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Abstract. Stabilised backward diffusion processes have shown their use for a
number of image enhancement tasks. The goal of this paper is to show that they
are also highly useful for designing shock capturing numerical schemes for hy-
perbolic conservation laws. We propose and investigate a novel flux corrected
transport (FCT) type algorithm. It is composed of an advection step capturing
the flow dynamics, and a stabilised nonlinear backward diffusion step in order to
improve the resolution properties of the scheme. In contrast to classical FCT pro-
cedures, we base our method on an analysis of the discrete viscosity form. This
analysis shows that nonlinear backward diffusion is necessary. We employ a slope
limiting type approach where the antidiffusive flux determined by the viscosity
form is controlled by a limiter that prohibits oscillations. Numerical experiments
confirm the high accuracy and shock capturing properties of the resulting scheme.
This shows the fruitful interaction of PDE-based image processing ideas and nu-
merical analysis.
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1 Introduction

Starting with Rudin’s Ph.D. thesis in 1987 [18], many ideas from computational fluid
dynamics and the numerics of hyperbolic conservation laws have entered the field of
image processing. Because problems of fluid dynamics and hyperbolic conservation
laws involve the formation of shocks, sophisticated numerical methods such as total
variation diminishing (TVD) and essentially non-oscillatory (ENO) schemes had to be
devised to give a sharp resolution at shocks and to avoid visible numerical oscillations
[8, 9, 13]. On the image processing side, image edges carry important information and
may be regarded as shocks as well. Often edges are blurred, so it is natural to apply
shock-enhancing concepts from computational fluid dynamics. This has led to PDE
formulations of shock filters [14] and to stabilised linear backward diffusion [15]; see
Fig. 1 for an example. In case that noise is present as well, one aims at preserving or
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Fig. 1. Left: Original image with blurred edges.Right: Image sharpened with stabilized linear
backward diffusion [15].

enhancing edges, while simultaneously smoothing at more homogeneous regions. Com-
binations of shock filtering with mean curvature motion [1] and in particular nonlinear
diffusion filtering [16] are suitable concepts to achieve this goal. Interesting variants
of nonlinear diffusion include stabilised inverse diffusion equations (SIDEs) [17] and
so-called forward-and-backward (FAB) diffusion [7] that explicitly uses negative diffu-
sivities in a certain gradient range. Last but not least, total variation minimisation [19]
has been proposed as a variational framework for discontinuity-preserving denoising.

While numerical ideas for hyperbolic conservation laws had undoubtedly a strong im-
pact on modern image analysis, fertilisation in the inverse direction – where image pro-
cessing methods are applied to improve the numerics of hyperbolic conservation laws –
have started only recently: in [10, 11] different variants of numerical schemes are pro-
posed that combine the second-order Lax-Wendroff scheme with anisotropic diffusion
filtering with a diffusion tensor [23]; see also [22] for related ideas. All these strategies
start with a hyperbolic scheme that gives sharp shock resolution, but suffers from os-
cillations in the shock areas. Anisotropic diffusion regards such oscillations as noise at
edges that can be removed by smoothing along the edge.

On the other hand, there are also monotone first order schemes for hyperbolic conser-
vation laws that donot produce oscillations at shocks. Unfortunately, they suffer from
strong blurring effects (dissipation) since they involve a significant amount of numeri-
cal diffusion (viscosity) to achieve their favourable stability properties. However, if one
takes such a scheme as starting point, an interesting question would be if there are useful
ideas inspired from edge-enhancing PDE-based image processing that allow to sharpen
these shocks. Ideally they should also turn the first order basis method having low accu-
racy into a higher accurate second-order method without introducing oscillations. For
simplicity we focus on the one-dimensional scalar case. We will see that the result-
ing methods can be regarded to belong to the class of flux-corrected transport (FCT)
schemes [2], but in contrast to classical FCT schemes they offer the advantage that
they are also applicable to the important class ofnonlinearconservation laws. It turns
out that the appropriate sharpening process from image processing must be a stabilised
nonlinear inverse diffusion step. It resembles the stabilised linear inverse diffusion filter
that has been proposed by Osher and Rudin [15] for deblurring images.
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Our paper is organised as follows: in Section 2 we describe a classical Upwind scheme
and analyse its intrinsic numerical diffusion, while Section 3 gives an introduction to
FCT schemes. This analysis forms the basis for our novel image-processing inspired
FCT scheme that we present in Section 4. Its stability properties are analysed in Section
5. Section 6 presents experiments with linear and nonlinear test scenarios where we
compare our method with a state-of-the-art shock capturing scheme: a TVD method
with van Leer flux limiter. We conclude our paper with a summary in Section 7.

2 The Classical Upwind Scheme and its Numerical Diffusion

In this paper, we deal with the numerical approximation of hyperbolic conservation
laws of type

ut + (f(u))x = 0, (1)

whereu := u(x, t) is a scalar-valued function of a one-dimensional space variablex
and timet, subscripts denote partial derivatives, and the flux functionf is supposed to
satisfyf ′(.) ≥ 0.
The underlying method for our novel FCT technique in the next section is the classical
Upwind scheme

Uk+1
j = Uk

j − λ
(
fk

j − fk
j−1

)
. (2)

Thereby, we use as in the following the notationU for discrete data in contrast to the
sought solutionu, and we denote the ratio of mesh parameters asλ = ∆t/∆x. The up-
per indexk in Uk

j denotes as usual the temporal levelk∆t while analogously the lower
indexj denotes the spatial mesh pointj∆x. For shortness of notation, we abbreviate

fk
j := f

(
Uk

j

)
.

Unless stated otherwise, we consider all occurring methods to be stable under the usual
CFL condition, see e.g. [13] for details concerning this notion.

One desirable property of the Upwind scheme consists of the fact that the scheme does
not produce numerical oscillations:

Proposition 1 (Extrema Diminishing Properties of the Upwind Scheme).
The Upwind scheme (2) is a generalised monotone scheme in the sense of LeFloch
and Liu [12], i.e., it is a local extremum diminishing (LED) scheme, while it also does
not introduce new extrema during a computation, i.e., it diminishes also the number of
extrema (NED property).

Proof. The validity of the assertion follows since under a CFL condition

Uk+1
j ∈ conv

(
Uk

j−1, Uk
j

)
always follows, whereconv denotes the convex hull. (Compare thedata compatibility
notion due to Roe [20].) ♣
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Unfortunately, the Upwind scheme also has a severe disadvantage: it suffers from un-
desirable blurring effects (dissipation). To quantify these viscous artifacts we write the
scheme (2) in itsviscous form, i.e.,

Uk+1
j = Uk

j −
λ

2
(
fk

j+1 − fk
j−1

)
︸ ︷︷ ︸

(A)

+
Q+,k

j

2
(
Uk

j+1 − Uk
j

)
−

Q−,k
j

2
(
Uk

j − Uk
j−1

)
︸ ︷︷ ︸

(B)

.

(3)
The underlying idea behind this decomposition is to consider part (A) as a second order
approximation of (1) in space (and first order in time), while part (B) is (in leading
order) the discrete counterpart of the numerical diffusion incorporated in the method
(2).
One easily verifies that (2) and (3) can be made identical by choosing viscosity coeffi-
cientsQ+

j andQ−
j that satisfy

Q+,k
j = λ

fk
j+1 − fk

j

Uk
j+1 − Uk

j

and Q−,k
j = λ

fk
j − fk

j−1

Uk
j − Uk

j−1

. (4)

for Uk
l+1 6= Uk

l , l ∈ {j, j − 1}. Note that our assumptionf ′(.) ≥ 0 ensures that the
viscositiesQ±

j are nonnegative. Since the viscosities are proportional to the diffusion
coefficients it follows that forward diffusion takes place. This numerical diffusion is
responsible for the undesirable blurring effects that are observed with this first-order
method. We observe that, in spite of the simplicity of the Upwind scheme, an inherent
diffusion process with nonlinear (!) viscositiesQ±

j is involved. These nonlinear vis-
cosities are inversely proportional to the derivative ofu. In this respect they closely
resemble the diffusivities in TV denoising of images [19].

3 FCT Schemes

A common method to compensate for the before mentioned blurring artifacts is the
flux corrected transport(FCT) algorithm of Boris and Book [2]: a numerical scheme
with much numerical diffusion used as a predictor for the evolution is corrected by
an antidiffusive step. This principle is used as a basis of many successful FCT type
algorithms, see especially [24] and the references therein.
The classical FCT approach as described in [2] is motivated by the method of themodi-
fied equation: the numerical diffusion incorporated in the predictor step is computed by
means of the differential advection-diffusion-equation that the viscous predictor scheme
actually approximates with second order accuracy. The resulting diffusion coefficient is
annihilated by the antidiffusive step while a limiting procedure ensures that no oscilla-
tions develop. For more information on the modified equation, see e.g. the books [8, 13].
The described strategy can be refined by considering an analysis of wave coefficients in
the linear case, ensuring especially for linear advection problems a high approximation
quality; see [3, 4].
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In order to describe the classical FCT method based on the Upwind scheme we use the
following data notions:

– U
k+1/2
j for the data obtained with the Upwind scheme starting fromUk

j

– Uk+1
j for the data obtained after the antidiffusive step.

Let us define the abbreviate notion

∆Uk
j+1/2 := Uk

j+1 − Uk
j . (5)

Then the traditional FCT approach amounts to anantidiffusion steprealised via

Uk+1
j = U

k+1/2
j − gj+1/2 + gj−1/2 (6)

where the fluxesg are chosen in a fashion such that the following directive holds:

Construction Principle 1 (Boris and Book [2]) .
“No antidiffusive flux transfer of mass can push the density value at any grid point
beyond the density value at neighboring points.”

The traditional FCT scheme realises this principle by setting

gj+1/2 := minmod
(
∆U

k+1/2
j−1/2 , ηj+1/2∆U

k+1/2
j+1/2 , ∆U

k+1/2
j+3/2

)
(7)

where

minmod(a,b, c) := sgn(b) max
(
0,min(sgn(b)a, |b|, sgn(b)c)

)
(8)

and

ηj+1/2 :=
λ

2
ā (1− λā) , (9)

with ā determined by

ā := max
U∈conv

(
U

k+1/2
j , U

k+1/2
j+1

) |f ′ (U)| .

Note that (9) is equivalent to∆t times the discrete version of the viscous term of the
modified equation obtained by using a local linearisation of (1).

4 A New FCT Scheme with Nonlinear Inverse Diffusion

Let us now introduce a novel variant of FCT schemes that incorporates image process-
ing ideas on stabilised inverse diffusion. In contrast to the previous section, our con-
siderations are based solely on the viscosity form (3). This is a new feature of possible
FCT algorithms. Our method of derivation can be advantageous concerning a rigorous
analysis of the combined method, especially with respect to the nonlinear case.
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A naive step to achieve inverse diffusion would consist of applying a direct antidiffusion
process to the predicted dataUk+1/2 from the Upwind scheme by setting

g̃j+1/2 :=
1
2
Q

+,k+1/2
j ∆U

k+1/2
j+1/2 . (10)

It is immediately clear that such an antidiffusive step without a direct minmod-type
stabilisation as used in (7) may introduce many oscillations. Thus, we limit the antidif-
fusive flux g̃ from (10) by

gj+1/2 := minmod
(
g̃j−1/2, g̃j+1/2, g̃j+3/2

)
(11)

using the minmod function (8).

The discrete inverse diffusion employed here is similar to an image enhancement algo-
rithm due to Osher and Rudin [15]. However, while the filter of Osher and Rudin is the
stabilised inverse filter tolinear diffusion, we extend this algorithm to be the stabilised
inverse filter tononlineardiffusion.

5 Stability Analysis

We are now ready to prove the following stability assertion.

Lemma 1 (Local Extremum Principle).
Let

sign
(
∆U

k+1/2
j+1/2

)
= sign

(
∆U

k+1/2
j−1/2

)
6= 0 (12)

hold. Then the FCT scheme defined by

Uk+1
j = U

k+1/2
j − gj+1/2 + gj−1/2 (13)

usingg from (11) satisfies locally a discrete minimum–maximum principle.

Proof. The aim is to show that

Uk+1
j ∈ conv

(
U

k+1/2
j−1 , U

k+1/2
j , U

k+1/2
j+1

)
holds. We only consider the situation defined by∣∣∣Uk+1/2

j − U
k+1/2
j−1

∣∣∣ ≤ ∣∣∣Uk+1/2
j+1 − U

k+1/2
j

∣∣∣ , (14)

the other case can be treated analogously.
For simplicity, we omit the superscriptk+1/2 in the following computations. The idea
is, starting from (13), to derive the estimate∣∣−gj+1/2 + gj−1/2

∣∣ ≤ |Uj − Uj−1|
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since then the sought convex hull condition is satisfied. Thus, we compute using the
Lipschitz continuity off and a corresponding Lipschitz constantL∣∣−gj+1/2 + gj−1/2

∣∣
≤

∣∣gj+1/2

∣∣ +
∣∣gj−1/2

∣∣
(11)

≤
∣∣∣∣12Q+

j ∆Uj−1/2

∣∣∣∣ +
∣∣∣∣12Q+

j ∆Uj−1/2

∣∣∣∣
(4)
= λ

∣∣∣∣ fj − fj−1

Uj − Uj−1

∣∣∣∣ ∣∣Uk
j − Uk

j−1

∣∣
= λ |fj − fj−1|
≤ λL |Uj − Uj−1|
≤ |Uj − Uj−1|

by the CFL condition. ♣

Because of the properties of the minmod function, the core of the proof also works
without the assumption (12). Thus we can give directly

Corollary 1 (Global Extremum Principle).
The investigated scheme satisfies locally and globally a discrete minimum–maximum
principle.

It is also possible to prove in the same fashion as in Lemma 1 directly the validity of
the NED property if we restrict the time step size such that

∆t max
U∈I

|f ′(U)| ≤ ∆x

2
,

whereI is the relevant range of data values. However, the resulting scheme is in practice
quite viscous.

Concerning the approximation of the entropy solution, it is clear by the properties of
the underlying Upwind scheme that shocks are approximated at the correct position as
long as the data feeding the shock are arranged as a plateau: in this case, the antidif-
fusive flux becomes zero at the edge of the plateau, leaving at the shock location the
Upwind method which propagates the right amount of mass into the shock. The situa-
tion becomes more difficult if the data are not arranged in this fashion. This is subject
of current investigation.
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6 Numerical Experiments

Our tests consist of anorder testusing the approximation of a linear equation with
smooth initial condition as well as oftwo nonlinear test cases, where we consider the
approximation of a square-wave solution of Burgers’ equation and the numerical solu-
tion of a Riemann problem for the Buckley-Leverett equation.
Let us stress that the linear advection equation and Burgers’ equation can be seen as
simple test cases for systems of equations with linearly degenerate and genuinely non-
linear characteristic fields, respectively [9]. The Buckley-Leverett equation imposes the
considerable difficulty to approximate a mixed wave solution.

Linear Advection - The Order Test

The order test uses the linear advection equation

ut + ux = 0

propagating smooth initial data

u0(x) = sin(πx)

on a grid over[−1, 1] with periodic boundary conditions. We choose a very small time
step size, i.e.,∆t = 0.0001, and investigate the error in theL1-Norm for a sequence
of spatial grids with diminishing mesh widths∆x. The time at which we evaluate the
arising sequence of errors is set fixed, i.e., we measure after one revolution after which
the analytical solution exactly matches the initial condition. The quantity of interest is
theexperimental order of convergenceEOC defined by

EOC :=
log

(
e∆x/e∆x/2

)
log (2)

,

wheree∆x is theL1-error measured using the spatial mesh with the parameter∆x. The
exact setup and the results of the computations together with the corresponding EOC
can be found in Tab. 1. The results show that the inverse diffusion turns the classical
Upwind scheme from first order to nearly second order, from which we deduce the
sought high resolution property.

] nodesDX DT time stepsL1-errore∆x EOC

20 0.1 0.0001 20000 0.394969 -
40 0.05 0.0001 20000 0.135555 1.54286

80 0.025 0.0001 20000 0.0508049 1.41584

160 0.0125 0.0001 20000 0.0147794 1.78138

320 0.00625 0.0001 20000 0.00460051 1.68372

Table 1. Arrangement of the computational parameters for the numerical convergence study to-
gether with the correspondingL1-error and the experimental order of convergence (EOC).
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Fig. 2. Linear advection.Left: Grey line: initial condition. Solid line: correct solution after
t = 100. Dotted line: Upwind with antidiffusion. Dashed line: TVD method. Dash-dotted line:
Upwind without antidiffusion.Right: Zoom.

Fig. 2 depicts a comparison of our scheme to the Upwind scheme without antidiffusion
as well as a contemporary TVD method with van Leer limiter, see e.g. [8, 13]. The
corresponding numerical solutions are displayed together with the exact solution and
the initial condition. The computational parameters have been set to∆t = 0.5 and
∆x = 1.
Let us note here that there is a wide variety of possibilities to obtain higher order ac-
curacy in standard TVD schemes, for instance flux limiting, slope limiting, or ENO
schemes, compare again [8]. We choose here to compare our method with a slope lim-
iter method since this is arguably the simplest and most efficient choice. Concerning the
numerical results, no large difference using either method is to be expected with respect
to our example.
It can be observed that the proposed FCT-like scheme yields approximately the same
accuracy as the TVD method, which supports the order test. When compared to the
Upwind scheme without antidiffusion, the antidiffusion step clearly reveals its impact.

Burgers’ Equation

A nonlinear test problem is concerned with Burgers’ equation

ut +
(

1
2
u2

)
x

= 0

supplemented by the initial condition

u0(x) =
{

1 : 20 ≤ x < 40
0 : else

.

This square wave decays to an N-wave like every solution of Burgers’ equation. Thus
the example has a profound meaning, see e.g. [6, 13] for discussions.

The computational parameters are the same as in the linear example before, and we
compute the solution att = 100. We compare again the numerical solutions obtained
by the Upwind scheme with and without antidiffusion, as well as the TVD method.
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Fig. 3. Burgers equation.Left: Grey line: initial condition. Solid line: correct solution after
t = 100. Dotted line: Upwind with antidiffusion. Dashed line: TVD method. Dash-dotted line:
Upwind without antidiffusion.Right: Zoom.

The corresponding numerical solutions together with the exact solution are displayed
in Fig. 3. For better comparison, a detailed cutout of the region around the shock is
depicted beside. Again it can be seen that the proposed scheme yields results very close
to those of the TVD method. Note that in this nonlinear case, the classical FCT scheme
is not applicable anymore without additional considerations.

Buckley-Leverett Equation

A second nonlinear and even non-convex test problem is based on the Buckley-Leverett
equation

ut +
(

u2

u2 + 1
2 (1− u)2

)
x

= 0

supplemented by a Riemann problem as initial condition:

u0(x) =
{

1 : 0 ≤ x < 50
0 : else

.

With the same settings as in the tests before, we obtain the numerical solutions depicted
in Fig. 4. The outcome is similar to the experiments before: while the scheme with
nonlinear antidiffusion is very close to the TVD scheme, there is quite some difference
to the Upwind scheme without antidiffusion, although this difference is smaller than in
the other experiments.

7 Conclusions

We have presented a novel FCT-type algorithm for hyperbolic conservation laws. It
incorporates stabilised nonlinear inverse diffusion in order to improve the shock reso-
lution of a first-order Upwind scheme. The nonlinear inverse diffusion step is inspired
from a stabilised linear inverse diffision filter that has been proposed by Osher and
Rudin for deblurring images. In contrast to classical FCT methods, our scheme arises
naturally from the viscosity form of the basic scheme. As a consequence it also applies
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Fig. 4. Buckley-Leverett equation.Left: Grey line: initial condition. Solid line: correct solution
after t = 100. Dotted line: Upwind with antidiffusion. Dashed line: TVD method. Dash-dotted
line: Upwind without antidiffusion.Right: Zoom.

to the important class of nonlinear problems, even if the flux function is nonconvex. A
theoretical analysis has shown that the novel scheme satisfies a global extremum prin-
ciple and other desirable stability properties, while experiments with linear and nonlin-
ear test scenarios indicate that it has approximately second order accuracy properties. It
gives far better results than its underlying Upwind scheme and – in spite of its simplicity
– it is even competitive to modern TVD methods for shock capturing approximations of
hyperbolic PDEs. Its simplicity accounts for expectations that the method may be better
accessible to theoretical analysis than TVD methods. In our ongoing work we further
intend to analyse generalisations to the higher dimensional case as well as to systems
of conservation laws.
Our work has shown that the connection between numerical schemes for hyperbolic
conservation laws and image enhancement methods is not a one-way road: in the mean-
time, many PDE-based image enhancement techniques have reached a degree of matu-
rity such that they may be highly useful for a number of problems outside the field of
image analysis. It is our goal to investigate more of these fascinating interdisciplinary
connections in the future.
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