
Dense Point Trajectories by GPU-accelerated
Large Displacement Optical Flow?

Narayanan Sundaram, Thomas Brox, and Kurt Keutzer

University of California at Berkeley
{narayans,brox,keutzer}@eecs.berkeley.edu

Abstract. Dense and accurate motion tracking is an important require-
ment for many video feature extraction algorithms. In this paper we pro-
vide a method for computing point trajectories based on a fast parallel
implementation of a recent optical flow algorithm that tolerates fast mo-
tion. The parallel implementation of large displacement optical flow runs
about 78× faster than the serial C++ version. This makes it practical to
use in a variety of applications, among them point tracking. In the course
of obtaining the fast implementation, we also proved that the fixed point
matrix obtained in the optical flow technique is positive semi-definite. We
compare the point tracking to the most commonly used motion tracker -
the KLT tracker - on a number of sequences with ground truth motion.
Our resulting technique tracks up to three orders of magnitude more
points and is 46% more accurate than the KLT tracker. It also provides
a tracking density of 48% and has an occlusion error of 3% compared
to a density of 0.1% and occlusion error of 8% for the KLT tracker.
Compared to the Particle Video tracker, we achieve 66% better accuracy
while retaining the ability to handle large displacements while running
an order of magnitude faster.

1 Introduction

When analyzing video data, motion is probably the most important cue, and
the most common techniques to exploit this information are difference images,
optical flow, and point tracking. Since difference images restrict us to static cam-
eras and we want to extract rich and unrestricted motion information, we will
focus only on the last two techniques. The goal here is to enable accurate motion
tracking for a large set of points in the video in close to real time and in this
paper, we make substantial progress towards that goal. The quality of both the
estimated flow field and the set of point trajectories are very important as small
differences in the quality of the input features can make a high level approach
succeed or fail. To ensure accuracy, many methods only track a sparse set of
points; however, dense motion tracking enables us to extract information at a
much finer granularity compared to sparse feature correspondences. Hence, one
? This work was supported by the German Academic Exchange Service (DAAD) and

the Gigascale Systems Research Center, one of five research centers funded under the
Focus Center Research Program, a Semiconductor Research Corporation program.

2 Narayanan Sundaram, Thomas Brox, and Kurt Keutzer

wants to use the most recent motion estimation technique providing the most
reliable motion features for a specific task. For dense and accurate tracking there
are usually computational restrictions. Video data processing requires far more
resources than the analysis of static images, as the amount of raw input data is
significantly larger. This often hinders the use of high-quality motion estimation
methods, which are usually quite slow [1] and require expensive computer clus-
ters to run experiments efficiently. For this reason, ways to significantly speedup
such methods on commodity hardware are an important contribution as they
enable more efficient research in fields that build upon motion features. This is
important as more processing is usually required to utilize this motion informa-
tion for use in video processing applications. Fast implementations of the KLT
tracker and optical flow [2, 3] are examples that have certainly pushed research.

In this paper we present a fast GPU implementation of large displacement op-
tical flow (LDOF) [4], a recent variational optical flow method that can deal with
faster motion than previous optical flow techniques1. The numerical schemes
used in [4] and most variational methods are based on a coarse-to-fine warping
scheme, where each level provides an update by solving a nonlinear system given
by the Euler-Lagrange equations followed by fixed point iterations and a linear
solver, as described in [5]. However, the relaxation techniques used in the linear
solver that work best for serial processors are not efficient on parallel processors.
We investigate alternative solvers that run well on parallel hardware, in partic-
ular, red-black relaxations and the conjugate gradient method. We show that
the conjugate gradient method is faster than red-black relaxations, especially on
larger images. We also prove that the fixed point matrix is positive semi-definite,
thus guaranteeing the convergence of the conjugate gradient algorithm. We ob-
tain a speedup of about 78×, which allows us to compute high quality LDOF
for 640×480 images in 1.8 seconds. Extrapolating the current progress in GPU
technology, the same code will even run in real-time in only a few years. While
additional speedups are often obtained at the cost of lower quality, we ensured
in our implementation that the quality of the original method is preserved.

We also propose a method for dense point tracking by building upon the
fast implementation of large displacement optical flow. Point trajectories are
needed whenever an approach builds on long term motion analysis. The domi-
nant method used for this task is the KLT tracker [6], which is a sparse tech-
nique that only tracks a very small number of designated feature points. While
for many tasks like camera calibration such sparse point trajectories are to-
tally sufficient, other tasks like motion segmentation or structure-from-motion
would potentially benefit from higher densities. In [1] and [7], a method for
point tracking based on dense variational optical flow has been suggested. The
method proposed in [1] is computationally very expensive and impractical to
use on large datasets without acceleration.The point tracking we propose uses
a similar technique, as points are propagated by means of the optical flow field;
however, we do not build upon another energy minimization procedure that de-
tects occluded points mainly by appearance, but do the occlusion reasoning by

1 Executables and mex functions can be found at the authors’ websites

Dense Point Trajectories by GPU-accelerated LDOF 3

a forward-backward consistency check of the optical flow. In a quantitative com-
parison on some sequences from [8], where close to ground truth optical flow
has been established by manually annotating the objects in the scene, we show
that we can establish much denser point trajectories with better quality than
the KLT tracker. At the same time, our method is more accurate and runs an
order of magnitude faster than the technique in [7]. Such fast, high quality track-
ing will enable new applications such as better video summarization or activity
recognition through improved tracking of limbs and balls in sports videos.

2 Related work

Finding efficient solutions to variational optical flow problems has been an active
area of research. On serial hardware, multi-grid solvers based on Gauss-Seidel
have been proposed in [9]. A GPU implementation of the formulation in [9] has
been proposed using Jacobi solvers [10]. Compared to [10], our implementation
handles large displacements through dense descriptor matching. Such extensions
enable us to handle fast motion well [11], [4]. A multi-grid red-black relaxation
has been suggested in a parallel implementation of the linear CLG method [12].
Very efficient GPU implementations of other variational optical flow models have
been proposed in [3, 13, 14].

The conjugate gradient algorithm is a popular solver for convex problems and
has been used for optical flow problems with convex quadratic optimization [15].
In order to theoretically justify the use of conjugate gradients, we prove that
the system matrix of general variational optical flow methods is positive semi-
definite and thus the conjugate gradient solver is guaranteed to converge. It was
previously proven that the Horn-Schunck matrix is positive definite [16]. Our
proof is more general and applicable to most variational formulations [9], [5], [17]
and [11].

The most popular point tracker is the Kanade-Lucas-Tomasi (KLT) tracker [6],
which constructs an image pyramid, chooses points that have sufficient struc-
ture and tracks them across frames. New features are periodically detected to
make up for the loss of features because of occlusions and tracking errors. This
is generally considered to be fast and accurate, but it tracks only a few points.
Efficient GPU implementations of the KLT tracker have been released in [18]
and [2]. While the KLT algorithm itself is quite old, the implementation in [2]
compensates for changes in camera exposure to make it more robust. Non-local
point trackers that use global information have also been proposed [19].

The more advanced point tracker in [1] and [7] tracks points by building on
top of a variational technique. This comes with high computational costs. It
takes more than 100 seconds to track points between a pair of 720×480 frames.
Moreover, this technique cannot deal with large displacements of small structures
like limbs, and it has never been shown whether tracking based on variational
flow actually performs better than the classic KLT tracker.

4 Narayanan Sundaram, Thomas Brox, and Kurt Keutzer

3 Large displacement optical flow on the GPU

Large displacement optical flow (LDOF) is a variational technique that integrates
discrete point matches, namely the midpoints of regions, into the continuous en-
ergy formulation and optimizes this energy by a coarse-to-fine scheme to estimate
large displacements also for small scale structures [11]. As pointed out in [4], re-
gion matching can be replaced with matching other features like densely sampled
histograms of oriented gradients (HOG) [20]. These simpler features allow us to
implement both the variational solver and the discrete matching efficiently on
the GPU.

The considered energy functional that is minimized reads:

E(w) =

Z
Ω

Ψ1

`
|I2(x + w(x))− I1(x)|2

´
+ γ Ψ2

`
|∇I2(x + w(x))−∇I1(x)|2

´
dx

+β

Z
Ω

δ(x) ρ(x) Ψ3(|w(x)−w1(x)|2)dx +

Z
Ω

δ(x) |f2(x + w1(x))− f1(x)|2dx

+α

Z
Ω

ΨS
`
|∇u(x)|2 + |∇v(x)|2

´
dx

(1)

where w = (u v)T and Ψ∗(s2) is a general penalizer function with its derivative
Ψ ′∗(s

2) > 0. A popular choice in the literature is Ψ∗(s2) =
√
s2 + ε2 [4].

Since speed and accuracy are foremost in solving the optical flow problem, it
is necessary to take advantage of the improvements in modern microprocessors to
aid the solution. In particular, parallelism has emerged as a key to performance
scaling. Hence, it is necessary to study and develop algorithms and techniques
that best utilize multiple processing elements simultaneously.

A parallel implementation of the descriptor matching is relatively straight-
forward since several points are being searched for in parallel without any depen-
dencies between them. It is important, however, to take advantage of coalesced
memory accesses (vector loads/stores) in order to maximize the performance of
the GPU. In the rest of the section, we will focus on the parallel implementation
of the variational solver that considers these point correspondences.

3.1 Variational solver on the GPU

We minimize (1) by writing the Euler-Lagrange equations and solving them
through a coarse-to-fine scheme with fixed point iterations. This results in a
sequence of linear systems to be solved, where each pixel corresponds to two
coupled equations in the linear system:

(Ψ ′1I
k
x

2
+ γΨ ′2(Ikxx

2
+ Ikxy

2
) + βρΨ ′3)duk,l+1 + (Ψ ′2I

k
xI

k
y + γΨ ′2(IkxxI

k
xy + IkxyI

k
yy))dvk,l+1

− α div(Ψ ′S∇(uk + duk,l+1)) = −Ψ ′1(IkxI
k
z) + γΨ ′2(IkxxI

k
xz + IkxyI

k
yz)− βρΨ ′3(uk − u1)

(2)

(Ψ ′1I
k
y

2
+ γΨ ′2(Ikyy

2
+ Ikxy

2
) + βρΨ ′3)dvk,l+1 + (Ψ ′2I

k
xI

k
y + γΨ ′2(IkxxI

k
xy + IkxyI

k
yy))duk,l+1

− α div(Ψ ′S∇(vk + dvk,l+1)) = −Ψ ′1(Iky I
k
z) + γΨ ′2(IkyyI

k
yz + IkxyI

k
xz)− βρΨ ′3(vk − v1)

For details on the derivation of these equation we refer to [4]. From symmetry
considerations, the discretization usually produces a symmetric block pentadi-
agonal matrix with 2× 2 blocks (for a 5-point Laplacian stencil). From equation

Dense Point Trajectories by GPU-accelerated LDOF 5

(2), it is clear that only the diagonal blocks are dense, while the off-diagonal
blocks are diagonal matrices. In fact, for the isotropic functionals we consider
here, they are scaled identity matrices.

Positive semi-definiteness of the fixed point matrix. We have proven in
[21] that the fixed point matrix is symmetric positive semi-definite because (a)
the diagonal blocks are positive definite and (b) the matrix is block diagonally
dominant [22]. The detailed proof is provided in [21]. An interesting takeaway
from the proof is that it is not restricted to convex penalty functions Ψ∗. The only
restriction on Ψ∗ is that it should be increasing. Moreover, the proof technique
generalizes to most variational optical flow methods, e.g. [5], [9],[11] and [17].

Linear solvers. On the CPU, the linear system is usually solved using Gauss-
Seidel relaxations, which have been empirically shown to be very efficient in this
setting [23]. The Gauss-Seidel method is guaranteed to converge if the matrix
is symmetric positive definite. Unfortunately, the Gauss-Seidel technique is in-
herently sequential as it updates the points in a serial fashion. It is hard to
parallelize it efficiently on multi-core machines and even harder on GPUs.

It is possible to choose relaxation methods that have slightly worse conver-
gence characteristics, but are easy to parallelize, such as Red-black relaxation [24].
A single red-black relaxation consists of two half iterations - each half iteration
updates every alternate point (called red and black points). The updates to all
the red points are inherently parallel as all the dependencies for updating a red
point are the neighboring black pixels and vice versa. Usually, this method is used
with successive overrelaxation. Since we have a set of coupled equations, each
relaxation will update (ui, vi) using a 2× 2 matrix solve. Red-black relaxations
have been used in a previous parallel optical flow solver [12].

Besides red-black relaxation, we consider the Conjugate gradient method.
This requires symmetric positive definiteness as a necessary and sufficient con-
dition for convergence. The convergence of the conjugate gradient technique
depends heavily on the condition number of the matrix κ = λmax

λmin
. The condi-

tion numbers of the matrices obtained in the optical flow problems are very large
and hence, convergence is usually slow.

A standard technique for improving convergence for ill-conditioned matrices
is preconditioning to reduce the condition number of the system matrix. The pre-
conditioner must be symmetric and positive definite. The special structure of the
matrix allows for several regular pre-conditioners that work well in practice. In
particular, we know that the diagonal blocks of the matrix are positive definite.
Hence, a block diagonal matrix with only the diagonal blocks of the matrix is
symmetric and positive definite and forms a good pre-conditioner. This pre-
conditioner is usually referred to as a block Jacobi preconditioner. From now
on, unless specified, we use the term conjugate gradient solver to refer to the
preconditioned conjugate gradient solver with a block Jacobi preconditioner.

Performing this algorithmic exploration is important as choosing the right
algorithm for the right platform is essential for getting the best speed-accuracy
tradeoff. This fast LDOF implementation can now be used to track points in
video.

6 Narayanan Sundaram, Thomas Brox, and Kurt Keutzer

Fig. 1. Left: (a) Initial points in the first frame using a fixed subsampling grid. Mid-
dle: (b) Frame number 15 Right: (c) Frame number 30 of the cameramotion sequence.
Figure best viewed in color.

4 Point tracking with large displacement optical flow

We demonstrate the utility of our LDOF implementation by suggesting a point
tracker. In contrast to traditional local point trackers, like KLT [6], variational
optical flow takes global smoothness constraints into account. This allows the
tracking of far more points as the flow field is dense and tracking is not restricted
to a few feature points. Moreover, large displacement optical flow enables track-
ing limbs or other fast objects more reliably than conventional trackers.

Our tracking algorithm works as follows: a set of points is initialized in the
first frame of a video. In principle, we can initialize with every pixel, as the flow
field is dense. However, areas without any structure are problematic for tracking
with variational optical flow as well. For this reason, we remove points that do
not show any structure in their vicinity as measured by the second eigenvalue
λ2 of the structure tensor

Jρ = Kρ ∗
3∑
k=1

∇Ik∇I>k , (3)

where Kρ is a Gaussian kernel with standard deviation ρ = 1. We ignore all
points where λ2 is smaller than a certain portion of the average λ2 in the image.

Depending on the application, one may actually be interested in fewer tracks
that uniformly cover the image domain. This can be achieved by spatially sub-
sampling the initial points. Fig. 1 shows a subsampling by factor 8. The coverage
of the image is still much denser than with usual keypoint trackers.

Each of the points can be tracked to the next frame by using the optical flow
field w := (u, v)>:

(xt+1, yt+1)> = (xt, yt)> + (ut(xt, yt), vt(xt, yt))>. (4)

As the optical flow is subpixel accurate, x and y will usually end up between
grid points. We use bilinear interpolation to infer the flow at these points.

The tracking has to be stopped as soon as a point gets occluded. This is
extremely important, otherwise the point will share the motion of two differently
moving objects. Usually occlusion is detected by comparing the appearance of
points over time. In contrast, we detect occlusions by checking the consistency

Dense Point Trajectories by GPU-accelerated LDOF 7

of the forward and the backward flow, which we found to be much more reliable.
In a non-occlusion case, the backward flow vector points in the inverse direction
as the forward flow vector: ut(xt, yt) = −ût(xt + ut, yt + vt) and vt(xt, yt) =
−v̂t(xt + ut, yt + vt), where ŵt := (ût, v̂t) denotes the flow from frame t + 1
back to frame t. If this consistency requirement is not satisfied, the point is
either getting occluded at t+1 or the flow was not correctly estimated. Both are
good reasons to stop tracking this point at t. Since there are always some small
estimation errors in the optical flow, we grant a tolerance interval that allows
estimation errors to increase linearly with the motion magnitude:

|w + ŵ|2 < 0.01
(
|w|2 + |ŵ|2

)
+ 0.5. (5)

We also stop tracking points on motion boundaries. The exact location of the
motion boundary, as estimated by the optical flow, fluctuates a little. This can
lead to the same effect as with occlusions: a tracked point drifts to the other
side of the boundary and partially shares the motion of two different objects. To
avoid this effect we stop tracking a point if

|∇u|2 + |∇v|2 > 0.01 |w|2 + 0.002. (6)

In order to fill the empty areas caused by disocclusion or scaling, in each new
frame we initialize new tracks in unoccupied areas using the same strategy as
for the first frame.

5 Results

The implementation platform consists of an Intel Core2 Quad Q9550 processor
running at 2.83GHz in conjunction with a Nvidia GTX 480 GPU. For the LDOF
implementations almost all of the computation is done on the GPU and only
minimal amount of data is transferred between the CPU and the GPU. We use
Nvidia CUDA tools (v3.0) for programming the GPU. The CPU implementation
is a well written hand coded serial C++ code that was vectorized using the Intel
compiler with all the optimizations enabled.

For the tracking experiments, the KLT tracker used also runs on GPUs. A
description of the algorithm is provided in [2]. The implementation in [2] also
compensates for changes in camera exposure and provides real-time performance
on the GPU considered. Default parameters were used unless otherwise specified.

5.1 GPU accelerated large displacement optical flow

Runtime for large displacement optical flow has come down from 143 seconds
for the previous serial implementation on CPU to 1.84 seconds for the parallel
implementation on GPU, a speedup of 78× for an image size of 640× 480. This
implementation searches for HOG matches in a neighborhood of ±80 pixels, uses
η = 0.95, 5 fixed point iterations and 10 Conjugate gradient iterations to achieve
the same overall AAE as the CPU version on the Middlebury dataset. It is also

8 Narayanan Sundaram, Thomas Brox, and Kurt Keutzer

possible to run the optical flow algorithm at a slightly reduced accuracy (AAE
increase of about 11%) at 1.1 seconds per frame. The performance of the linear
solver is critical to the overall application runtime. Hence we look closely at the
choice of the linear solver that enabled this speedup.

Performance of linear solvers. Figure 2 shows the convergence of differ-
ent solvers for the optical flow problem. We measure convergence through the
squared norm of the residual ||b−Axm||2. The rates of convergence are derived
from 8 different matrices from images in the Middlebury dataset [25]. Red-black
and Gauss-Seidel solvers use successive overrelaxation with ω = 1.85. The matri-
ces considered were of the largest scale (smaller scales show very similar results).
The initial vector in all the methods was an all-zero vector. Using a better ini-
tialization procedure (the result of a previous fixed point iteration, for instance)
also shows similar results.

0.00001

0.0001

0.001

0.01

0.1

1

10

0 10 20 30 40 50 60

Sq
ua

re
d

no
rm

 o
f t

he
 r

es
id

ua
l

Iterations

Red-black
Gauss Seidel
CG - block Jacobi preconditioner
CG-No Preconditioner

Fig. 2. Rates of convergence for different techniques considered. Y-axis shows the value
of the residual normalized to the initial residual value averaged over 8 different matrices.
Figure best viewed in color

From Fig. 2, we can see why the Gauss-Seidel solver is the preferred choice
for serial platforms. It converges well and is relatively simple to implement. In
the numerical scheme at hand, however, we do not desire absolute convergence,
as solving any one linear system completely is not important to the solution
of the nonlinear system. It is more important to have a quick way of refining
the solution and removing all the large errors. For a few iterations (30 or less),
it is clear that the preconditioned conjugate gradient solver converges fastest.
Non-preconditioned conjugate gradient is not as efficient because of the high
condition number of the matrix.

Although it is clear from Fig. 2 that conjugate gradient converges quickly
in terms of the number of iterations required, a single iteration of conjugate
gradient requires more computation than a Gauss-Seidel or a red-black iteration.

Dense Point Trajectories by GPU-accelerated LDOF 9

Linear Solver Time taken
(in milliseconds)

Gauss-Seidel 395.13
Red-black 11.97

Conjugate Gradient 8.39

Table 1. Average time taken by the linear solvers for achieving residual norm < 10−2

HOG Creation

HOG Match

Linear solver

Matrix creation

Interpolation &
Warping
Downsampling

Filter

Other

(a) Serial (Gauss Seidel on CPU)

HOG Creation

HOG Match

Linear solver

Matrix creation

Interpolation &
Warping
Downsampling

Filter

Other

Memcopy CPU-GPU

(b) Parallel (CG on GPU)

Fig. 3. Breakdown of execution times for serial and parallel variational optical flow
solvers. Both solvers are run at a scale factor of 0.95, with 5 fixed point iterations
and 25 Gauss-Seidel iterations/10 CG iterations to achieve similar AAE. Figure best
viewed in color.

Table 1 shows the runtimes of the solvers. Even though red-black relaxations are
also parallel, we can see from Fig. 2 that we require roughly 3× as many red-
black iterations as conjugate gradient iterations to achieve the same accuracy.
Red-black iterations are 1.4× slower than CG overall. Gauss-Seidel iterations,
running on the CPU, are 47× slower compared to conjugate gradient on the
GPU.

Figure 3 shows the breakdown of the serial optical flow solver that uses
Gauss-Seidel and the parallel solver that uses conjugate gradient. The solvers
were run with η = 0.95, 5 fixed point iterations and 25 Gauss-Seidel iterations/10
Conjugate gradient iterations to achieve similar AAE on the Middlebury dataset.
From both Figure 3(a) and 3(b), it is clear that the HOG matching and the linear
solver are the most computation intensive components in the solvers. In both
cases, they take more than 75% of the total runtime.

The major bottleneck in the conjugate gradient solver is the sparse matrix-
vector multiply (SpMV). In order to optimize SpMV, the sparse matrix was laid
out in memory as a set of images each corresponding to a particular non-zero
diagonal. This, along with several other optimizations (caching in local scratch-
pad memory, avoiding control overheads, ensuring vector loads/stores) enables
the SpMV to run at 53 GFlops on the GPU. This is significant considering that
the matrix is quite sparse (≤ 6 non-zeros per row). Under such conditions, most
of the time in the kernel is spent fetching data to and from GPU main memory.

10 Narayanan Sundaram, Thomas Brox, and Kurt Keutzer

Data Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus Average

AAE(CPU) 1.84 2.67 6.35 2.44 3.96 2.55 4.79 6.46 3.88
AAE(GPU) 1.84 2.51 5.94 2.37 3.91 2.47 5.43 6.38 3.86

Table 2. Average Angular Error (in degrees) for images in the Middlebury dataset.

Similar behavior is seen with the red-black relaxations, where 25% of the time
is spent in floating point operations, while 75% of the time is spent in memory
loads and stores. Red-black relaxations also have less computation to communi-
cation ratio (all the points are read, but only half the points are updated), which
reduces their performance.

Accuracy. Table 2 shows the average angular error measured using our tech-
nique on the Middlebury dataset. These results have been achieved with the
setting (γ = 4, β=30, α = 9, η = 0.95, fixed point iterations = 5, Gauss-Seidel
iterations = 25/CG iterations = 10). The data shows that the method provides
similar accuracy to the CPU version while running fast on the GPU.

For faster computations, we use the parameter set (η = 0.75, 5 fixed point
iterations, 10 linear solve iterations) to reduce the runtime by 38% with a degra-
dation in AAE of 11%.

5.2 Tracking

We measure the accuracy of the tracking algorithms with the MIT sequences [8].
This dataset provides the ground truth optical flow for whole sequences and the
sequences are much longer. This allows us to evaluate the accuracy of tracking
algorithms. After obtaining the point trajectories from both KLT and LDOF,
we track points using the given ground truth to predict their final destination.
Tracking error is measured as the mean Euclidean distance between the final
tracked position and the predicted position on the final frame according to the
ground truth for all the tracked points. LDOF is run with η = 0.95, 5 fixed point
iterations and 10 iterations for the linear solver in all the following experiments.
Since the default parameters for the KLT tracker failed in tracking points in
long sequences, we increased the threshold for positive identification of a feature
from 1000 to 10000 (SSD threshold parameter).

Accuracy. We compare the accuracy of the trackers for the entire length of the
sequences. Since tracking algorithms should ideally track points over long times
without losing points, we only consider those points that are tracked through
all the frames. Trackers like KLT keep losing features and need to be constantly
detecting new features every few frames to track well. From Table 3, it is clear
that LDOF tracks almost three orders of magnitude more points than KLT with
46% improvement in overall accuracy. For tracking only the common points, the
LDOF tracker is 32% better than KLT. These numbers exclude the fish sequence
since it has transparent motion caused by dust particles moving in the water.

Dense Point Trajectories by GPU-accelerated LDOF 11

All tracked points Common points only
Sequence Number LDOF KLT LDOF KLT

name of frames Mean error Points Mean error Points Mean error Points Mean error Points
in pixels tracked in pixels tracked in pixels tracked in pixels tracked

table 13 1.48 114651 3.78 363 1.04 293 1.39 293
camera 37 1.41 101662 3.78 278 1.01 185 2.64 185

fish 75 3.39 75907 35.62 106 3.12 53 5.9 53
hand 48 2.14 151018 3.11 480 1.87 429 2.39 429
toy 18 2.24 376701 2.88 866 1.70 712 1.89 712

Table 3. Tracking accuracy of LDOF and KLT over the MIT sequences

Average All tracked points Common points only
number LDOF Particle Video LDOF Particle Video

of frames Mean error Points Mean error Points Mean error Points Mean error Points
in pixels tracked in pixels tracked in pixels tracked in pixels tracked

61.5 0.83 109579 3.20 8967 0.84 3304 2.51 3304

Table 4. Tracking accuracy of LDOF and the Particle Video tracker over the 20
sequences used in [7]

Although we were able to track this sequence well, performance on this sequence
is sensitive to parameter changes.

Compared to the Particle Video point tracker in [7], our tracker is 66% more
accurate for the common tracks. Since ground truth data does not exist for the
sequences used in [7], it is not possible to have objective comparisons on metrics
other than the average round trip error (The videos are mirrored temporally, so
all unoccluded pixels should return to their starting positions). For comparison,
we use only the full-length particle trajectories provided by the authors of [7]
at http://rvsn.csail.mit.edu/pv/data/pv. The average statistics of both trackers
over all the 20 sequences used in [7] are given in Table 4. More details on the
comparison can be found in [21].

Occlusion handling. We use the region annotation data from the MIT dataset
to measure the occlusion handling capabilities of the algorithms. The LDOF
tracker has an occlusion error of 3% (tracks that drift between regions/objects)
while the KLT tracker has an occlusion error of 8%. Given that KLT tracker
is already very sparse, this amounts to a significant number of tracks that are
not reliable (they do not reside on the same object for the entire time). After
excluding all the tracks that were known to have occlusion errors, LDOF outper-
forms KLT by 44%. Since all the ground truth occlusions are known, we measure
the tracking density (% of unoccluded points that the tracker was successful in
tracking through the entire sequence without any occlusion errors). The LDOF
tracker has an average tracking density of 48%, i.e., it tracks roughly half of the
points that are not occluded for the entire length of the sequence, while KLT
has a density of about 0.1%. Table 5 presents the data on occlusion handling.

12 Narayanan Sundaram, Thomas Brox, and Kurt Keutzer

KLT LDOF
Sequence Number of Mean error Number of Mean error Tracking

occluded tracks with no occlusion occluded tracks with no occlusion Density (%)

table 11 2.73 853 1.41 39.6
camera 8 3.68 558 1.37 39.9

fish 30 31.79 8321 2.7 53.0
hand 10 2.90 2127 1.81 46.8
toy 31 2.58 5482 2.11 61.4

Table 5. Occlusion handling by KLT and LDOF trackers based on region annotation
from the MIT data set. Occluded tracks indicate tracks that are occluded according to
the ground truth data, but not identified as such by the trackers.

LDOF KLT
Frames Mean error Points tracked Mean error Points tracked

in pixels on player in pixels on player

490-495 2.55 (22) 8157 3.21 (19) 21
490-500 2.62 (8) 3690 4.12 (4) 4

Table 6. Tracking accuracy of LDOF and KLT for large displacements in the tennis
sequence with manually marked correspondences. Numbers in parentheses indicate the
number of annotated points that were tracked.

Large displacements. The MIT sequences still mostly contain small displace-
ments and hence KLT is able to track them well (if it does not lose the features);
however, there are motion sequences with large displacements that are difficult
for a tracker like KLT to capture. In the tennis sequence [11], there are frames
where the tennis player moves very fast producing motion that is hard to cap-
ture through simple optical flow techniques. Since ground truth data does not
exist for this sequence we manually labeled the correspondences for 39 points on
the player between frames 490, 495 and 500 2. These points were feature points
identified by KLT in frame 490. The results for the points tracked on the player
are shown in Table 6 and Figure 4. It is clear that the LDOF tracker tracks more
points with better accuracy, while capturing the large displacement of the leg.

Runtime. The cameramotion sequence with 37 frames of size 640×480, requires
135 seconds. Out of this, 125 seconds were spent on LDOF (both forward and
backward flow). Such runtimes allow for convenient processing of large video
sequences on a single machine equipped with cheap GPU hardware.

6 Conclusion

Fast, accurate and dense motion tracking is possible with large displacement op-
tical flow (LDOF). We have provided a parallel version of LDOF that achieves a

2 The manually labeled correspondence data can be found on the authors’ website.

Dense Point Trajectories by GPU-accelerated LDOF 13

Fig. 4. (Top) Frame 490 of the tennis sequence with (left) actual image, (middle) KLT
points and (right) LDOF points. (Bottom) Frame 495 of the sequence with (left) actual
image, (middle) KLT points and (right) LDOF points. Only points on the player are
marked. KLT tracker points are marked larger for easy visual detection. Figure best
viewed in color.

speedup of 78× over the serial version. This has been possible through algorith-
mic exploration for the numerical solvers and an efficient parallel implementation
of the large displacement optical flow algorithm on highly parallel processors
(GPUs). Moreover, we have proposed a dense point tracker based on this fast
LDOF implementation. Our experiments quantitatively show for the first time
that tracking with dense motion estimation techniques provides better accuracy
than KLT feature point tracking by 46% on long sequences and better occlusion
handling. We also achieve 66% better accuracy than the Particle Video tracker.
Our point tracker based on LDOF improves the density by up to three orders of
magnitude compared to KLT and handles large displacements well, thus mak-
ing it practical for use in a wide variety of video applications such as activity
recognition or summarization in sports videos which require improved tracking
of fast moving objects like balls and limbs.

References

1. Sand, P., Teller, S.: Particle video: Long-range motion estimation using point
trajectories. International Journal of Computer Vision 80 (2008) 72–91

2. Zach, C., Gallup, D., Frahm, J.M.: Fast gain-adaptive KLT tracking on the GPU.
CVPR Workshop on Visual Computer Vision on GPU’s (CVGPU) (2008)

3. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1
optical flow. In: Pattern Recognition - Proc. DAGM. Volume 4713 of LNCS.,
Springer (2007) 214–223

4. Brox, T., Malik, J.: Large displacement optical flow:descriptor matching in vari-
ational motion estimation. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2010) To appear

14 Narayanan Sundaram, Thomas Brox, and Kurt Keutzer

5. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow
estimation based on a theory for warping. In: ECCV (4). (2004) 25–36

6. Shi, J., Tomasi, C.: Good features to track. In: CVPR. (1994) 593–600
7. Sand, P., Teller, S.: Particle video: Long-range motion estimation using point

trajectories. CVPR (2006)
8. Liu, C., Freeman, W.T., Adelson, E.H., Weiss, Y.: Human-assisted motion anno-

tation. CVPR (2008)
9. Bruhn, A., Weickert, J.: Towards ultimate motion estimation: Combining highest

accuracy with real-time performance. In: ICCV ’05: Proceedings of the Tenth IEEE
International Conference on Computer Vision (ICCV’05) Volume 1, Washington,
DC, USA, IEEE Computer Society (2005) 749–755

10. Grossauer, H., Thoman, P.: GPU-based multigrid: Real-time performance in high
resolution nonlinear image processing. In: ICVS. (2008) 141–150

11. Brox, T., Bregler, C., Malik, J.: Large displacement optical flow. CVPR (2009)
12. Gwosdek, P., Bruhn, A., Weickert, J.: High performance parallel optical flow al-

gorithms on the Sony Playstation 3. Vision, Modeling and Visualization (2008)
253–262

13. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm
for TV-L1 optical flow. Statistical and Geometrical Approaches to Visual Motion
Analysis: International Dagstuhl Seminar, Dagstuhl Castle, Germany, July 13-18,
2008. Revised Papers (2009) 23–45

14. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.:
Anisotropic Huber-L1 optical flow. In: Proc. of the British Machine Vision Con-
ference (BMVC). (2009)

15. Lai, S.H., Vemuri, B.C.: Reliable and efficient computation of optical flow. Inter-
national Journal of Computer Vision 29 (1998)

16. Mitiche, A., Mansouri, A.R.: On convergence of the Horn and Schunck optical-flow
estimation method. IEEE Transactions on Image Processing 13 (2004) 848–852

17. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: com-
bining local and global optic flow methods. Int. J. Comput. Vision 61 (2005)
211–231

18. Sinha, S.N., Frahm, J.M., Pollefeys, M., Genc, Y.: Feature tracking and matching
in video using programmable graphics hardware. Machine Vision and Applications
(2007)

19. Birchfield, S.T., Pundlik, S.J.: Joint tracking of features and edges. In: CVPR.
(2008)

20. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR. (2006)

21. Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by GPU-accelerated
large displacement optical flow. Technical Report UCB/EECS-2010-104, EECS
Department, University of California, Berkeley (2010)

22. Feingold, D.G., Varga, R.S.: Block diagonally dominant matrices and generaliza-
tions of the Gerschgorin circle theorem. Pacific J. Math 12 (1962) 1241–1250

23. Bruhn, A.: Variational Optic Flow Computation: Accurate Modelling and Efficient
Numerics. PhD thesis, Faculty of Mathematics and Computer Science, Saarland
University, Germany (2006)

24. Stüben, K., Trottenberg, U. In: Multigrid methods: Fundamental algorithms,
model problem analysis and applications. Volume 960 of Lecture Notes in Mathe-
matics. Springer (1982)

25. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database
and evaluation methodology for optical flow. In: ICCV. (2007)

