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Abstract. This paper introduces a technique for region-based pose tracking with-
out the need to explicitly compute contours. We assume a surface model of a rigid
object and at least one calibrated camera view. The goal is tofind the pose pa-
rameters that optimally fit the model surface to the contour of the object seen in
the image. In contrast to conventional contour-based techniques, which acquire
the contour to be extracted explicitly from the image, our approach optimizes an
energy directly defined on the pose parameters. We show experimental results for
rather challenging scenes observed with a monocular and a stereo camera system.

1 Introduction

The task to pursuit the 3-D position and orientation of a known 3-D object model from a
2-D image data stream is called 2-D–3-D pose tracking [8]. The need for pose tracking
occurs in several applications, e.g. self localization andobject grasping in robotics,
or camera calibration. Particularly in scenes with cluttered backgrounds, noise, partial
occlusions, or changing illumination, pose tracking is still a challenging problem even
after more than 25 years of research [10].
A lot of different approaches to pose tracking have been considered [7, 12]. In [6], an
iterative algorithm for real-time pose tracking of articulated objects, which is based
on edge detection, has been proposed. Often points [1] or lines [2] are used for feature
matching, but other features such as vertices, t-junctions, cusps, three-tangent junctions,
limb and edge injections, and curvature L-junctions have also been considered [9].
Another way to approach pose estimation is to match a surfacemodel of the object to
be tracked to the object region in the images. Thereby, the computation of this region
yields a typical segmentation problem. It has been proposedto optimize a coupled for-
mulation of both problems and to solve simultaneously for the contours and the pose
parameters via graph cuts [3] or via iterative approaches [4]. Although the coupled es-
timation of contours and pose parameters is beneficial compared to the uncoupled case,
segmentation results can be inaccurate, as seen in Figure 1.
�
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Fig. 1. Problems often occurring in variational segmentation algorithms: (a) An inaccurate seg-
mentation. Note the split up into multiple connected components. (b) An error due to oversmooth-
ing and another kind of undesired topological change.

In this paper, we build upon the method in [4] including its statistical representation
of regions. However, instead of estimating 2-D segmentation and 3-D pose parameters
separately we directly estimate 3-D pose parameters by minimizing the projection error
in the respective 2-D images. Consequently, we can estimatesegmentations which are
by construction consistent with the 3-D pose. Moreover, theestimation of an infinite-
dimensional level set function is replaced by the optimization of a small number of pose
parameters. This results in a drastic speed-up and near real-time performance.
In the next section, we will briefly review pose estimation from 2-D–3-D point corre-
spondences. We will then explain our approach in Section 3, followed by experimental
results in Section 4. Section 5 concludes with a summary.

2 Pose Estimation from 2-D–3-D Point Correspondences

This section introduces basic concepts and notation and briefly describes the point-
based pose estimation algorithm used in our approach [13]. Given some 3-D pointsxi

on the object, which are visible as 2-D pointsqi in an image, the algorithm seeks a rigid
body motionξ such that each pointxi is on the line passing throughqi and the camera
origin. Section 3 shows how such point correspondences are obtained with our method.

2.1 Rigid Motion and Twists

A rigid body motion in 3-D can be represented asm
�
x� :� Rx� t, wheret � �3 is

a translation vector andR � SO
�
3� is a rotation matrix withSO

�
3� :� �R � �3�3 :

det
�
R� � 1�. By means of homogeneous coordinates, we can writem as a matrixM:

m
��

x1 	x2 	x3�T � � M
�
x1 	x2 	x3 	1�T � 


R3�3 t3�1

01�3 1 � x � (1)

The set of all matrices of this kind is called theLie group SE
�
3�. To every Lie group

there is an associated Lie algebra. Its underlying vector space is the tangent space of the



Lie group evaluated at the origin. The Lie algebra associated with the Lie groupSO
�
3�

is so
�
3� :� �A � �3�3 �AT � �A�, whereas the Lie algebra corresponding toSE

�
3� is

se
�
3� :� ��ν 	ω � �ν � �3 	ω � so

�
3��. Since elements ofse

�
3� can be converted toSE

�
3�

and vice versa, we can represent a rigid motion as element ofse
�
3�. Such an element is

calledtwist. This is advantageous since a twist has only six parameters while an element
of SE

�
3� has twelve. Both have six degrees of freedom, though.

Elements ofso
�
3� and se

�
3� can be written both as vectorsω � �

ω1 	ω2 	ω3�, ξ ��
ω1 	ω2 	ω3 	ν1 	ν2 	ν3� and as matrices:

ω̂ � �
� 0 �ω3 ω2

ω3 0 �ω1�ω2 ω1 0

�
� � so

�
3� 	 ξ̂ � 


ω̂ ν
03�1 0� � se

�
3� � (2)

A twist ξ � se
�
3� can be converted to an element of the Lie groupM � SE

�
3� by the

exponential function exp
�
ξ̂ � � M. This exponential can be computed efficiently with

the Rodriguez formula. For further details we refer to [11].

2.2 Pose Estimation with 2-D–3-D Point Correspondences

Let
�
q	x� be a 2-D–3-D point correspondence, i.e.x � �4 is a point in homogeneous

coordinates on the 3-D silhouette of the object andq � �2 is its position in the image.
Furthermore, letL � �

n	m� be the Plücker line [14] throughq and the respective camera
origin. The distance of any pointa to the lineL given in Plücker form can be computed
by using the cross product:�a �n�m�, i.e.,a � L if and only if �a �n�m� � 0.
Our goal is to find a twistξ such that the transformed points exp

�
ξ̂ �xi are close to the

corresponding linesLi . Linearizing the exponential function exp
�
ξ̂ � � ∑∞

k�0
ξ̂ k

k! 	 I � ξ̂
(whereI is the identity matrix), we like to minimize with respect toξ :

∑
i 




�
exp

�
ξ̂ � xi�

3�1
�ni �mi 




2 	 ∑
i 




��
I � ξ̂� xi�

3�1
�ni �mi 




2 
min	 (3)

where the function�3�1 : �4 � �3 removes the last entry, which is 1. Evaluation yields
three linear equations of rank two for each correspondence

�
qi 	xi �. Thus, to solve for the

6 twist parameters, we need at least three correspondences for a unique solution. Usu-
ally, there are far more point correspondences and one obtains a least squares problem,
which can be solved efficiently with the Householder algorithm. Since the twistξ only
corresponds to the pose change it is rather “small”. Thus, linearizing the exponential
function does not create large errors. Moreover, we iteratethis minimization process.

3 Region-based Model Fitting

Existing contour-based pose estimation algorithms expectan explicit contour to estab-
lish correspondences between contour points and points on the model surface. This
involves a matching of the projected surface and the contour. Our idea is to avoid ex-
plicit computations of contours and the contour matching. Instead, we seek to adapt
the pose parameters in such a way that the projections of the surface optimally split all
images into the object and the background region. For simplicity, we will describe this
setting for a single camera, but the concept is trivially extended to multiple views.



Fig. 2. From left to right: (a) Input image. The puncher is to be tracked. (b) Projectionof the
model in an inaccurate pose onto the image (magnified). The two marked points are the points
referenced to in Section 3.2 (c) The 2-D contour of the projection (magnified). The arrows show
into which directions these points should move in our algorithm.

3.1 Energy Model

Like in a segmentation task, we seek an optimal partitioningof the image domainΩ .
This can be expressed as minimization of the energy function

E
�
ξ � � � �

Ω

�
P
�
ξ 	q� logp1 � �

1�P
�
ξ 	q�� logp2�dq 	 (4)

where the functionP
�
ξ 	q� � ��6 �Ω � �0	1�� is 1 if and only if the surface of the

3-D model with poseξ projects to the pointq in the image plane.P splits the image
domain into two parts, in each of which different feature distributions are expected.
These distributions are modeled by probability density functionsp1 andp2.
Note the similarity of (4) to variational segmentation methods [4]. The important differ-
ence is that the partitioning is not represented by a contour, i.e. a function, but by only
six parameters. Moreover, there is no constraint on the length of the boundary in (4).
The probability densities are modeled by local Gaussian distributions [4] of the color
in CIELAB color space, and texture in the texture feature space proposed in [5]. Since
there is only a limited amount of data available to estimate the density functions, we
consider the separate feature channels to be independent. Thus, the total probability
density function is the product of the single channel densities.
The densities are adapted when the estimated pose has changed. Given the projection
of the model, and hence a partitioning of the image into object and background region,
p1 andp2 can be computed from the local mean and variance in these regions.

3.2 Minimization

We minimize (4) by computing force vectors along the contourimplicitly given by the
projected surface. These force vectors indicate the direction to which the projection of
the model should move to minimizeE

�
ξ �. Using the framework from Section 2, we can

transfer this force to the 3-D points and estimate the corresponding rigid body motion.
To this end, we create 2-D–3-D point correspondences

�
qi 	xi � by projecting silhouette

pointsxi , given the current poseξ , to the image plane where they yieldqi . If the function
valuep1

�
qi � is greater thanp2

�
qi �, it is likely thatqi belongs to the interior of the object
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− Adapt 2D−3D point correspondences (q ,x ) to (q’ ,x ) (Section 3.2)

− Project 3D objet model onto image plane

− Generate prob. density functions for inside/outside the proj. model 

Extrapolate new pose from previous poses and compute image features

(Section 3.1)

Fig. 3. Summary of the region-based pose tracking algorithm.

region. Thus,qi will be shifted in inward normal direction to a new pointq�i . Vice versa,
pointsqi where the inequalityp1

�
qi � �

p2
�
qi � holds will be shifted in outward normal

direction. The normal direction is given by∇P approximated with Sobel operators. The
lengthl :� �q� � q� of the shift vector is a parameter. More advanced methods howto
choosel - including scalingl by �logp1 � logp2

�, i.e. performing a gradient decent on
E - have been tested but results were worse for our sequences.
This concept is illustrated in Figure 2. Figure 2b shows a white puncher, onto which the
surface model has been projected. Figure 2c depicts the boundary between the interior
and exterior of the projected model. Most of the points in theinterior are white. So
is the point marked by the right circle. Thus, it better fits tothe statistical model of the
object region than to the background and is moved away from the object. Vice-versa, the
marked cyan point on the left side is moved inwards as it better fits to the background.
We iterate this process. At some point, the pose changes induced by the force vec-
tors mutually cancel out. We stop iterating when the averagepose change after up to
three iterations is smaller than a given threshold. Before changing frames in an image
sequence, we predict the object’s pose in the new frame by linearly extrapolating the
results from the two previous frames. Figure 3 shows an overview of the algorithm.

4 Experiments

Figure 4 shows two frames of a monocular sequence, in which a wooden toy giraffe has
been tracked with our method. The estimated pose fits well to the object in the image.
Figure 5 depicts tracking results of a stereo sequence. First, a wooden beam moves
between the cameras and the static object. Then the tea box ispicked up and rotated
several times. In the most challenging part of this sequence, the tea box is rotated around
two different axis simultaneously while the bottom of the box reflects the background
and moving specular highlights are visible. Nevertheless,our algorithm can track the
tea box accurately over all 395 frames of this sequence.
For this sequence, an average of 12.03 iterations were necessary to reach the requested
threshold (0.1mm for translation, 0.001 for rotations), with a maximum of 72 iterations.
Approximately 28.75 minutes of processor time were needed on an Intel Pentium 4 with
3.2GHz (	 12 frames per minute), about 86% of which was used for preprocessing
(loading the images, computing texture features, etc.) while the rest was spent in the
iteration steps. The parameters (i.e. the threshold andl ) have been optimized to yield
good poses. Faster but less accurate computations are possible, as explained below.



Fig. 4. From left to right: Input image, estimated pose and extracted contour for two frames of
a color sequence with a wooden giraffe.Top: Frame 52.Bottom: Frame 68. The surface model
consists of a single closed point grid. Thus, it is possible to look through the projected pose. Note
that this is irrelevant for contour-based pose estimation,where only silhouette points are needed.

Figure 6 shows the time used by our program per frame. It can beseen that our algorithm
is faster in “easy” situations, e.g. when nothing has moved.This figure also shows the
changes in the translation and rotation parameters for the first 160 frames. Since tea
box and camera are static in these frames no changes should occur. Our results have a
standard deviation of about 1.79 degrees and 0.83mm.
When tracking objects that are clearly separated from the background (e.g. the puncher
in Figure 2), features from the texture space can be neglected and the local Gaussian
model can be replaced by a global model. These changes noticeably decrease the run-
time of our algorithm. For example, the teapot shown in Figure 7 has been tracked in
a stereo sequence with more than one frame per second. Ignoring texture information,
the tea box sequence shown in Figure 5 can be tracked (with slightly less accurate re-
sults) in less than 4 minutes (	 104 frames per minute). This indicates that real-time
processing with a region-based approach is feasible.

5 Summary

We have presented an pose tracking algorithm from 2-D regional information which
does not require a separate segmentation step. The implicitpartitioning of the image by
the projected object model is used for computing region statistics, which drive an evolu-
tion directly in the pose parameters. The algorithm can dealwith illumination changes,
cluttered background, partial occlusions, specular highlights and arbitrary rigid 3-D
models. Experiments show that the results compare well to methods based on explicit
contour representations. However, our approach is considerably faster and close to real-
time performance.



Fig. 5. Pose results for a tea box. Each block shows the computed pose(blue) and the contour
(yellow) in the two views. The scene contains partial occlusions (frame 97, top left), the tea box
is turned upside down (frame 230, top right), there are specular reflections (frame 269, bottom
left) and the box is turned around different axes simultaneously (frame 277, bottom right).
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