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Abstract. This paper presents the integration of 3D shape knowledge into a vari-
ational model for level set based image segmentation and tracking. Having a 3D
surface model of an object that is visible in the image of a calibrated camera,
the object contour stemming from the segmentation is applied to estimate the 3D
pose parameters, whereas the object model projected to the image plane helps in
a top-down manner to improve the extraction of the contour and the region statis-
tics. The present approach clearly states all model assumptions in a single energy
functional. This keeps the model manageable and allows further extensions for
the future. While common alternative segmentation approaches that integrate 2D
shape knowledge face the problem that an object can look very different from var-
ious viewpoints, a 3D free form model ensures that for each view the model can
perfectly fit the data in the image. Moreover, one solves the higher level problem
of determining the object pose including its distance to the camera. Experiments
demonstrate the performance of the method.
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1 Introduction

Pose estimation and image segmentation are principal problems in computer and robot
vision. The task of 2D-3D pose estimation is to estimate a rigid motion which fits a
3D object model to 2D image data [8]. In this context it is crucial which features are
used for the object model as they must be fit to corresponding features in the image to
determine the pose. One such feature is the object surface with the object silhouette as
its 2D counterpart in the image. The task of pose estimation is to find a rigid motion
that minimizes the error between the projected object surface and the region encircled
by the contour in the image. As the common role of image segmentation is exactly to
extract the contour of objects in the image, this shows the possible connection between
2D-3D pose estimation and image segmentation.

Image segmentation can become very difficult, as the image gray value or color alone
are rarely good indicators for object boundaries due to noise, texture, shading, occlu-
sion, or simply because the color of two objects is nearly the same. Recent segmenta-
tion approaches therefore integrate 2D shape information in order to employ additional
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constraints that force the contour to more desirable solutions. An early example can
be found in [9] where shape information influences the evolution of an active contour
model. This basic concept has been extended and modified in [16, 6, 13, 5] and pro-
vides a good framework for the sound integration of 2D shape prior in segmentation
processes. However, the real world has three spatial dimensions. This fact is responsi-
ble for an inherent shortcoming of 2D shape models: they cannot exactly describe the
image of an object from arbitrary views. This problem is solved when the 2D shape
model is replaced by a 3D surface model, as is suggested in the present paper.

For the integration of 3D shape information, the object model has to be projected onto
the image plane, and for this its pose in the scene has to be known. We realize again
the connection between image segmentation and pose estimation, yet now the connec-
tion points into the other direction: a pose estimate is needed in order to integrate the
surface model. Note that a pose estimation problem appears in the case of 2D shape
knowledge as well. Also there, it is necessary to estimate the translation, rotation, and
scaling of the shape knowledge, before it can constrain the contour in the image. This is
either achieved by explicit estimation of the pose parameters [16], or by an appropriate
normalization of the shapes [5]. Extensions to perspective transformations of 2D shapes
have recently been proposed in [13]. However, all these approaches only aim on the use
of shape knowledge in order to yield improved segmentations. The 2D pose estimates
do not allow a location of the object in the real 3D world but only in the 2D projection
of this world. In contrast, the 2D-3D pose estimation employed in our model allows the
exact location of the object in the scene.

3D posecontour

2D contour of pose result

image

Segmentation Pose Estimation

Fig. 1. Basic idea: Iterating segmen-
tation and pose estimation. The pro-
jected pose result is used as a-priori
knowledge for segmentation.

We now have a classical chicken-and-egg prob-
lem: a contour is needed for pose estimation, and
the pose estimates are necessary to integrate the
shape prior into the segmentation that determines
the contour. Such situations are in general best
handled by solving both problems simultaneously.
We achieve this by formulating an energy min-
imization problem that contains both the image
contour and the pose parameters as unknowns. The
minimization is done by alternating both image
segmentation and pose estimation in an iterative
manner, see Fig. 1. For the experiments we con-
centrate on the segmentation and pose estimation
of a rigid object. It is demonstrated that the model
yields promising results both for the contour and
the 3D pose parameters even in complex scenarios.

Paper organization.The next section contains a brief review of the level set based im-
age segmentation model used in our approach. Section 3, on the other side, explains the
concept of 2D-3D pose estimation. In Section 4 we then introduce our idea to combine
image segmentation and 3D pose estimation in a joint energy functional. Experiments
in Section 5 show the performance of the proposed technique. The paper is concluded
by a brief summary in Section 6.
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2 Image Segmentation

2.1 Level Set Formulation

Our approach is based on image segmentation with level sets [7, 11, 3, 12, 4], in partic-
ular on the method described in [1]. A level set functionΦ ∈ Ω 7→ R splits the image
domainΩ into two regionsΩ1 andΩ2, with Φ(x) > 0 if x ∈ Ω1 andΦ(x) < 0 if
x ∈ Ω2. The zero-level line thus marks the boundary between both regions.
The segmentation should maximize the total a-posteriori probability given the probabil-
ity densitiesp1 andp2 of Ω1 andΩ2, i.e., pixels are assigned to the most probable region
according to the Bayes rule. Further on, the boundary between both regions should be
as small as possible. This can be expressed by the following energy functional:

E(Φ) = −
∫

Ω

(
H(Φ) log p1 + (1−H(Φ)) log p2

)
dx + ν

∫
Ω

|∇H(Φ)| dx (1)

whereν > 0 is a weighting parameter andH(s) is a regularized Heaviside function with
lims→−∞H(s) = 0, lims→∞H(s) = 1, andH(0) = 0.5 (e.g. the error function).
It indicates to which region a pixel belongs. Minimization with respect to the region
boundary can be performed according to the gradient descent equation

∂tΦ = H ′(Φ)

(
log

p1

p2
+ ν div

(
∇Φ

|∇Φ|

))
(2)

whereH ′(s) is the derivative ofH(s) with respect to its argument. The contour con-
verges to a minimum for the numerical evolution parametert →∞.

2.2 Region Statistics

For the curve evolution, still the probability densitiesp1 andp2 have to be determined.
Our segmentation is driven by the texture feature space proposed in [2] which yields
M = 5 feature channelsIj for gray scale images, andM = 7 channels if color is avail-
able. We assume that the probability densities of the feature channels are independent,
thuspi =

∏M
j=1 pij(Ij).

The probability densitiespij are estimated according to theexpectation-maximization
principle. Having the level set function initialized with some partitioning, the probabil-
ity densities can be approximated by a Gaussian density estimate:

pij(s, x) ∝ 1√
2πσij(x)

exp

(
(s− µij(x))2

2σij(x)2

)
. (3)

Note that these arelocal estimates of the probability densities. This can be useful partic-
ularly in complicated scenes where differences between regions are only locally visible.
Consequently, the parametersµij(x) andσij(x) are computed in a local neighborhood
Kρ of x by:

µij(x) =

∫
Ωi

Kρ(ζ − x)Ij(ζ) dζ∫
Ωi

Kρ(ζ − x) dζ
σij(x) =

∫
Ωi

Kρ(ζ − x)(Ij(ζ)− µij(x))2 dζ∫
Ωi

Kρ(ζ − x) dζ
. (4)

The densities are used for the level set evolution according to (2), leading to a further
update of the probability densities, and so on. This iterative process converges to a local
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minimum, showing that the initialization matters. In order to attenuate this dependency
on the initialization, it is recommendable to apply a coarse-to-fine strategy. Starting
with a down-sampled image, there are less local minima, so the segmentation is more
robust. The resulting segmentation can then be used as initialization for a finer scale,
until the original segmentation problem is solved.

3 2D-3D Pose Estimation [R | t ]

Fig. 2. The pose scenario: the aim is to
estimate the poseR, t.

2D-3D pose estimation [8] means to estimate
a rigid body motion which maps a 3D surface
model to an image of a calibrated camera. The
scenario is visualized in Fig. 2.
The core algorithm is based on a point-based
constraint equation, which has been derived in
the language of Clifford Algebras. We assume a
set of point correspondences(Xi, xi), with 4D
(homogeneous) model pointsXi and 3D (homo-
geneous) image pointsxi. Each image point is
reconstructed to a Plücker lineLi = (ni,mi),
with a (unit) directionni, and momentmi [10]. The 3D rigid motion is represented as
exponential form

M = exp(θξ̂) = exp

(
ω̂ v

03×1 0

)
(5)

whereθξ̂ is the matrix representation of a twistξ = (ω1, ω2, ω3, v1, v2, v3) ∈ se(3) =
{(v, ω)|v ∈ IR3, ω̂ ∈ so(3)}, with so(3) = {A ∈ IR3×3|A = −AT }. In fact, M
is an element of the one-parametric Lie groupSE(3), known as the group of direct
affine isometries. A main result of Lie theory is, that to each Lie group there exists a
Lie algebra which can be found in its tangential space, by derivation and evaluation at
its origin; see [10] for more details. The corresponding Lie algebra toSE(3) is denoted
asse(3). A twist contains six parameters and can be scaled toθξ with a unit vectorω.
The parameterθ ∈ IR corresponds to the motion velocity (i.e., the rotation velocity and
pitch). For varyingθ, the motion can be identified as screw motion around an axis in
space. To reconstruct a group actionM ∈ SE(3) from a given twist, the exponential
functionexp(θξ̂) = M ∈ SE(3) must be computed. It can be calculated efficiently by
using the Rodriguez formula [10],

exp(ξ̂θ) =

(
exp(θω̂) (I − exp(ω̂θ))(ω × v) + ωωT vθ

01×3 1

)
for ω 6= 0 (6)

with exp(θω̂) computed by calculating

exp(θω̂) = I + ω̂ sin(θ) + ω̂2(1− cos(θ)). (7)

Note that only sine and cosine functions of real numbers need to be computed.
For pose estimation we combine the reconstructed Plücker lines with the screw rep-
resentation for rigid motions and apply a gradient descent method: Incidence of the
transformed 3D pointXi with the 3D rayLi = (ni,mi) can be expressed as

(exp(θξ̂)Xi)3×1 × ni −mi = 0. (8)
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Indeed,Xi is a homogeneous 4D vector, and after multiplication with the4× 4 matrix
exp(θξ̂) we neglect the homogeneous component (which is1) to evaluate the cross
product withni. Note, that this constraint equations expresses the perpendicular error
vector between the Plücker line and the 3D point. The aim is to minimize this spatial

error. Therefore we linearize the equation by usingexp(θξ̂) =
∑∞

k=0
(θξ̂)k

k! ≈ I + θξ̂,
with I as identity matrix. This results in

((I + θξ̂)Xi)3×1 × ni −mi = 0 (9)

which can be reordered into an equation of the formAξ = b. Collecting a set of such
equations (each is of rank two) leads to an over-determined linear system of equations
in ξ. The Rodriguez formula can be applied to reconstruct the group actionM from
the twistξ. Then, the 3D points can be transformed and the process is iterated until
the gradient descent approach converges. In recent years, this technique has been ex-
tended to higher order curves, free-form contours and free-form surfaces, see [14, 15].
The surface based pose estimation procedure is basically an ICP-algorithm, which has
the problem to get trapped in local minima. For this reason we use a sampling method
with different (neighboring) start poses and use the resulting pose with minimum er-
ror. This can be seen as a simple particle filter during pose estimation. Note that the
constraint equations express a spatial distance measure in 3D. In [14] we have shown
that each equation can be rescaled individually to an equivalent 2D distance measure.
For combining segmentation and pose estimation we make use of this property to get a
single energy functional.

4 Coupling Image Segmentation and 2D-3D Pose Estimation

In order to couple pose estimation and image segmentation in a joint optimization prob-
lem, the energy functional for image segmentation in (1) is extended by an additional
term that integrates the object model:

E(Φ, θξ) = −
∫

Ω

(
H(Φ) log p1 + (1−H(Φ)) log p2

)
dx + ν

∫
Ω

|∇H(Φ)| dx

+ λ

∫
Ω

(Φ− Φ0(θξ))2 dx︸ ︷︷ ︸
Shape

.
(10)

The quadratic error measure in the shape term has been proposed in the context of 2D
shape priors, e.g. in [16]. The priorΦ0 ∈ Ω → R is assumed to be represented by the
signed distance function. This means in our case,Φ0(x) yields the distance ofx to the
silhouette of the projected object surface.
In detail,Φ0 is constructed as follows: letXS denote the set of pointsX on the object
surface. Projection of the transformed pointsexp(θξ)XS into the image plane yields the
setxS of all (homogeneously scaled) 2D pointsx on the image plane that correspond
to a 3D point on the surface model

x = P exp(θξ)X, ∀X ∈ XS (11)
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Fig. 3. From left to right: (a) Initialization. (b) Segmentation result with object knowledge.
(c) Pose result. (d) Segmentation result without object knowledge.

whereP denotes a projection with known camera parameters. The level set function
Φ0 can then be constructed fromxS by settingΦ0(x) = 1 if x ∈ xS , Φ0(x) = −1
otherwise, and applying the distance transform.

Note that the distance(Φ(x) − Φ0(x))2 is exactly the distance used in the pose esti-
mation method. Given the contourΦ, the pose estimation method thus minimizes the
shape term in (10). Minimizing (10) with respect to the contourΦ, on the other hand,
leads to the gradient descent equation

∂tΦ = H ′(Φ)

(
log

p1

p2
+ ν div

(
∇Φ

|∇Φ|

))
+ 2λ (Φ0(θξ)− Φ). (12)

In order to minimize the total energy, an iterative approach is suggested: keeping the
contourΦ fixed, the optimum pose parametersθξ are determined as described in Sec-
tion 3 and yield the silhouette of the object modelΦ0. Retaining in the opposite way the
pose parameters, (12) determines an update on the contour. Both iteration steps thereby
minimize the distance betweenΦ andΦ0. While the pose estimation method drawsΦ0

towardsΦ, thereby respecting the constraint of a rigid motion, (12) in return draws the
curveΦ towardsΦ0, thereby respecting the data in the image.

5 Experiments

Fig. 3 - 5 show tracking results with a tea box as object model and cluttered back-
grounds. Fig. 3 demonstrates the advantage of integrating object knowledge into the
segmentation process. Without object knowledge, parts of the tea box are neglected as
they better fit to the background. The object prior can constrain the contour to the vicin-
ity of the projected object model derived from those parts of the contour that can be
extracted reliably.
In Fig. 4, the motion of the object causes severe reflections on the metallic surface of the
tea box. Nevertheless, the results remain stable. Further note some smaller occlusions
due to the fingers that do not disturb the pose estimation.
In Fig. 5 the amount of occlusion is far more eminent. This experiment also demon-
strates the straightforward extension of the method to multiple cameras. The non-occlu-
ded parts of both views provide enough information for pose recognition of the object.
However, we also do not want to conceal a decisive drawback of the method, this is
the dependency of the result on the initialization. As the pose estimation of the object
prior is based on the segmentation, the object model cannot help to initially find the
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Fig. 4. Top row: Initialization at the first frame. Frames 49, 50, and 117 of the sequence.Bottom
row: Tracking results at frames 0, 49, 50, and 117. The tea box is moved in 3D, causing partially
severe reflections on the box.

Fig. 5.Tracking result of a stereo sequence. In both views the object is partially occluded but the
pose can be reconstructed from the remaining information (frame 98 from 210 frames).

object in the image. It can only improve thetracking of the object, once a good pose
initialization has been found. How to find such an initialization automatically, i.e. how
to detectobjects in cluttered scenes, is a topic on its own.

6 Conclusion

We presented a technique that integrates 3D shape knowledge into a variational model
for level set based image segmentation. While the utilization of 2D shape knowledge
has been investigated intensively in recent time, the presented approach accommodates
the three-dimensional nature of the world. The technique is based on a powerful image-
driven segmentation model on one side, and an elaborated method for 2D-3D pose
estimation on the other side. The integration of both techniques improves the robustness
of contour extraction and, consequently, also the robustness of pose estimation that
relies on the contour. It allows for the tracking of three-dimensional objects in cluttered
scenes with inconvenient illumination effects. The strategy to model the segmentation in
the image plane, whereas the shape model is given in three-dimensional space, has the
advantage that the image-driven part can operate on its natural domain as provided by
the camera, while the 3D object model offers the full bandwidth of perspective views.
Moreover, in contrast to 2D techniques, it gives the extracted object a position in space.
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