that describe valid
boundary information:

gf (rxi) =
1

(2π)l/2|Σ̄|1/2
· e− 1

2 (rxi
−µr̄)T Σ̄−1(rxi

−µr̄)), (3)

where Σ̄ is the covariance matrix of the P (B) · |V| most
probable profiles r̄xi according to f and µr̄ is the respective
expected value. With gf , we can compute the conditional
probability of a profile rxi given the fact that it contains
valid boundary information p(rxi |B), and thus with the
Bayes Theorem the conditional probability of a profile rxi

to contain boundary information given its appearance:

p(B|rxi) =
p(rxi |B) · P (B)

P (rxi)
. (4)

For every vertex vi, we compute its new position xext
i given

external forces only and the according profile rxext
i

. Then,
we compute p(B|rxext

i
).

The weights αi and βi that are assigned to vertex vi in one
iteration step are finally computed as:

αi = 1− p(B|rxext
i

), βi = p(B|rxext
i

), (5)

to ensure high weights for the external forces if rxext
i

fits
well to the majority of the profiles, and to assign low
weights for the external forces if the profile does not. In
most cases, we do not really want αi to be 0, ensuring no
smoothness at all. Thus we are mostly adding a small ε to
the αi.
During the evolution of the model, the determinant of
the covariance matrix |Σ| contains the information about
the profile similarities. Once the model is attracted to the
object boundaries, |Σ| is small, whereas if the surface lies
on heterogeneous regions, |Σ| is large. This is why we
are taking |Σ| normalized by the maximum of its current
value and its previous values as an additional convergence
criterion, i.e. the evolution stops at step t, if the surface does
not change or if |Σ|t

max(|Σ|1,...,t) ≤ 0.3. The normalization
has to be done because |Σ| is maximal if the surface lies
on heterogeneous data, e.g. is partially converged. If the
surface is initialized in the background, one might start

toy data GVF(∇|∇I|)
and Fext

α = 0.2
β = 0.8

dynamic
weighting

Figure 3. Results for the toy examples with a classic GVF force field and
Fext.

with a very low |Σ|. The value 0.3 is chosen heuristically.
In our implementation, we compute the profile for each
vertex over ten sampling points in radial direction from the
object center. The resulting covariance matrices Σ and Σ̄
are thus 10× 10 matrices.

IV. EXPERIMENTS

The method was first tested on toy examples (see fig. 3)
and then evaluated on two different types of cell nuclei: on
cultures of Drosophila S2 cells that have been recorded with
a widefield fluorescence microscope (393 cells) and on cells
in a DAPI stained Arabidopsis Thaliana root tip recorded
with a CLSM. The widefield recordings of the Drosophila
cells have been processed without deconvolution, because
the strong deconvolution artifacts in z-direction would have
made a good segmentation impossible. The toy examples
are designed to represent the problems that are present in
the biological datasets. The first toy example is a sphere
with a spherical hole, which should be ignored whenever en-
countered in our biological data, because it would probably
correspond to a nucleolus. The second example is a sphere
with a three times brighter sphere inside, corresponding
to a spot of dense chromatin, which should not influence
the segmentation neither. We have added gaussian noise
to the two examples. With the dynamic weighting of the
active surface forces, these toy examples have been well
segmented, which, with fixed parameters, could not be done.
For comparison, we have segmented the toy data with a
classic force field GVF(∇|∇I|) and Fext.
On our real data, the method worked satisfactorily as well.

The detection and radius estimation was done as in [2], and



the surfaces were initialized from outside, with spheres with
1.5 times the estimated radius. Due to the strong blurring
in z-direction it is hard to judge the segmentation of the
Drosophila S2 cell nuclei in the lower regions, but the
overall result seems reasonable for most of the 393 nuclei.
See fig. 4 for some examples. On the left, you can see an
overview of a dataset, on the right, the segmentation results
for four example cells in orthogonal views.

Figure 4. Segmentation results for the Drosophila S2 cell nuclei.

In fig. 5, the segmentation results of the proposed dynamic
parameter estimation are displayed in direct comparison
to the segmentation with fixed parameters. For the fixed
parameters, we heuristically choose α = 0.3 and β = 0.8
which actually shows good results as long as there are not
too many bright chromatin spots in the data.

Figure 5. Segmentation results of eight cells in three orthogonal views.
The white bar indicates as above the length of 5µm. The contours found
with fixed parameters are drawn in red, contours found with the proposed
dynamic parameter estimation are drawn in green. The red contours are
attracted to the bright chromatin spots if the spots are located near the
boundary.

The segmentation of the Arabidopsis Thaliana nuclei
is more difficult because of the dense tissue. The nuclei
oftentimes touch one another and cell organelles touch the
boundaries. Also, the more central the nuclei lie inside
the root, the more difficult is the segmentation with our
homogeneity based parameter weighting: as it can be seen
in fig. 6, the nucleus boundaries become less and less

homogeneous on the inner layers. Despite these facts, most
of the nuclei could be properly segmented, see fig. 6 for an
example slice, plotted in two orthogonal views. The colors
correspond to the cell layer in the root.

Figure 6. Segmentation results for Arabidopsis Thaliana root tip nuclei.

V. CONCLUSION

We have presented a probability based method to auto-
matically adjust active surface parameters during the surface
adaption process. The weighting parameters are regulated
dynamically for each individual vertex based on its appear-
ance - without the input of any prior knowledge. Thus,
we avoid tedios parameter adjustment and allow for good
segmentation results even in deficient data. For our noisy,
biological datasets, the method has some major advantages
compared to standard active surfaces with constant weight-
ing parameters all over the surface: first, regions where the
boundary information is missing can be closed smoothly, and
second, gradients that originate from bright inner regions of
the nuclei can be ignored, such that the correct boundary
can be found.
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