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ABSTRACT

In this work, we propose a study of efficient and optimal
texture denoising methods based on the nonlocal means
filter. In particular, we present efficient implementations
of nonlocal filtering using highly adapted data structures
such as cluster trees, spill trees and cluster forests. A com-
parative study of computational speed indicates that clus-
ter forests are superior to alternative methods. Moreover,
we introduce several extensions of the original nonlocal
means filter which introduce invariance with respect to
variations in brightness, scale, and rotation.

1. NONLOCAL SMOOTHING

Image enhancement and noise removal is a classical task
in image processing with a long history and many method-
ologies. Especially discontinuity preserving filters, such
as nonlinear diffusion filters [1], the ROF filter [2], and
certain types of wavelet shrinkage [3], have been very
successful in removing noise from images while preserv-
ing their most relevant structures. However, despite their
success in a wide field of applications, they reveal a sig-
nificant shortcoming when it comes to highly oscillatory
structures, as they naturally appear in textural patterns.
Such structures are confused with the noise and are er-
roneously removed.

When considering denoising of an image I : Ω →
RD, nonlinear diffusion filters and related methods are
spatially local in the sense that at each location x ∈ Ω the
update of the evolving image u : Ω → R2×[0, T ], u(x, 0) =
I(x) is determined only by derivatives of u at that same lo-
cation x. A class of image filters which adaptively takes
into account intensity information from more distant loca-
tions are the Yaroslavsky neighbourhood filters [4]:

u(x) =
∫

K(x, y)I(y) dy∫
K(x, y) dy

. (1)

Here the smoothed image u(x) is stated as the weighted
average of pixels of the original image I(x). The weights
are determined by a nonnegative kernel function K, which
decays with the distance d2(x, y) = γ|x− y|2 + |I(x)−
I(y)|2. A typical choice is the Gaussian kernel K(x, y) =

1
(2πh2)D/2 exp

(
−d2(x,y)

2h2

)
with kernel width h and dimen-

sionality of the data D. This filter assigns large weights
to pixels y and their intensities I(y) which are similar in
the sense that they are close to (x, I(x)) in space and in
intensity. The parameter γ allows to adjust the relative im-
portance of spatial and tonal similarity. Neighbourhood
filters are also known as local M-smoothers [5, 6]. These
filters can also be iterated, which results in the bilateral
filter [7, 8]. Relations between such neighbourhood fil-
ters and nonlinear diffusion filters have been investigated
in [9, 10, 11].

It turns out that even though these semi-local filters1

substantially increase the number of candidate pixels for
averaging compared to diffusion filters, they reveal a sim-
ilar qualitative denoising behavior as nonlinear diffusion:
whereas they preserve large scale structures, small scale
structures are regarded as noise and are removed.

For achieving a better preservation of small-scale tex-
tural patterns, a small but decisive extension of the neigh-
bourhood filters is necessary. Rather than considering only
the centre pixel in the similarity of two points, we can
regard local balls (patches) around these points. These
patches capture the dependencies of neighbouring pixels
and thus can distinguish textural patterns. The idea is in-
spired by works on texture synthesis [12, 13, 14] and has
been proposed simultaneously with the nonlocal means
filter [15] and the UINTA filter [16]. Both filters use a
distance that considers not only the similarity of the cen-
tral pixel, but also the similarity of its neighbourhood:

d2(x, y) =
∫

Gρ(x′)
(
I(x− x′)− I(y − x′)

)2
dx′. (2)

The Gaussian kernel Gρ, which is not to be confused with
the kernel K, acts as a weighted neighbourhood of size ρ.
A uniformly weighted box can be chosen as well, which
illustrates the basic concept of comparing patches. Since
the above similarity measure takes into account complete
patches instead of single pixel intensities, only similar tex-
tures play a role in the averaging. This removes noise

1semi-local due to the spatial distance that plays a role in the similar-
ity



while the fine repetitive structures that are due to the tex-
ture are preserved by the filter. A variety of applications
exist for this filter. Apart from denoising images, the con-
cept can, for instance, be translated to video enhancement
[17] and the smoothing of 3D surfaces [18].

Apart from ρ, the size of the patch, the filter contains
another important parameter, namely the width h of the
kernel K. It quantifies how fast the weights decay with
increasing dissimilarity of respective patches. Statistical
reasoning as in [19, 20] allows to determine h automati-
cally via cross-validation or by estimating the noise vari-
ance. Ideas to adapt the size of the patch ρ locally to the
data have been presented in [21].

Other improvements of the basic filter concern the it-
eration of the filter. The bilateral filter is an iterative ver-
sion of the Yaroslavsky filter, and there is no reason why
we should not iterate also a neighbourhood filter whose
similarities are defined on patches rather than single pixel
intensities. The entropy minimisation framework of the
UINTA filter [16] leads to such a patch-based variant of
the bilateral filter. Other iterative versions have been pro-
posed in [22, 23, 24, 25]. Some of these filters, partic-
ularly [23, 24], are designed in a way that brings them
closer to local filters by running many iterations with weights
K(x, y) computed on the initial image I and emphasising
the spatial distance of the pixels rather than the similarity
of the patches.

In the present paper, we are concerned with two other
important issues in nonlocal filtering: computational com-
plexity and invariance of the patch distance with respect to
certain transformations, such as rotation, scaling, and illu-
mination. The next section will deal with the computa-
tional complexity and present a novel indexing structure,
the cluster forest. Invariant patch comparisons will be the
subject of Section 3.

2. FAST NONLOCAL FILTERING

Regarding the computational complexity of nonlocal fil-
ters reveals that a price must be payed for the great re-
sults. At each pixel, weights to all other pixels have to
be computed. This yields a computational complexity of
O(DN2), where N is the number of pixels in the image,
and D is the patch size. For larger images, this complex-
ity is quite a burden. Hence, several approximations have
been suggested.

The most popular way is to restrict the search to patches
in a local neighborhood [15], which turns the initially non-
local filter into a semi-local one. This reduces the compu-
tational complexity to O(DN). Similarly, we can apply
random sampling, where samples from the vicinity of the
reference patch are preferred [16]. Both strategies assume
that the most similar patches are in the vicinity of the ref-
erence patch. It has been shown that in many denoising
tasks, semi-local filtering not only reduces the computa-
tional load, but even improves the denoising quality sig-
nificantly. However, solving the complexity problem by
retreating to a semi-local variant revokes the initial idea
and properties of nonlocal filtering. It is definitely not the

Figure 1. Schematic illustration of a cluster tree. Leafs
contain a relatively small set of similar patches.

right strategy in case of applications where true nonlocal
filtering is beneficial.

Speedups without necessarily abandoning the idea of
nonlocal filtering have been achieved in [26, 17, 27, 23,
20]. In [26], patch comparison is performed only for a
subset of reference patches lying on a coarser grid of the
image. The computed weights are then used to restore a
whole block of pixels at once. It is obvious that this ap-
proach can be used to gain a significant constant factor in
the computational complexity, yet for the sake of quality
the grid cannot be made arbitrarily coarse. In case of non-
local filtering, we are hence left with the quadratic time
complexity of the original filter.

2.1. Acceleration by preselecting patches

In patch based nonlocal filtering almost all computation
time is spent on computing distances between patches.
However, only a relatively small part of all patches is suf-
ficiently similar for their kernel weights K(x, y) to play
a role in the averaging. Hence, in order to speed up the
filter, the basic idea of the approaches in [17, 27] has been
to compute distances only for a reduced set of patches.
Preselection of patches is performed by some alternative
distances, which can be computed very quickly, such as
the difference of the patches’ means or variances. Indeed,
this strategy leads to a significant speedup, particularly in
case of large patches. The disadvantage of this approach
is that the preselection criterion is hardly related to the
distance of patches. Two patches with same means and
variances often comprise vastly different textural struc-
tures. Although this hardly harms the filtering outcome
- for each patch in the preselected set the exact distance is
computed - it reduces the efficiency of the method, as the
preselected set still contains a large number of dissimilar
patches.

2.2. Cluster trees

As a remedy to this problem, we proposed a different way
to create sets of potentially similar patches [25]. This
method preselects patches by means of the same distance
measure that is used in the filtering. In order to accom-
plish this, the basic idea is to arrange all image patches in
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Figure 2. Arrangement of data by a cluster tree allows
to quickly access a small set of points whose similarity is
measured in patch space.

a binary tree. See Fig. 1 for an illustration. The root node
of this tree contains all patches in the image. Performing a
k-means clustering with k = 2 splits the patches into two
clusters represented by the cluster means. These clusters
represent the tree nodes at the first level. Each of these
nodes can again be separated via k-means. This way, we
can recursively build up the cluster tree.

The separation is stopped as soon as the number of
patches in a node falls below a certain threshold Nmin =
30. So each leaf node comprises at least Nmin patches.
Finding a local optimum with k-means takes linear time.
It has to be applied at each level of the tree, and there are
log N levels. Thus, building the tree runs in O(DN log N).

Once the tree is built up, we have immediate access to
a set of similar patches in constant time. This is achieved
by saving for each image patch its corresponding leaf node
in an index table. The typical weighted averaging can
then be efficiently applied on this subset. In contrast to
previous preselection techniques, usage of the same dis-
tance for clustering and for filtering ensures preselection
and filtering by means of one consistent criterion. Fig. 2
illustrates this preselection in patch space.

The concept of using tree structures to arrange data for
efficient access in well known in computer science. The
earliest ancestor of the above cluster tree is the so-called
kd-tree [28]. The kd-tree always splits the space along
coordinate axes, whereas the cluster tree splits the space
by means of arbitrary hyperplanes. Moreover, whereas
the kd-tree is optimized such that it leads to a balanced
tree, the cluster tree seeks to obtain leafs that correspond
to natural clusters of the data. The cluster tree concept is
also known as tree structured vector quantization (TSVQ)
and has been applied in speech processing [29], texture
synthesis [30], and image retrieval [31]. The texture syn-
thesis work in [30] is particularly close to the denoising
case we consider here.

In a more general context, the cluster tree is an answer
to the question how to find approximate nearest neighbors
in high-dimensional data with sublinear time complexity.
Other methodologies approaching this task can be found

in [32, 33, 34], and a recent overview of approximate near-
est neighbor algorithms is provided by [35].

2.3. Spill trees

Although the cluster tree arrangement allows to access
near neighbors of a query very efficiently, it is obvious
that the preselected set of patches is only an approxima-
tion of the exact set of nearest neighbors. Neighbors close
to the query could be part of a neighboring cluster. Such
situations appear especially when the query is close to a
decision boundary in the tree. Unfortunately, the high-
dimensional nature of the data comes along with a high
probability that the query is close to at least one decision
boundary.

The exact set of nearest neighbors could be computed
by considering additional branches in the tree that may
contain nearest neighbor candidates. However, this so-
called backtracking decreases the efficiency of the approach
considerably. In the case of texture denoising, backtrack-
ing effectively results in searching the whole tree.

Fortunately, an approximation of the set of nearest neigh-
bors is sufficient for nonlocal filtering, as we typically deal
with sufficiently large sets of similar patches and it is not
necessary to have access to the optimum set of nearest
neighbors to achieve a reasonable averaging of intensities.

Nonetheless, we might be interested in increasing the
accuracy of the nearest neighbor sets. This is feasible with
so-called spill trees [36] at the cost of some additional
memory. Since the problematic areas are along the de-
cision boundaries, we can assign patches close to such a
boundary to both subsets. More precisely, a patch x is as-
signed to both subsets, if d2(x, c1) < d2(x, c2) + τ2 or,
vice-versa, if d2(x, c2) < d2(x, c1) + τ2, where c1 and c2

denote the cluster centers of the two subsets; see Fig. 3(a).
In case the overlap area τ is as large as the support of the
kernel, we could ensure the exact set of relevant nearest
neighbors. For the Gaussian kernel with infinite support
this is not feasible and having large overlap areas also in-
creases the time for building the tree, which reduces the
speedup achievable with the cluster tree. However, al-
ready choosing small τ yields an accuracy close to the
exact nonlocal means filter and does not demand much
more memory than the version with τ = 0.

2.4. Cluster forests

As an alternative strategy to increase the accuracy of near-
est neighbor search we propose cluster forests. The key
idea consists of combining multiple cluster trees. Having
multiple trees with different decision boundaries, we can
combine the patches found in each single tree and thereby
decrease the probability to miss a nearby patch. This con-
cept is illustrated in Figure 3(b).

The methodology of cluster forests bears similarities
with another fast method for approximate near neighbor
search called locality sensitive hashing (LSH) [33]. In
LSH, randomized hash functions are chosen such that sim-
ilar points are likely to produce the same hash index. By
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Figure 3. Two possibilities to increase accuracy. Left: (a) Patches that are within τ distance of a decision boundary are
assigned to both sets. Right: (b) The union of near neighbors obtained from multiple trees are considered.

means of multiple randomized hash functions, the proba-
bility to find all points close to a query is increased. Upper
bounds for the probability to miss a relevant point can be
shown and it has been proven that this probability con-
verges to zero in the limit of an infinite amount of hash
functions.

Whereas LSH mainly builds upon the randomization
of hash functions, cluster forests focus more on capturing
the arrangement of the data. The randomization compo-
nent is provided by the initialization of cluster centers in
k-means. Since k-means only converges to the next lo-
cal minimum of the cost function that aims to minimize
the total distance of points to their assigned cluster cen-
ters, a randomized initialization leads to different clusters.
Especially at nodes close to the root it is very likely that
k-means clustering yields different optima, since there is
usually no natural separation of the data into two clusters.
At nodes close to the leafs, on the other hand, clusters in
the data become apparent and are captured by the cluster-
ing.

The idea of cluster forests is to exploit both the ran-
domization concept of locality sensitive hashing as well as
the cluster arrangement of a single cluster tree. While the
first leads to an increased accuracy when using more trees
due to the different positioning of decision boundaries at
lower levels of the tree, the latter ensures that high accu-
racies are already achieved for a relatively small number
of trees.

These properties are shown in Table 1 and Table 2.
Table 1 shows the percentage of correct nearest neighbors
returned by a cluster forest. Data points were 9×9 patches
from the Barbara test image shown in Figure 4. Also the
query points were chosen randomly from this image. For
not disturbing the statistics, the query point is always cor-
rectly found in a cluster tree, it was removed from the re-
turned set of near neighbors. With a single tree, the nearest
neighbor is only found in 65.3% of all cases. The percent-
age rises dramatically with the number of trees. With only
4 trees already more than 90% of all queries lead to the
correct result.

Trees k Barbara (no noise) Barbara (σ = 20)
1 1 65.3% 26.9%
2 1 81.5% 40.5%
4 1 93.2% 56.9%
8 1 97.4% 70.3%

16 1 97.6% 80.8%
1 10 53.8% 23.5%
2 10 73.9% 34.8%
4 10 87.0% 47.1%
8 10 93.4% 65.0%

16 10 95.7% 76.3%
1 100 42.4% 15.9%
2 100 59.5% 27.5%
4 100 77.2% 38.5%
8 100 86.2% 52.9%

16 100 91.5% 65.6%

Table 1. Average percentage of correct k-nearest neigh-
bors depending of the number of trees in the forest. 1000
samples were drawn from the respective images. The ac-
curacy grows rapidly with the number of trees.



Trees k Barbara (no noise) Barbara (σ = 20)
1 1 1.095 1.047
2 1 1.034 1.027
4 1 1.012 1.015
8 1 1.004 1.008

16 1 1.004 1.005
1 10 1.170 1.062
2 10 1.071 1.039
4 10 1.030 1.024
8 10 1.016 1.012

16 10 1.010 1.007
1 100 1.191 1.103
2 100 1.097 1.062
4 100 1.049 1.038
8 100 1.027 1.022

16 100 1.012 1.013

Table 2. Average deviation of the k-nearest neighbor dis-
tance from the exact distance depending on the number
of trees in the forest. 1000 samples were drawn from the
respective images. The accuracy grows rapidly with the
number of trees.

Table 1 also shows that noise in an image compli-
cates the search for the nearest neighbors. This is because
noise brings the distribution closer to a uniform distribu-
tion, where points are more difficult to be arranged in dis-
tinct clusters. Here the randomized component introduced
by multiple trees becomes more important and a larger
amount of trees is needed to achieve the same percentage
of correct neighbors.

For texture denoising, however, we are not mainly in-
terested in finding a high percentage of exact nearest neigh-
bors. We would rather like the returned neighbors to have
a small distance to the query. Table 2 shows that the aver-
age deviation of the distance compared to that of the exact
nearest neighbors is smaller in case of the noisy image.
This means, not finding the exact nearest neighbors but
only an approximate set of near neighbors is less signif-
icant if the noise level is higher. This explains the good
performance already achieved with a single cluster tree as
reported in [25] and shown in Section 2.6. With a cluster
forest, the distance of the approximate nearest neighbors
can be brought very close to the exact nearest neighbor
distance. This holds true for both the noisy and noise free
image.

2.5. Semi-local filtering with cluster trees

Empirical studies have shown that nonlocal filters often
perform better when the search for similar patches is re-
stricted to a local subdomain. This corresponds to the
prior knowledge that best fitting patches are spatially close.
Note that this assumption need not hold true for arbitrary
data. Particularly in highly textured images, true nonlo-
cal filtering leads to superior results [25]. However, for
most natural images, semi-local filtering increases the de-
noising quality. For the cluster tree improvement to be

Figure 4. Standard test image Barbara of size 512 × 512
pixels including Gaussian noise with standard deviation
20 as used in the experiments.

practical in a large variety of filtering situations, it should
provide the option to restrict the search space locally. This
can be achieved by two strategies [25]. The algorithmic
approach is by subdividing the image into overlapping
blocks. A filtering result using cluster trees is computed
independently for each block. The final result is then ob-
tained as the weighted average of the block results.

A more profound approach with the same effect is to
shift the locality assumption to the distance measure by
having a distance that consists of the patch similarity and
the local proximity: d̃2(x, y) = d2(x, y) + γ|x− y|2 with
d2(x, y) as defined in (2) and γ steering the importance of
the locality constraint, i.e., the size of the neighborhood.
This bilateral filter version is more sound and in combi-
nation with cluster trees it is usually even faster than the
algorithmic way to enforce the locality constraint.

2.6. Experiments

In the experimental evaluation, we quantified the speedup
of cluster tree implementations relative to their loss in
quality measured by the peak signal-to-noise ratio (PSNR)

PSNR = 10 log10

(
2552

1
|Ω|
∑

i∈Ω(ui − ri)2

)
, (3)

where u denotes the restored image and r the noise free
reference image. In all experiments we used the same
Gaussian weighted 9 × 9 patches (ρ = 2). Image inten-
sities were in a range between 0 and 255. Computations
times are on a Pentium IV 3.4GHz.

Table 3 shows a comparison of acceleration techniques
that have been suggested in the literature. For the compar-
ison we used the 512×512 Barbara test image from Fig.4.
Given a fixed local search window size of 21× 21 pixels,



PSNR Time
Standard nonlocal means 30.31 41940ms
Random sampling, 100 samples 29.55 25410ms
Random sampling, 200 samples 30.16 72480ms
Spatial sub-sampling 29.51 5480ms
Preselection by mean and variance 29.80 17640ms
Cluster tree, τ = 0 29.90 14440ms
Cluster tree, τ = 5 30.08 19580ms
Cluster tree, τ = 10 30.26 31330ms
Cluster forest, 2 trees 30.37 24100ms
Cluster forest, 4 trees 30.53 38144ms

Table 3. Comparison of several fast nonlocal means im-
plementations using the Barbara test image and a 21× 21
search window. Regarding both quality and computation
time, the cluster tree implementation compares well to ex-
isting techniques; see also Fig. 5. Particularly the combi-
nation of multiple trees yields very accurate results.

the fastest technique is spatial sub-sampling, i.e., using
the distance computed for a point x also for its 8 neigh-
bors [26]. However, the speedup of this method comes
at a cost. Fig. 5 shows a zoom into the Barbara image.
The spatial sub-sampling clearly blurs the image, which
is reflected by the lowest PSNR value. The basic cluster
tree implementation is the second fastest method without
causing blurring artifacts. It outperforms the preselection
of patches by mean and variance [27] as well as random
sampling. Comparing the spill tree to cluster forests, it can
be observed that the cluster forest yields more accurate re-
sults at the same computational load. The results can even
outperform the standard nonlocal means approach, which
uses the exact weighted sum over all patches within the
search window. An explanation for this outcome could be
the long tail of the Gaussian kernel, which causes standard
nonlocal means to take into account also very dissimilar
patches (though with very small weights). This leads to a
restrained blurring effect, which is not present in case of
the cluster forest that averages only over a restricted set of
near neighbors.

Although the computational complexity of cluster forests
increases linearly with the number of trees, the empirical
numbers show that the increase is in fact smaller. This is
due to the duplicates returned by a cluster forest. Remov-
ing these duplicates renders the cardinality of the set of
near neighbors returned by multiple trees not to increase
linearly with the number of trees. Moreover, building the
tree takes less time than computing the distances between
all queries and their sets of near neighbors as needed for
the nonlocal filter, see Figure 6.

In the first experiment we considered semi-local filter-
ing with a restricted search window. Due to the sublinear
time complexity for finding a subset of near neighbors, the
speedup achievable with the cluster tree or cluster forest
implementation becomes much more significant when the
search window size increases. This is shown in Table 4.
Particularly true nonlocal filtering, where the search win-

Building the 
tree

21.3%

Computing 
weights
78.7%

Figure 6. Relative time taken for building a single tree
without overlap The image was of size 512 × 512 pix-
els. Although building the tree dominates the asymptotic
complexity, in practice, most of the time is spent for com-
puting distances of the selected patches.

dow is the whole image domain, becomes very demand-
ing for methods that scale linearly with the size of this
window.

3. INVARIANT TRANSFORMATIONS

The original nonlocal means filter is based on the patch
similarity measure d defined in equation (2). Obviously
this measure is not invariant to a number of transforma-
tions which may arise in applications to natural images,
namely variations in brightness, rotation, and scale.

In the following, we will present methods to make
patch comparison and denoising invariant to such varia-
tions. As a consequence, denoising can be improved since
the algorithm can exploit information from patches which
vary in brightness, rotation, or scale.

All subsequent modifications can be efficiently inte-
grated in the cluster tree structure. As a consequence,
computations times increase only mildly. We will omit
computational details for the sake of simplicity.

3.1. Brightness Invariance

Due to variations in the local lighting conditions common
in many natural images the same textural patches may ap-
pear in different brightness conditions in two given loca-
tions x and y of the image I . Although these locations do
correspond to the same underlying pattern, this informa-
tion is not exploited since the patch d similarity measured
by (2) is small.

A straight-forward normalization is obtained by re-
moving the average intensity µ = Gρ ? I over each patch:

d2(x, y) =
∫

Ω

Gρ(x′)
(
I(x− x′)− I(y − x′)

−(µ(x)− µ(y))
)2

dx′
(4)



Figure 5. Zoom into the Barbara image. Top row, from left to right: (a) Noisy input image. (b) Standard nonlocal
means. (c) Random sampling with 100 samples. Middle row: (d) Spatial sub-sampling. Blurring and block artifacts are
visible. (e) Preselection by mean and variance. (f) Cluster tree with no overlap. Bottom row: (g) Cluster tree with τ = 5.
(h) Cluster forest with 2 trees. (i) Cluster forest with 4 trees. All methods were run with a 21 × 21 search window. The
quality with the cluster tree implementation is at least as good as or better than that of other acceleration techniques; see
Table 3 for quantitative results.

Additional invariance to multiplicative brightness changes
can be obtained by considering the normalized cross-cor-
relation. However, we did not find substantial improve-
ments in the denoising results.

Of course, the change in average brightness needs to
be taken into account in the resulting filtering operation:

u(x) =
1

CK(x)

∫
Ω

K(x, y)(I(y) + (µ(x)− µ(y)) ) dy

CK(x) =
∫

Ω

K(x, y) dy (5)

Figure 8 shows that considering brightness-invariant

patch distances does indeed lead to improvements in the
signal-to-noise ratio of the denoised images.

3.2. Invariance to Rotations

Another common feature of natural textures is that the
same textural pattern will appear in other locations of the
image in a rotated version. Again, the original patch simi-
larity measure (2) does not explicitly capture this variabil-
ity. As a consequence, the denoising of a patch located at
x does not profit from similar patches located at y if these
are rotated with respect to the patch at x.

In contrast to the case of brightness variation consid-
ered above, the variation in rotation is substantially more



17× 17 33× 33 65× 65 129× 129 257× 257 no window
Standard nonlocal means 27s 106s 410s 1539s 5378s 16107s
Random sampling 13s 50s 209s 902s 4126s 15362s
Spatial sub-sampling 4s 15s 65s 262s 957s 3241s
Preselection by mean and variance 13s 34s 88s 221s 591s 1529s
Cluster tree, τ = 0 14s 14s 14s 14s 14s 14s
Cluster tree, τ = 5 15s 31s 58s 101s 101s 101s
Cluster tree, τ = 10 22s 61s 149s 303s 687s 797s
Cluster forest, 2 trees 20s 22s 22s 22s 22s 22s
Cluster forest, 4 trees 30s 43s 43s 43s 43s 43s
Cluster forest, 8 trees 47s 88s 88s 88s 88s 88s

Table 4. Computation times of several fast nonlocal means implementations depending on the search window size. The
methods were run with the 512 × 512 Barbara test image. For growing window sizes, the cluster tree implementation is
increasingly faster than existing techniques. Particularly in case of true nonlocal filtering the speedup is remarkable.
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Figure 7. To implement rotation invariance, slightly ro-
tated versions of all patches can be added to the cluster
tree. Alternatively or additionally, coarsely rotated ver-
sions (by 0◦, 90◦, 180◦, and 270◦) can be considered in
place of a single, non-rotated query.

difficult to take into account. Specifically, for realistic
patches it is difficult to automatically select a meaningful
normalization. We therefore propose a numerical approxi-
mation where we merely consider a predefined discrete set
A ⊂ [0, 2π) of permissible rotation angles. Subsequently,
invariance to these rotation angles can be introduced into
the patch similarity measure by simply finding the best
rotation to align the two patches centered at x and y:

d2(x, y) =

min
φ∈A

∫
Ω

Gρ(x′)
(
I(x− x′)−RφI(Rφy − x′)

)2
dx′,

(6)
where Rφ denotes a rotation (of the image) by an angle φ.
As in equation (5), the nonlocal filter must be adapted ap-
propriately to take into account the optimal rotation angle.

Figure 9 shows that already considering a very coarse
set of 90-rotations provides improvements of signal-to-
noise ratios. A more finely sampled set of rotation angles
gives rise to even better denoising.

3.3. Invariance to Scale Variation

A common variation of natural textures comes about due
to variations in the scale of patterns. In particular due to
perspective transformations, more distant textures will be
shrunk with respect to the textures closer to the viewer.
Again, the classical nonlocal means filter cannot exploit
the similarity of structures over different spatial scales: A
given patch at location y will not support the denoising of
similar patches at location x if the latter one has a different
scale.

As in the case of angle variations, a normalization
of patches with respect to spatial scale changes is by no
means straight-forward. Again, we propose a numerical
approximation obtained by considering a discrete set A ⊂
(0,∞) of scaling factors. A patch similarity measure which
is invariant to scaling in this set of scales is given by:

d2(x, y) =

min
σ∈A

∫
Ω

Gρ(x′) (I(x− x′)− SσI(Sσy − x′))2 dx′,

(7)
where Sσ denotes a scaling of the image by the factor σ.
As for the case of brightness and angle variation, the re-
spective nonlocal means filter needs to be adapted appro-
priately.

In contrast to rotations which are always in the in-
terval [0, 2π], there is no natural bound on the choice of
meaningful scale parameters. Therefore the user needs to
define a discrete set of meaningful scale parameters. In
contrast to the rotation case, where even coarse sets of ro-
tation angles lead to improvements of the signal-to-noise
ratio, this is no longer the case for scale changes. Fig-
ure 10 shows that a very coarse set of permissible scales
A = {0.5, 0.71, 1, 1.41, 2} leads to a slight decay of the
PSNR from 20.89 to 20.64. A meaningful and sufficiently
fine set of scales such as A = {0.84, 0.92, 1, 1.09, 1.19}
increases the PSNR to 20.95.

4. CONCLUSION

The denoising of textural patterns has recently been ad-
dressed by a number of nonlocal filtering approaches such



Figure 8. Brightness invariance in texture denoising. From left to right: (a) Input image. (b) Gaussian noise with σ = 40
added. (c) Result with a brightness sensitive distance (PSNR = 19.28). (d) Result with a brightness invariant distance
(PSNR = 20.35). Bottom: Zoom into the marked region. Considering brightness transformations leads to significant
visual improvements.

Figure 9. Rotation invariance in texture denoising. From left to right: (a) Input image with Gaussian noise added,
σ = 40. (b) Result without considering rotated patches (PSNR = 19.28). (c) Patches rotated by 0◦, 90◦, 180◦, and 270◦

considered in distance (PSNR = 19.32). (d) Patches rotated by −20◦, −10◦, 0◦, 10◦, and 20◦ considered in distance
(PSNR = 19.83). Considering rotated patches leads to improved PSNR values, though the improvement is smaller than
in case of brightness transformations.

Figure 10. Scale invariance in texture denoising. From left to right: (a) Input image with Gaussian noise added,
σ = 40. (b) Result without considering scaled patches (PSNR = 20.89). (c) Patches scaled by 0.5, 0.71, 1, 1.41, and 2
(PSNR = 20.64). (d) Patches scaled by 0.84, 0.92, 1, 1.09, and 1.19 (PSNR = 20.95). Results can even be inferior
when considering scaled patches.



as the nonlocal means filter. In this paper, we addressed
two important shortcomings of the original nonlocal means
filter: Firstly, we proposed and quantitatively compared
a number of speed-up techniques based on efficient data
structures such as cluster trees, spill trees, and cluster forests
indicating that the implementation via cluster forests pro-
vides best results. Secondly, we proposed ways to make
the nonlocal means filtering robust to variations of the tex-
tural patches in brightness, scale, and rotation. Experi-
ments indicate that considering appropriate scales and ro-
tations leads to substantial improvements of the denoising
performance.
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[10] P. Mrázek, J. Weickert, and A. Bruhn, “On robust es-
timation and smoothing with spatial and tonal kernels,”
in Geometric Properties from Incomplete Data, R. Klette,
R. Kozera, L. Noakes, and J. Weickert, Eds., pp. 335–352.
Springer, Dordrecht, 2006.

[11] A. Buades, B. Coll, and J. M. Morel, “The staircasing ef-
fect in neighborhood filters and its solution,” IEEE Trans-
actions on Image Processing, vol. 15, no. 6, pp. 1499–
1505, 2006.

[12] K. Popat and R. Picard, “Novel cluster-based probability
model for texture synthesis, classification, and compres-
sion,” in Proc. SPIE Visual Communications and Image
Processing, 1993.

[13] A. Efros and T. Leung, “Texture synthesis by non-
parametric sampling,” in Proc. International Conference
on Computer Vision, Corfu, Greece, Sept. 1999, pp. 1033–
1038.

[14] L.-Y. Wei and M. Levoy, “Deterministic texture analysis
and synthesis using tree structure vector quantization,” in
Proc. Brazilian Symposium on Computer Graphics and Im-
age Processing, 1999, pp. 207–214.

[15] A. Buades, B. Coll, and J. M. Morel, “A non-local algo-
rithm for image denoising,” in Proc. International Confer-
ence on Computer Vision and Pattern Recognition, 2005,
pp. 60–65.

[16] S. Awate and R. Whitaker, “Higher-order image statis-
tics for unsupervised, information-theoretic, adaptive im-
age filtering,” in Proc. International Conference on Com-
puter Vision and Pattern Recognition, 2005, pp. 44–51.

[17] M. Mahmoudi and G. Sapiro, “Fast image and video de-
noising via nonlocal means of similar neighborhoods,” Sig-
nal Processing Letters, vol. 12, no. 12, pp. 839–842, 2005.

[18] S. Yoshizawa, A. Belyaev, and H.-P. Seidel, “Smoothing
by example: mesh denoising by averaging with similarity-
based weights,” in Proc. International Conference on
Shape Modeling and Applications, June 2006, pp. 38–44.

[19] S. Awate and R. Whitaker, “Unsupervised, information-
theoretic, adaptive image filtering for image restoration,”
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 28, no. 3, pp. 364–376, Mar. 2006.

[20] C. Kervrann, J. Boulanger, and P. Coupé, “Bayesian non-
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