
On the Statistical Interpretation of the
Piecewise Smooth Mumford-Shah Functional

Thomas Brox and Daniel Cremers

CVPR Group, University of Bonn
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Abstract. In region-based image segmentation, two models dominate
the field: the Mumford-Shah functional and statistical approaches based
on Bayesian inference. Whereas the latter allow for numerous ways to
describe the statistics of intensities in regions, the first includes spa-
tially smooth approximations. In this paper, we show that the piece-
wise smooth Mumford-Shah functional is a first order approximation of
Bayesian a-posteriori maximization where region statistics are computed
in local windows. This equivalence not only allows for a statistical inter-
pretation of the full Mumford-Shah functional. Inspired by the Bayesian
model, it also offers to formulate an extended Mumford-Shah functional
that takes the variance of the data into account.
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1 Introduction

Since the beginning of image analysis research, there has been enormous interest
in image segmentation. While the topic was handled in a quite heuristic manner
for a long time, a more systematic approach to the problem has been initiated
by three seminal works in the 1980s: the Bayesian formulation of Geman and
Geman [9], the energy functional of Mumford and Shah [18, 19], and the snakes
model by Kass, Witkin, and Terzopoulos [13]. In all these works, the formerly
purely algorithmic description of a segmentation method has been replaced by
its formulation as an optimization problem. This systematic description based on
sound mathematical concepts has considerably improved the understanding of
image segmentation and, hence, supported the development of new models and
better algorithms. The initially large gap between sound energy formulations
and efficient ways to find solutions of these energies, in particular in case of the
Mumford-Shah functional, was bridged by the works of Ambrosio and Tortorelli
[1], Morel and Solimini [16, 17], as well as the use of level set representations of
contours by Caselles et al. [6], Chan and Vese [7], and Paragios and Deriche [22].
A further type of optimization strategy has emerged in the spatially discrete
case with graph cut methods [10, 3].
Whereas all three approaches to image segmentation are based on energy min-
imization, their motivation is quite different. In [26], Zhu and Yuille outlined
many relations between the methods and algorithmic implementations such as
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region merging or region growing. In particular, they established a link between
a Bayesian approach to image segmentation and the piecewise constant case
of the Mumford-Shah functional, sometimes called the cartoon limit. Zhu and
Yuille also suggested a more general energy functional that replaces the constant
approximation of image regions by arbitrary intensity distributions. This formu-
lation was used particularly in level set based segmentation approaches where
full Gaussian distributions [24], Laplace distributions [11], and nonparametric
kernel densities [14] have been suggested.
Zhu and Yuille established relations between Bayesian methods and the cartoon
limit of the Mumford-Shah functional, yet in their work, they ignored the part
of the functional that allows also for piecewise smooth approximations. In the
present paper, we complete their work by showing that the Mumford-Shah func-
tional can be interpreted as a first-order approximation of a Bayesian model with
probability densities estimated in local windows. Such types of densities have
been used in [4] in the scope of contour-based pose estimation. Similar to the
work of Zhu and Yuille [26], this equivalence allows to generalize the Mumford-
Shah functional. We demonstrate this by proposing a functional which allows
to approximate the input intensity by a piecewise smooth Gaussian distribution
including mean and variance.

2 The Mumford-Shah Functional

The idea of Mumford and Shah was to find a piecewise smooth approximation
u : (Ω ⊂ R2) → R of the image I : (Ω ⊂ R2) → R and an edge set K1 separating
the pieces of u, such that u is close to I and the total length of the edge set is
minimal. This can be expressed as minimizing the functional

E(u, K) =
∫

Ω−K

(u− I)2dx + λ

∫
Ω−K

|∇u|2dx + ν |K| → min, (1)

where λ ≥ 0 and ν ≥ 0 are constant weighting parameters. An interesting special
case arises for λ → ∞, where u is required to be piecewise constant. This case,
already discussed by Mumford and Shah in [19], is also known as the cartoon
limit and can be written in short form

E(u, K) =
∑

i

∫
Ωi

(ui − I)2dx + ν0 |K| → min, (2)

where Ωi denotes the piecewise constant regions separated by K and ν0 is the
rescaled version of the parameter ν in (1). Due to the quadratic error measure,
given Ωi, the solution of ui is the mean of I within Ωi. A related approach was
independently developed by Blake and Zisserman [2]. In the spatially discrete
case, (2) is related to the Potts model [23].

1 Since our focus lies on image segmentation, we will only consider edge sets which
are sets of closed curves [17].
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The model in (2) can be simplified further by assuming a fixed number of regions
N . In particular, the case N = 2 and its level set formulation by Chan and Vese
[7] has become very popular. A discrete version of the binary case has been
introduced by Lenz and Ising for modeling ferromagnetism already in the 1920s
[15, 12].

3 Bayesian Model and Local Region Statistics

An alternative approach to image segmentation can be derived using Bayes’ rule

p(K|I) =
p(I|K)p(K)

p(I)
. (3)

Here one seeks for a partitioning by the edge set K that maximizes the a-
posteriori probability given the image I. The first factor in the nominator is
in general approximated by an intensity distribution in the regions i = 1, ..., N
separated by K. The second factor is the a-priori probability of a certain parti-
tioning K. Usually, the total length of the edge set K is assumed to be small,

p(K) = exp(−νB |K|), (4)

but other more sophisticated shape priors can be integrated here, as well [8].
Assuming independence of intensities at different locations x, one can write

p(I|K) =
∏
x∈Ω

p(I(x)|K,x)dx, (5)

a continuous product with dx being the infinitesimal bin size. With the partition-
ing of Ω by the edge set K into disjoint regions Ω =

⋃
i Ωi, Ωi ∩Ωj = ∅,∀i 6= j,

the product over the whole domain Ω can be separated into products over the
regions: ∏

x∈Ω

p(I(x)|K,x)dx =
∏

i

∏
x∈Ωi

p(I(x)|x,x ∈ Ωi)dx. (6)

For convenience we define the conditional probability density to encounter an
intensity s at position x given that x ∈ Ωi as

pi(s,x) := p(s|x,x ∈ Ωi). (7)

Note that we have here a family of probability densities pi(s,x) for all x ∈ Ω,
i.e.,

pi(s,x) : R → R+
0

pi(s,x) ≥ 0 ∀s ∈ R,∀x ∈ Ω
∫

R pi(s,x)ds = 1∀x
∫

Ω.
(8)

In general, it is preferable to express the maximization of (3) by the minimization
of its negative logarithm. With the above assumptions, this leads to the energy
functional

E(K) =
∑

i

∫
Ωi

− log pi(I(x),x)dx + νB |K|. (9)
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It obviously resembles the cartoon limit of the Mumford-Shah functional. We
will come back to this issue in the next section.

There are several possibilities how to model the probability densities pi. Typi-
cally, one assumes a homogeneous Gaussian distribution in each region Ωi:

pi(s) =
1√

2πσi

exp
(
− (s− µi)2

2σ2
i

)
, (10)

where µi and σi denote the mean and standard deviation of I in region Ωi.
Other choices like a Laplace distribution [11] or a nonparametric density [14]
are possible, as well. All these models apply the same probability density to all
points in a region. Hence, we will call them spatially homogeneous region models.

In contrast, local region models take the spatial position into account, i.e., there
is in general a different probability density at each point x in the region. For a
Gaussian distribution this yields [4]:

pi(s,x) =
1√

2πσi(x)
exp

(
(s− µi(x))2

2σi(x)2

)
. (11)

Estimation of the parameters µi(x) and σi(x) can be achieved using a window
function, e.g. a Gaussian Gρ with standard deviation ρ, and restricting the esti-
mation only to points within this window:

µi(x) =

∫
Ωi

Gρ(ζ − x)I(ζ) dζ∫
Ωi

Gρ(ζ − x) dζ
σi(x) =

∫
Ωi

Gρ(ζ − x)(I(ζ)− µi(x))2 dζ∫
Ωi

Gρ(ζ − x) dζ
.

(12)
Obviously, the local region model converges to the corresponding homogeneous
model for ρ →∞.

4 Bayesian Interpretation of the Mumford-Shah
Functional

The Bayesian model from the last section is quite flexible in the choice of the
probability density function. It further yields a nice statistical interpretation of
the model assumptions and allows for the sound integration of a-priori informa-
tion. On the other hand, the Mumford-Shah functional combines segmentation
and image restoration by a piecewise smooth function. The reader may have al-
ready noticed similarities between the models in Section 2 and Section 3. In this
section, we will investigate the relation between both segmentation approaches
aiming at a statistical interpretation of the full Mumford-Shah functional.

We start with the Bayesian model in (9). A comparison to the cartoon model in
(2) reveals a large similarity. As shown in [26], for a specific choice of the proba-
bility densities, both formulations turn out to be equivalent. Indeed, equivalence
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of (2) and (9) is established by modeling the probability densities as Gaussian
functions with fixed standard deviation

pi(s) =
1√
2πσ

exp
(
− (s− µi)2

2σ2

)
. (13)

Applying the logarithm

log pi(s) = −1
2

log(2πσ2)− (s− µi)2

2σ2
(14)

and plugging this into (9) yields

E(K) =
∑

i

∫
Ωi

1
2

log(2πσ2) +
(I(x)− µi)2

2σ2
dx + νB |K|

=
∑

i

∫
Ωi

(I(x)− µi)2

2σ2
dx + νB |K|+ const.

(15)

Due to the same fixed standard deviation in all regions, the logarithm term
containing σ does not depend on K and, hence, is a negligible constant in the
energy functional. Also the denominator 2σ2 is a constant and merely leads to
a rescaling of the parameter νB . Thus, with µi ≡ ui, σ =

√
0.5, and νB = ν0,

(15) states exactly the same energy minimization problem as the cartoon model
in (2).

With this equivalence in mind, the question arises, whether there exists a choice
of the probability density function that relates the Bayesian model to the full,
piecewise smooth Mumford-Shah functional stated in (1). Since (1) explicitly
allows the approximation u to vary within a region, a homogeneous region model
is obviously not sufficient. Local region statistics, on the other hand, include
varying parameters in the region. Hence, having in mind that the equivalence of
the Bayesian model and the cartoon model was established for a homogeneous
Gaussian region model with fixed standard deviation, we take a closer look at
the local Gaussian model, again with fixed standard deviation.

Since the standard deviation is fixed, we can focus on the local mean in (12):

µi(x) =

∫
Ωi

Gρ(ζ − x)I(ζ) dζ∫
Ωi

Gρ(ζ − x) dζ
. (16)

The numerator is a convolution of the image I with the Gaussian function Gρ.
The denominator is only for normalization in case the window hits the boundary
of Ωi. It ensures the preservation of the average gray value of µi in the domain
Ωi independent of ρ.

In order to bend the bow to the Mumford-Shah functional, we will relate this
filtering operation to a regularization framework. Yuille and Grzywacz [25] as
well as Nielsen et al. [21] showed that the outcomes of some linear filters are
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exact minimizers of certain energy functionals with an infinite sum of penalizer
terms of arbitrarily high order. More precisely, it was shown in [21] that filtering
an image I with the filter

ĥ(ω) =
1

1 +
∑∞

k=1 αkω2k
(17)

given in the frequency domain, yields the minimizer of the following energy
functional:

E(u) =
∫

R

(
(u− I)2 +

∞∑
k=1

αk

(
dku

dxk

)2
)

dx. (18)

In particular, this includes for αk = λk

k! , the Gaussian filter

ĥ(ω, λ) =
1

1 +
∑∞

k=1
λk

k! ω
2k

= exp(−λω2). (19)

This filter corresponds to the Gaussian Gρ with standard deviation ρ =
√

2λ
in the spatial domain. Nielsen et al. further showed in [20] that for Cartesian
invariants, such as the Gaussian, this correspondence can be generalized to higher
dimensions. Therefore, the convolution result in (16) is the exact minimizer of

E(µi) =
∫

Ωi

(µi − I)2 +
∞∑

k=1

λk

k!

∑
j1+j2=k

(
dkµi

dxj1dyj2

)2
 dx (20)

with natural boundary conditions.

Based on these findings, we can proceed to generalize the piecewise constant
case in (15). We plug the local Gaussian probability density from (11) with fixed
standard deviation σ =

√
0.5 into the Bayesian model in (9):

E(µ, K) =
∑

i

∫
Ωi

1
2

log(2πσ2) +
(I(x)− µi(x))2

2σ2
dx + νB |K|

=
∑

i

∫
Ωi

(I(x)− µi(x))2dx + νB |K|+ const.
(21)

The means µi have in (16) been defined as the results of local convolutions. As
we have just found, this convolution result is the minimizer of (20). Hence, we
can write the Bayesian energy as:

EB(µ,K) =
∑

i

∫
Ωi

(µi − I)2 +
∞∑

k=1

λk

k!

∑
j1+j2=k

(
dkµi

dxj1dyj2

)2
 dx + νB |K|.

(22)
Neglecting all penalizer terms of order k > 1 yields

EMS(µ,K) =
∑

i

∫
Ωi

(
(µi − I)2 + λ|∇µi|2

)
dx + νB |K|+ const. (23)
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which states exactly the Mumford-Shah functional in (1). Consequently, min-
imizing the full piecewise smooth Mumford-Shah functional is equivalent to a
first-order approximation of a Bayesian a-posteriori maximization based on local
region statistics. In particular, it is the approximation of the Bayesian setting
with a Gaussian distribution, fixed standard deviation σ =

√
0.5, and a Gaussian

windowing function where ρ =
√

2λ and νB = ν.

What is the effect of neglecting the higher order terms, as done by the Mumford-
Shah functional? The main effect is that the minimizers µi of the functional in
(23) are less smooth than those of the functional in (22). Figure 1 depicts a com-
parison in case of the whole image domain being a single region. Obviously, the
visual difference is almost negligible, and it can be further reduced by choosing λ
in the first-order approximation slightly larger than in the regularizer containing
the infinite sum of penalizers.

Fig. 1. Comparison of regularization with and without higher order penalizers. Left:
Original image. Center: Smoothing result with the regularizer in (22) (Gaussian
smoothing) for λ = 20. Right: Smoothing results with the regularizer in (23) for
λ = 20.

5 Extending the Mumford-Shah Functional

In the previous section, we have shown that the full, piecewise smooth version of
the Mumford-Shah functional is a first-order approximation of a Bayesian seg-
mentation approach assuming local Gaussian distributions with a fixed standard
deviation. In this section, we will make use of this relation in order to extend
the Mumford-Shah functional in a way that it also takes the variance of the data
into account. In the Bayesian formulation, this is easy to achieve, as shown in
Section 3. Hence, we can take the Bayesian model and express the convolutions
by regularization formulations.

With the full Gaussian model, the probability densities

pi(s,x) =
1√

2πσi(x)
exp

(
(s− µi(x))2

2σi(x)2

)
. (24)
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depend on two functions µi(x) and σi(x) given by (12). For ρ →∞ they are the
mean and standard deviation of I in Ωi, i.e., the minimizers of∫

Ωi

(
(µi − I)2

2σ2
i

+
1
2

log(2πσ2
i ) + λ

(
|∇µi|2 + |∇σi|2

))
dx (25)

for λ → ∞. This yields a generalized cartoon model. For ρ � ∞ we make use
of the relation between Gaussian convolution and regularization stated in the
previous section and obtain µi(x) and σi(x) as the minimizers of

E(µi, σi) =
∫

Ωi

(
(µi − I)2

2σ2
i

+
1
2

log(2πσ2
i )
)

dx

+
∫

Ωi

∞∑
k=1

λk

k!

∑
j1+j2=k

(
dkµi

dxj1dyj2

)2

dx

+
∫

Ωi

∞∑
k=1

λk

k!

∑
j1+j2=k

(
dkσi

dxj1dyj2

)2

dx

(26)

and the Bayesian energy can be written as

EB(µ, σ,K) =
∑

i

E(µi, σi) + ν|K|. (27)

Based on the observation in Section 4, a qualitatively similar approach is ob-
tained by neglecting the penalizer terms with k > 1

EMS(µ, σ,K) =
∫

Ω−K

(
(µ− I)2

2σ2
+

1
2

log(2πσ2)
)

dx

+λ

∫
Ω−K

(
|∇µ|2 + |∇σ|2

)
dx + ν |K|,

(28)

which we may call an extended version of the Mumford-Shah functional. Main
advantage of this extension over the original Mumford-Shah functional is that
the parameter ν gets invariant with respect to the image contrast. This contrast
invariance becomes even more interesting when dealing with vector-valued input
images and estimating a separate variance for each vector channel. The influence
of each channel on the segmentation then only depends on its discriminative
properties and not on the magnitude of the channel values. This allows for the
sound integration of different input channels with different contrast and noise
levels. For a proof in case of a global Gaussian model we refer to [5]. This proof
can be adopted for the local Gaussian model in a straightforward manner.
Another advantage of taking the variance into account is the possibility to dis-
tinguish regions that are equal in their mean value, but differ in the variance.

Figure 2 illustrates a result obtained with the extended Mumford-Shah func-
tional. For the experiment we used a level set implementation and expect two
regions in the image. Our implementation is based on gradient descent and,
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hence, can only ensure a local optimum that need not necessarily be the global
one. The initial contour is shown in Figure 2a. The background region of the
input image has been generated by a constant function at 127 and Gaussian
noise with standard deviation 20. The circular foreground region contains a gra-
dient ranging from 0 to 255. Gaussian noise with standard deviation 70 has been
added to this region. The resulting contour and the local mean approximation
for λ = 32 and ν = 32 are shown in Figure 2b and Figure 2c, respectively.
For comparison, we depict in Figure 2d the contour found with the same imple-
mentation but the standard deviation set fixed, i.e., the original Mumford-Shah
functional. For this case, the parameter ν had to be increased to ν = 1000 to
obtain reasonable results. Since the two regions have different variances, which
can only be exploited by the extended Mumford-Shah functional, the extension
finds a more attractive solution than the original version. Larger ν in the original
Mumford-Shah functional cannot improve the quality of the result as they lead
to an over-smoothed contour not capturing the full circle anymore.

6 Summary

We have provided a statistical interpretation of the Mumford-Shah functional
with piecewise smooth regions by showing its relations to Bayesian image seg-
mentation with local region statistics. The link has been established by means
of a theorem that relates Gaussian convolution to a regularization problem with
an infinite sum of penalizers of arbitrarily high order. Based on this relation, we
showed that the Mumford-Shah functional is equivalent to a first-order approx-
imation of a Bayesian approach with Gaussian probability densities estimated
with a Gaussian windowing function and the standard deviation set fixed. By
means of this relation, we derived an extended version of the Mumford-Shah
functional from the Bayesian model which includes the standard deviation as a
spatially varying, dynamic function.
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Fig. 2. Example for two regions. Top left: (a) Original image of size 162× 171 pixels
with the initial contour. Top right: (b) Contour obtained with the extended Mumford-
Shah functional in (28). Bottom left: (c) Approximated mean µ. Bottom right: (d)
Contour obtained with the original Mumford-Shah functional.


