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Abstract. In this paper, we analyze two conceptionally different ap-
proaches for shape matching: the well-known iterated closest point (ICP)
algorithm and variational shape registration via level sets. For the lat-
ter, we suggest to use a numerical scheme which was introduced in the
context of optic flow estimation. For the comparison, we focus on the
application of shape matching in the context of pose estimation of 3-D
objects by means of their silhouettes in stereo camera views. It turns out
that both methods have their specific shortcomings. With the possibil-
ity of the pose estimation framework to combine correspondences from
two different methods, we show that such a combination improves the
stability and convergence behavior of the pose estimation algorithm.
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1 Introduction

Shape matching or shape registration is the basis for many computer vision
techniques, such as image segmentation, pose estimation, and image retrieval,
to name only few of them. As a consequence, a multitude of works on shape
matching can be found in the literature, e.g., [4, 25, 11, 23, 14, 17]; see [24] for a
survey.
Most of these approaches rely on classic explicit shape representations given by
points that can be connected by lines or higher order curve segments to form a
shape. A very popular shape matching method working on such representations
is the iterated closest point (ICP) algorithm [2], at which we will take a closer
look in Section 2.
An alternative to explicit shape models emerged in the form of implicit represen-
tations by means of level sets [10, 16]. Instead of representing a 2-D shape by the
points on its contour, the contour is constituted implicitly by the zero-level line
of a 2-D embedding function. Level set methods enjoy great popularity in the
context of image segmentation with active contours. Recent methods in this field
improve the results by integrating the knowledge of previously learned shapes
? We gratefully acknowledge funding by the DFG project CR250/1 and the Max-
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[15], which involves matching the learned shape representation to the shape that
is found in the image. Shape matching with level set representations has been
suggested in this context by [15, 17, 9, 19]. In Section 3, we are concerned with
such implicit shape representations and propose a numerical scheme from optic
flow estimation for matching. In comparison to previous numerics in this field,
this matching scheme ensures stability and provides a significant speedup.
Since the two mentioned classes of shape matchers are based on very different
concepts, the question of superiority of the one or the other arises.1 We have
therefore compared both approaches in the case of one prominent application,
namely silhouette based 2-D-3-D pose estimation. The relevance of shape match-
ing in this context is briefly described in Section 4. The comparison in Section 5
shows that both matching concepts have their pros and cons. By a combination
one can, at least in the context of silhouette based pose estimation, obtain the
best of both approaches. The paper is concluded by a summary in Section 6.

2 Shape Matching with ICP

The goal of shape registration can be formulated as follows: Given two shapes
and a distance measure, the task is to determine from a certain class of transfor-
mations one that leads to the minimum distance between the two shapes. The
original ICP algorithm registers two point sets P and Q provided TP ⊆ Q with
the transformation T being a rigid transformation:

1. Nearest point search: for each point p ∈ P find the closest point q ∈ Q.
2. Compute registration: determine the transformation T that minimizes

the sum of squared distances between pairs of closest points (p, q).
3. Transform: apply the transformation T to all points in set P .
4. Iterate: repeat step 1 to 3 until the algorithm converges.

This algorithm converges to the next local minimum of the sum of squared
distances between closest points. A good initial estimate is required to ensure
convergence to the sought solution. Unwanted solutions may be found, if the
sought transformation is too large, e.g. many shapes have a convergence radius
in the area of 20◦ [7], or if the point sets do not provide sufficient information
for a unique solution.
The original ICP algorithm has been modified in order to improve the rate of
convergence and to register partially overlapping point sets. Zhang [25] uses a
modified cost function based on robust statistics to limit the influence of outliers.
The work also suggests to use a K-dimensions tree to partition the point set
and the author further reports on a significant speedup when registering large
1 We want to note here that the ICP algorithm can also match surfaces and, hence,

could as well be used to match implicit contours represented by level sets (which are
surfaces, in fact). The focus of our comparison is on explicit and implicit contour
representations. We take here the ICP algorithm as a representative for matching
methods that work with explicit contours. Consequently, ICP has to be interpreted
in this paper as ICP with an explicit contour representation.
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range image data sets. Bergevin et al. [1] extended the ICP algorithm to range
images from multiple views. They ensure an even distribution of registration
errors between overlapping views and report errors less than the range image
measurement noise for multiple views of complex objects.
The accuracy of ICP depends on the geometric information (e.g. local curva-
tures) contained in the point sets. If insufficient shape information is available,
inaccurate or incorrect registration may occur. Pennec et al. [18] developed
a framework to characterize the uncertainty in point registration. Other ap-
proaches aim at the avoidance of local minima during registration subsuming
the use of Fourier descriptors [21], color information [13], or curvature features
[22].
The advantages of ICP algorithms are obvious: they are easy to implement and
will provide good results, if the sought transformation is not too large. ICP al-
gorithms have also been used for silhouette based 2D-3D pose estimation [20,
21]. In this context, additional problems arise due to ambiguities of transforma-
tions in direction of the projection rays. Sampling methods can be used to avoid
some of these additional local optima, yet this is usually a very time consuming
procedure.

3 Shape Matching with Level Sets and Optic Flow

3.1 Shape Representation with the Euclidean Distance Transform

In contrast to the point sets used for ICP algorithms, the method suggested in
this section deals with shapes represented by an embedding function Φ : Ω ⊂
R2 → R. The contour can be obtained from such a representation as the zero-
level line C := {x ∈ Ω|Φ(x) = 0}.
For a given contour, the representation by an embedding function is not unique.
In general, one sets the values of Φ to the signed Euclidean distance of the next
contour point

Φ(x) =

D(x, C) x inside C
−D(x, C) x outside C
0 x ∈ C

(1)

where D(x, C) denotes the Euclidean distance of x ∈ Ω to the closest point x̃ on
the contour C. This choice of Φ has, among others, the nice property of being
invariant under rotation and translation. It can be efficiently computed from a
binary shape image by the algorithm given in [12]. The distance functions of two
shapes are shown in Fig. 1.
Although the embedding of a shape in a higher dimensional space appears, on
the first glance, to be less efficient than explicit representations, a closer look
reveals many advantages. One such advantage is the flexibility of implicit shapes
concerning their topology. While many explicit shape representations induce
problems when a shape consists of several parts or contains enclosures, such
cases are naturally handled in the level set framework.
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Fig. 1. Top: Source and target shapes that are to be matched. Bottom: Euclidean
distance functions Φ of these shapes shown by gray value images in the range [0, 255]
where 128 marks the zero-level of Φ, i.e., dark areas show negative values of Φ, bright
areas show positive values.

A straightforward distance measure for shapes being represented by embedding
functions Φ1 and Φ2 is:

d2(Φ1, Φ2) =
∫

Ω

(Φ1(x)− Φ2(x))2 dx. (2)

Other distance measures for implicit shape representations as well as an analysis
of their shortcomings can be found in [8]. The distance in (2) reveals a further
important advantage of implicit shapes: one can not only measure a discrepancy
for given points on the contour, but also for all points aside. Thus, matching two
embedding functions not only takes the contour into account but also the area
of the shapes. For instance the representation in (1) contains the skeleton [3] of
the shape. Thus minimizing (2) also seeks to match the skeletons of two shapes.
Although the concept carries over to shapes of arbitrary dimension D ≥ 2, in
the following we will focus on the 2-D case.

3.2 Shape Matching with Optic Flow

Matching two shapes respective the distance measure in (2) can be formulated
as the minimization over a group of transformations T :

E(T ) =
∫

Ω

(Φ1(x)− Φ2(T x))2 dx → min . (3)
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The transformations may include, e.g., translation, rotation, and scaling, as in
[9], or the group of perspective transformations, as in [19]. In [17] the transfor-
mation further comprises arbitrary deformations w(x) := (u(x), v(x))> of the
shape, i.e., T x = x + w(x). As the minimization of (3) yields an ill-posed prob-
lem under these conditions, it was suggested to impose a regularization term to
the deformation field:

E(u, v) =
∫

Ω

(Φ1(x)− Φ2(x + w))2 + α(|∇u|2 + |∇v|2) dx (4)

where α ≥ 0 is a regularization parameter that steers the influence of the regu-
larization relative to the matching criterion.
In all existing works on shape matching, the minimization of such function(al)s is
performed by means of gradient descent. However, this approach has its perfidies:
for each optimization variable in (3), one has to choose a step size, and it is not
sure, so far, how the step size has to be chosen to ensure convergence. Setting
the step size too large can result in severe instabilities depending on the data.
A gradient descent on (4), moreover, converges very slowly.
For an alternative numerical scheme, we suggest to make use of recent advances
in optic flow estimation. Optic flow generally describes the 2-D motion field
between images, and (4) is a well-known functional for computing optic flow.
When regarding Φ1 and Φ2 as gray scale images, the estimation of the shape
deformation field w yields an optic flow estimation problem. The first term in (4)
contains the non-linearized optic flow constraint, which, in this case, implements
the constraint that w(x) matches points with the same distance to the contour.
The second term is a regularizer that penalizes variations in the flow field. This
means, in particular, that there should be as few deformations as possible and
the deformation field is sought to be smooth.
It has been shown in [5] that the minimization of such a nonlinear functional
can be performed by solving a sequence k = 0, ..., n of linear systems(

Φk
xduk + Φk

ydvk + Φk
z

)
Φk

x − α∆(uk + duk) = 0(
Φk

xduk + Φk
ydvk + Φk

z

)
Φk

y − α∆(vk + dvk) = 0
(5)

with w0 = 0, wk+1 = wk + (duk, dvk)>, the abbreviations Φk
x := ∂xΦ2(x + wk),

Φk
y := ∂yΦ2(x + wk), Φk

z := Φ2(x + wk) − Φ1(x), and ∆ = ∂xx + ∂yy the
Laplace operator. Note that in comparison to the more general functional in [5],
the terms in (4) are both quadratic. Consequently, the inner fixed point iteration
loop performed in [5] is not necessary. Quadratic terms for both the matching and
the smoothness constraints are sufficient for the matching problem here, since
there is basically no noise in Φ1 and Φ2 and discontinuities in the deformation
field w are not desired. Robust non-quadratic regularizers or matching terms do
not appear to be necessary but are conceivable.
This numerical scheme does not rely on a gradient descent. The linear systems
in (5) are the outcome of a semi-implicit scheme that does not introduce a
time step size. For solving the linear systems, one can employ iterative solvers
such as Gauss-Seidel or SOR. These solvers always converge under the given
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conditions, independent from the data, and they converge much faster than a
comparable gradient descent. A multi-resolution implementation as in [5] leads
to an additional speedup and real-time performance (13 frames/sec with non-
optimized C++ code on a 2GHz Laptop and 219 × 132 images). In the sequel,
we will compare this optic flow based shape matcher with the ICP algorithm.

4 An Application: Silhouette Based 2-D-3-D Pose
Estimation

We test the two shape matching methods in the context of contour based 2-D-
3-D pose estimation. In this application, a known 3-D surface model (we use
a tea pot here) is projected to the image plane to yield the object silhouette
there. This silhouette is compared via shape matching to the contour extracted
from the image by a segmentation method. This yields correspondences between
points from the model silhouette to points from the contour, which are then used
for a pose update. A summary of the algorithm is as follows:

1. Surface projection: project the surface with the initial pose to the image
plane.

2. Contour extraction: segment the object region in the image.
3. Shape matching: register the two shapes by either ICP or optic flow.
4. Pose update: use the point correspondences from the matching for a pose

update.
5. Iterate: repeat step 1 to 4 until convergence.

Point correspondences stemming from different camera views can be easily con-
solidated in step 4. For a detailed description of the method we refer to [6]. The
critical issue, apart from the segmentation, is the shape matching. It is impor-
tant that the matching can cope with noisy shapes due to segmentation errors
as well as deformations due to 3-D rotations. In the following section, the per-
formance of ICP as well as optic flow based point correspondences is evaluated.
We also tested the simultaneous usage of correspondences from both matchers:
Since both algorithms provide a set of 2D-3D correspondences, in step 4 they
can be used together and solved simultaneously.

5 Experiments

We first analyzed the influence of the shape matching method on the accuracy
and stability of the pose estimation when the images are disturbed by noise,
partial occlusions, or changing lighting conditions. To this end, we used a stereo
sequence consisting of 350 frames, to which we added Gaussian noise with a
standard deviation of up to 80. Some sample frames without noise are shown in
Fig. 2. During the whole sequence the object is not moving, thus, it is possible
to regard the pose variance for a quantitative analysis. Note that the pose esti-
mation method is able to capture moving objects, as well, as shown in a further
experiment. The parameters were not tuned for the specific sequence.
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Fig. 2. Some frames from a static stereo sequence (350 frames) with illumination
changes and partial occlusions. Top row: left view. Bottom row: right view.

The diagrams in Fig. 3 show the deviation from the mean pose when the method
employed ICP, optic flow (OF), or their combination for matching (ICP+OF).
Obviously, ICP provides a slightly more stable pose than the matching with
optic flow. This can also be conjectured from Table 1 that lists the variances
for the three matchers and different levels of noise. One can also see that the
combination of point correspondences from both matching methods yields similar
results as ICP alone. Figure 4 shows two example frames of the sequence. The
pose is overlaid in the images.

Noise Matcher Rx Ry Rz Tx Ty Tz

0 ICP+OF 0.0004 0.00009 0.00009 0.97 0.54 1.25
0 OF 0.0005 0.00017 0.00017 1.64 0.61 2.31
0 ICP 0.0007 0.0005 0.000045 1.39 0.6 1.84

40 ICP+OF 0.0005 0.00013 0.00013 1.79 0.31 1.76
40 OF 0.001 0.00034 0.000355 5.01 0.32 6.4
40 ICP 0.0003 0.0001 0.00009 0.96 0.48 1.49

80 ICP+OF 0.0004 0.0002 0.00019 2.29 0.53 2.16
80 OF 0.0069 0.00036 0.00036 4.58 0.57 5.08
80 ICP 0.00048 0.0002 0.0002 2.18 0.79 2.44

Table 1. Variances of the pose parameters (rotation, translation) for different matchers
and noise levels (Gaussian noise with standard deviation 0, 40, and 80). The rotations
are given in radians and the translations in millimeters.

While the first experiment evaluated the matchers in a situation where the shapes
are already close to each other, in the second experiment, we tested the perfor-
mance, when the model silhouette is far from the object contour in the images.
For this purpose, we computed the contours as well as the pose in the first frame
of the sequence as usual. We then disturbed the object’s pose by a rotation in
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Fig. 3. Deviations from the mean pose for rotation (along the x, y and z-axes in radians)
and translation (along the x, y and z-axes in mm) when the method uses the matching
with optic flow, ICP, or the combination of both, respectively.
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Fig. 4. Two exemplary pose results for the sequence with heavy noise.

the area of [−60 . . . 60] degrees around the x, y, and z axes, or a translation in
the area of [−150 . . . 150] mm along these axes. We generated 1000 samples in
these intervals. Fig. 5 depicts for which rotations and translations the method
was able (blue stars) or not able (red crosses) to converge back to the initially
estimated pose. For an absolute translational deviation of less than 3mm, the
pose was counted as converged, otherwise as failure. Obviously, the ICP matcher
has more problems in case of large transformations than the optic flow based
matcher. Combining both matchers yields a similar performance as for the optic
flow matcher. Fig. 6 shows some exemplary rotations for which the method with
the OF-ICP matcher converged, but the method using the plain ICP-algorithm
did not. Table 2 summarizes the convergence rates in percent.

Matcher Rotation Translation

ICP+OF 51.4 % 50.1 %
OF 55.7 % 46.7 %
ICP 27.8 % 32.9 %

Table 2. The convergence rate for the second experiment (see Fig. 5) in percent.
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Fig. 5. Convergence of the three investigated methods for the same 1000 random dis-
turbances in rotation (left) and translation (right). Blue stars show the disturbances
for which the algorithm was able to converge back to the correct pose, red crosses show
the cases of failure. The methods using the combination of ICP and optic flow (top) or
solely the optic flow (middle) reveal a similar performance that is significantly better
than the performance using the ICP algorithm alone (bottom).
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Fig. 6. Example rotations, which still converged using the ICP+OF algorithm but
failed with ICP alone.

Fig. 7. A second stereo sequence where the object is moved (345 frames). The handle
of the tea pot temporarily vanishes behind the container and reappears. Finally the
tea pot is moved around. Top: Pose results for different frames. Bottom: Synthetic
visualization of the object and the estimated pose from different perspective views.

According to the literature, as a rough rule for convergence, rotations must
be below 20 degrees [7]. This is approximately the convergence radius we also
obtained for ICP. Obviously, with the optic flow matcher, the convergence radius
can be significantly larger (up to 40 degrees). A possible explanation for this
outcome is the richer description of a shape by means of the signed distance
function. This includes area based properties of a 2-D shape, which help in the
usually ill-posed problem of fitting a 3-D surface to its projections in the image.

Finally, Fig. 7 shows pose results of a second stereo sequence, in which the
tea pot is grabbed and moved around. We artificially distorted the images by
overlaying rectangles of random size, position and color. The bottom row shows
pose results in a virtual environment. Also for this sequence, we show a tracking
diagram in Fig. 8. It compares the estimated x- y- and z-axis of the estimated
pose for different matching strategies (ICP+OF, OF, and ICP). Furthermore,
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Fig. 8. Visualization of the x, y and z-axis while tracking the sequence in Fig. 7. The
values show the results of the OF (red), ICP (gray), and ICP+OF (blue) matcher for
the artificially distorted images. Furthermore, the result for the non-distorted images
and the ICP+OF matcher is overlaid (black). All diagrams show a similar behavior,
except for the OF matcher, which is more sensitive to this kind of distortion.

we overlaid the result of the non-distorted sequence (which can be regarded as
rough ground truth).
The distortions lead to errors in the pose estimation. With the ICP and ICP+OF
matching these errors are mainly within a range of a few millimeter. Solely the
results of the plain OF-approach show significantly larger errors in some parts
of the sequence. One such part is indicated in the diagram. Obviously, the OF
matcher is more sensitive to this kind of distortion than the ICP approach. This
is because the distance function propagates the errors in the contour, whereas
the ICP approach often ignores smaller occlusions by always taking the closest
point for matching. Nonetheless, the combined ICP+OF approach still shows a
stable tracking behavior.

6 Conclusions

Two very different shape matching concepts have been investigated, one based
on explicitly given contour points and another based on implicit shape repre-
sentations via level sets. We have shown that matching shapes in the level set
framework can be performed efficiently with a numerical scheme known from
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optic flow estimation. Moreover, we compared an ICP algorithm on an explicit
contour representation and the level set based matching in the context of sil-
houette based 3-D pose estimation. It turned out that ICP on explicit contours
yields estimates with less variations, whereas the optic flow matcher on the level
set representation shows a clearly better convergence in case of large transfor-
mations. With the possibility to combine results from both matchers in the pose
estimation framework, we demonstrated that one can obtain the best of both
registration methods.
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