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Abstract. It has been stressed that regularisation methods and diffu-
sion processes approximate each other. In this paper we identify a situa-
tion where both processes are even identical: the space-discrete 1-D case
of total variation (TV) denoising. This equivalence is proved by deriving
identical analytical solutions for both processes. The temporal evolution
confirms that space-discrete TV methods implement a region merging
strategy with finite extinction time. Between two merging events, only
extremal segments move. Their speed is inversely proportional to their
size. Our results stress the distinguished nature of TV denoising. Fur-
thermore, they enable a mutual transfer of all theoretical and algorithmic
achievements between both techniques.

1 Introduction

In the present paper we are concerned with two successful signal and image
restoration methods: diffusion filters and regularisation methods. Both tech-
niques serve the same denoising purpose and both methods can be formulated
in terms of partial differential equations (PDEs). This has triggered several re-
searchers to investigate connections between both paradigms.

In order to review their results, let us start with a brief description of 1-D
diffusion filtering. We consider a noisy signal as some function f : [a, b] → R.
The basic idea behind nonlinear diffusion filtering is to obtain a family u(x, t) of
filtered versions of the signal f(x) as the solution of a suitable diffusion process
with f(x) as initial condition and homogeneous Neumann boundary conditions
[19]:

ut = (g(u2
x) ux)x on (a, b)× (0,∞), (1)

u(x, 0) = f(x) for all x ∈ [a, b],
ux(a, t) = ux(b, t) = 0 for all t ∈ (0,∞),



where subscripts denote partial derivatives, and larger diffusion times t corre-
spond to more simplified signal representations.

Regularisation methods constitute an alternative to diffusion filters. Here the
basic idea is to look for the minimiser u of the energy functional

E(u;α, f) :=

b∫
a

(
(u− f)2 + α Ψ(u2

x)
)

dx. (2)

The first term of this functional encourages similarity between the original signal
f(x) and its filtered version u(x), while the second term penalises deviations
from smoothness. The increasing function Ψ is called penaliser (regulariser),
and the nonnegative regularisation parameter α serves as smoothness weight:
larger values correspond to a more pronounced filtering.

As is explained in detail in [23], there are strong relations between regularisa-
tion methods and diffusion filters (see also [17, 26]): A minimiser of (2) satisfies
necessarily the Euler–Lagrange equation

u− f

α
= (Ψ ′(u2

x)ux)x,

with homogeneous Neumann boundary conditions. This equation may be re-
garded as a fully implicit time discretisation of the diffusion equation (1) with
diffusivity g(u2

x) = Ψ ′(u2
x), initial value f(x), and stopping time t = α. Thus,

one would expect that the minimiser of (2) approximates the diffusion filter (1),
but is not identical to it. In [21, 23] this relation has been used to establish scale-
space properties for regularisation methods that resemble results for diffusion
filters in [28].

While the before mentioned situation is an approximation only, one may be
interested in results where one can establish equivalence between a diffusion filter
and a regularisation method.

Nielsen et al. [18] have shown that the solution of the linear diffusion filter
[14, 29]

ut = uxx

u(x, 0) = f(x)

at time t = α may be regarded as the exact minimiser of an energy functional
with an infinite number of penalising terms of arbitrarily high order:

E(u;α, f) =
∫
R

[
(u− f)2 +

∞∑
k=1

αk

k!

(
dku

dxk

)2
]

dx.

An equivalent result has also been obtained earlier by Yuille and Grzywacz in
the context of visual motion perception [30, 31].



Another linear PDE-based filter is given by the pseudodifferential equation
[10, 9]

ut = −
√
− ∂2

∂x2
u

u(x, 0) = f(x).

Duits et al. [9] have shown that this so-called Poisson scale-space may be re-
garded as the exact minimiser of

E(u;α, f) =
∫
R

(f − u)2 +
∞∑

k=1

αk

k!

((
− d2

dx2

)k/4

u

)2
 dx.

This discussion illustrates that only in the linear case, people have been able to
derive energy functionals that are equivalent to the evolution equation. Unfortu-
nately, these functionals are relatively complicated, since they involve an infinite
number of regularising terms. This gives rise to the question if it is possible to
derive also equivalence results in the nonlinear setting. Moreover, it would be
nice if these energy functionals had simple regularisers that do not involve a
large number of high-order derivatives.

We will address these problems in the present paper. To keep things as simple
as possible, we will focus on the spatially discrete 1-D case. Surprisingly, it turns
out that there exists a nonlinear framework in which there is an equivalence
between diffusion filtering and regularisation that has a significantly simpler
structure than equivalences in the linear case. This framework is given by so-
called total variation (TV) denoising methods [22, 2]. By deriving analytical
solutions that are identical for TV diffusion and TV regularisation, we prove the
equivalence of both paradigms.

Our paper is organised as follows. Section 2 gives an introduction to the
continuous formulations of TV diffusion and TV regularisation. In Section 3
we shall derive the analytical solution for space-discrete TV diffusion, and in
Section 4 we use the same proof structure to find an identical analytical solution
for discrete TV regularisation. The paper will be concluded with a summary in
Section 5.

Related Work. Space-discrete nonlinear TV diffusion creates a dynamical
system with a discontinuous right hand side. Systems of this type – but with
different force functions – have been proposed by Pollak et al. [20] for solving
segmentation problems. Analytical results for some convex regularisation prob-
lems applied to specific test signals have been presented by Li [15]. Strong [25]
derived analytical results in the case of continuous TV regularisation methods
with step functions as initialisations. Equivalent results have been obtained by
Mammen and van de Geer [16] for the taut-string algorithm in statistics; see also
[13]. Our results are in accordance with these findings, but our proof shows that
they can be derived in a different way: The structure of our proof is in complete



analogy with the proof for the TV diffusion case. The results in the present paper
can also be extended to investigate situations in which TV denoising methods
are equivalent to wavelet shrinkage techniques. This is investigated in [24].

2 Continuous TV Diffusion and TV Regularisation

2.1 TV Diffusion

One-dimensional TV diffusion is a nonlinear diffusion filter that uses the un-
bounded diffusivity g(u2

x) = 1/|ux|. Hence it is based on the equation

ut =
(

ux

|ux|

)
x

This equation has been considered by Andreu et al. [2] under the name total
variation flow. It requires no additional parameters (besides t), it is well-posed
[2, 4, 11], it preserves the shape of some objects [4], and it leads to constant
signals in finite time [3]. A numerical algorithm based on level sets has been
proposed in [8].

2.2 TV Regularisation

TV regularisation has been proposed in its unconstrained form by Rudin, Osher
and Fatemi [22], and in its constrained form by Acar and Vogel [1]. It uses the
penaliser Ψ(u2

x) = 2|ux|. Hence, the constrained form minimises

E(u;α, f) :=

b∫
a

(
(u− f)2 + 2α|ux|

)
dx

This regularisation strategy is well-known for its good denoising capabilities and
its tendency to create blocky, segmentation-like results. Well-posedness results
have been established in [5]. A number of numerical schemes have been proposed
including primal-dual methods [6], nonlinear Jacobi algorithms [7], and multigrid
strategies [27].

3 Analytical Solution for Space-Discrete TV Diffusion

Let us now consider a space-discrete formulation of TV diffusion. We assume
that the spatial grid size is 1 and that f = (f0, . . . , fN−1) denotes a discrete
version of f(x) with N pixels. This leads to the following dynamical system:

u̇0 = sgn(u1 − u0),
u̇i = sgn(ui+1 − ui)− sgn(ui − ui−1) (i = 1, . . . , N − 2),

u̇N−1 = −sgn(uN−1 − uN−2),

u(0)= f.

 (3)



In the following, we further set u−1 := u0 and uN := uN−1, which may be
regarded as a discretisation of the homogeneous Neumann boundary conditions.
Since the right-hand side of this system is discontinuous, we need a more detailed
specification of when a system of functions is said to satisfy these differential
equations (cf. also [12]). A vector-valued function u is said to fulfil the system
(3) over the time interval [0, T ] if the following holds true:

(I) u is an absolutely continuous vector-valued function which satisfies (3) al-
most everywhere, where sgn is defined by sgnw := 1 if w > 0, sgnw := −1
if w < 0, and may take any value in [−1, 1] if w = 0.

(II) If u̇i(t) and u̇i+1(t) exist for the same t, and ui+1(t) = ui(t) holds, then
the expression sgn(ui+1(t)−ui(t)) occurring in both the right-hand sides for
u̇i(t) and u̇i+1(t) must take the same value in both equations.

Under these conditions we obtain the following result:

Proposition 1. (Properties of Space-Discrete TV Diffusion)
The system (3) has a unique solution u(t) in the sense of (I) and (II). This
solution has the following properties:

(i) (Finite Extinction Time)
There exists a finite time T ≥ 0 such that for all t ≥ T the signal becomes
constant:

ui(t) =
1
N

N−1∑
k=0

fk for all i = 0, . . . , N − 1.

(ii) (Finite Number of Merging Events)
There exists a finite sequence 0 = t0 < t1 < . . . < tn−1 < tn = T such that
the interval [0, T ) splits into sub-intervals [tj , tj+1) with the property that
for all i = 0, . . . , N − 2 either ui(t) = ui+1(t) or ui(t) 6= ui+1(t) through-
out [tj , tj+1). The absolute difference between neighbouring pixels does not
become larger for increasing t ∈ [tj , tj+1).

(iii) (Analytical Solution)
In each of the sub-intervals [tj , tj+1) constant regions of u(t) evolve linearly:
For a fixed index i let us consider a constant region given by

ui−l+1 = . . . = ui = ui+1 = . . . = ui+r (l ≥ 1, r ≥ 0) (4)

and

ui−l 6= ui−l+1 if i− l ≥ 0, ui+r 6= ui+r+1 if i + r ≤ N − 1

for all t ∈ [tj , tj+1). We call (4) a region of size mi,tj
= l+r. For t ∈ [tj , tj+1)

let 4t = t− tj. Then ui(t) is given by

ui(t) = ui(tj) + µi,tj

24t

mi,tj

,



where µi,tj
reflects the relation between the region containing ui and its neigh-

bouring regions. It is given as follows:
For inner regions (i.e. i− l ≥ 0 and i + r ≤ N − 1) we have

µi,tj =

 0 if (ui−l, ui, ui+r+1) is strictly monotonous,
1 if ui is minimal in (ui−l, ui, ui+r+1),

−1 if ui is maximal in (ui−l, ui, ui+r+1)
(5)

and in the boundary case (i − l + 1 = 0 or i + r = N − 1), the evolution is
half as fast:

µi,tj
=


0 if m = N,
1
2 if ui is minimal in (ui−l, ui, ui+r+1),

− 1
2 if ui is maximal in (ui−l, ui, ui+r+1).

(6)

Proof.
Let u be a solution of (3). We show that u is uniquely determined and satisfies
the rules (i)–(iii). Our proof proceeds in four steps.

1. If u̇(t) exists at a fixed time t and ui(t) lies at this time in some region

ui−l+1(t) = . . . = ui(t) = . . . = ui+r(t) (l ≥ 1, r ≥ 0),

ui−l(t) 6= ui−l+1(t) if i− l ≥ 0, ui+r(t) 6= ui+r+1(t) if i + r ≤ N − 1

of size mi,t, then it follows by (3) and (II) in the non-boundary case i− l ≥ 0
and i + r ≤ N − 1 that

ui(t) =
1

mi,t

r∑
k=−l+1

ui+k(t),

and therefore

u̇i(t) =
1

mi,t

r∑
k=−l+1

u̇i+k(t)

=
1

mi,t
(sgn (ui+r+1(t)− ui(t)) − sgn (ui(t)− ui−l(t)))

= µi,t
2

mi,t
, (7)

where µi,t describes the relation between the region containing ui and its
neighbours at time t as in (5). In the boundary case i−l+1 = 0 or i+r = N−1
we follow the same lines and obtain (7) with µi,t defined by (6).



2. Let u̇(t) exist in some small interval (τ0, τ1) and assume that ui(t) 6= ui+1(t)
for some i ∈ {0, . . . , N − 2} and all t ∈ (τ0, τ1). By continuity of u we
may assume that ui(t) < ui+1(t) throughout (τ0, τ1). The opposite case
ui(t) > ui+1(t) can be handled in the same way. Then we obtain by (7) and
definition of µi,t for all t ∈ (τ0, τ1) that

u̇i(t) ≥ 0 if i− l ≥ 0, (8)
u̇i(t) > 0 if i− l + 1 = 0, (9)

u̇i+1(t) ≤ 0 if i + r ≤ N − 2, (10)
u̇i+1(t) < 0 if i + r = N − 1. (11)

Set w(t) := ui+1(t)− ui(t). Then the mean value theorem yields

w(τ1)− w(τ0) = (τ1 − τ0) ẇ(t∗)

for some t∗ ∈ (τ0, τ1) and we get by (8)–(11) that

w(τ1)− w(τ0) ≤ 0

with strict inequality in the boundary case. Consequently, the difference
between pixels cannot become larger in the considered interval. In particular,
by continuity of u, pixels cannot be split. Once merged they stay merged.

3. Now we start at time t0 = 0. Let t1 be the largest time such that u̇(t) exists
and no merging of regions appears in (0, t1). Then, for all i ∈ {0, . . . , N −1},
a function ui is in the same region with the same relations to its neighbouring
regions throughout [0, t1). Thus, we conclude by (7) that

u̇i(t) = µi,0
2

mi,0
(t ∈ (0, t1))

and consequently

ui(t) = µi,0
2t

mi,0
+ Ci,0

= fi + µi,0
2t

mi,0
(t ∈ [0, t1]),

where the last equality follows by continuity of ui if t approaches 0.

4. We are now in the position to analyse the entire chain of merging events
successively.
Next we consider the largest interval (t1, t2) without merging events in the
same way, where we take the initial setting u(t1) instead of f into account.
Then we obtain

ui(t) = µi,t1

2t

mi,t1

+ Ci,t1 ,

where ui(t1) = µi,t1
2t1

mi,t1
+ Ci,t1 by continuity of ui. Consequently

ui(t) = ui(t1) + µi,t1

2(t− t1)
mi,t1

.



Now we can continue in the same way by considering [t2, t3) and so on. Since
we have only a finite number N of pixels and some of these pixels merge at
the points tj the process stops after a finite number of n steps with output

ui(tn) =
1
N

N−1∑
k=0

fk

for all i = 0, . . . , N − 1.

Conversely, it is easy to check that a function u with (i)–(iii) is a solution of the
system (3). This completes the proof of the proposition. �

4 Analytical Solution for Discrete TV Regularisation

Next we will prove that discrete TV regularisation satisfies the same rules as
space-discrete TV diffusion. For given initial data f = (f0, . . . , fN−1) discrete
TV regularisation consists in constructing the minimiser

u(α) = min
u

E(u;α, f) (12)

of the functional

E(u;α, f) =
N−1∑
i=0

(
(ui − fi)2 + 2α |ui+1 − ui|

)
, (13)

where we suppose again Neumann boundary conditions u−1 = u0 and uN =
uN−1.

For a fixed regularisation parameter α ≥ 0, the minimiser of (13) is uniquely
determined since E(u;α, f) is strictly convex in u0, . . . , uN−1. Furthermore,
E(u, α; f) is a continuous function in u0, . . . , uN−1, α. Consequently, u(α) is a
(componentwise) continuous function in α.

The following proposition implies together with Proposition 1 the equivalence
of space-discrete TV diffusion and discrete TV regularisation, if the diffusion
time t is identical to the regularisation parameter α.

Proposition 2. (Properties of Discrete TV Regularisation)
The function u(α) in (12) is uniquely determined by the following rules:

(i) (Finite Extinction Parameter)
There exists a finite A ≥ 0 such that for all α ≥ A the signal becomes
constant:

ui(α) =
1
N

N−1∑
k=0

fk for all i = 0, . . . , N − 1.



(ii) (Finite Number of Merging Events)
There exists a finite sequence 0 = a0 < a1 < . . . < an−1 < an = A such
that the interval [0, A) splits into sub-intervals [aj , aj+1) with the property
that for all i = 0, . . . , N − 2 either ui(α) = ui+1(α) or ui(α) 6= ui+1(α)
throughout [aj , aj+1). The absolute difference between neighbouring pixels
does not become larger for increasing α ∈ [aj , aj+1).

(iii) (Analytical Solution)
In each of the sub-intervals [aj , aj+1) constant regions of u(α) evolve linearly:
For a fixed index i let us consider a constant region given by

ui−l+1 = . . . = ui = ui+1 = . . . = ui+r (l ≥ 1, r ≥ 0) (14)

and

ui−l 6= ui−l+1 if i− l ≥ 0, ui+r 6= ui+r+1 if i + r ≤ N − 2 (15)

for all α ∈ [aj , aj+1). We call (14) a region of size mi,aj = l + r. For
α ∈ [aj , aj+1) let 4α = α− aj.
Then ui(α) is given by

ui(α) = ui(aj) + µi,aj

24α

mi,aj

,

where µi,aj reflects the relation between the region containing ui and its
neighbouring regions. It is given as follows:
For inner regions (i.e. i− l ≥ 0 and i + r ≤ N − 2) we have

µi,aj =

 0 if (ui−l, ui, ui+r+1) is strictly monotonous,
1 if ui is minimal in (ui−l, ui, ui+r+1),

−1 if ui is maximal in (ui−l, ui, ui+r+1)
(16)

and in the boundary case (i − l + 1 = 0 or i + r = N − 1), the evolution is
half as fast:

µi,aj =


0 if m = N,
1
2 if ui is minimal in (ui−l, ui, ui+r+1),

− 1
2 if ui is maximal in (ui−l, ui, ui+r+1).

(17)

Proof:
Again our proof proceeds in four steps. It has a similar structure as the proof of
Proposition 1.

1. Let us first verify the solution u(α) of (12) for an arbitrary but fixed α > 0.
If ui(α) is contained in some region of size mi,α with (14), (15), then, in case



i− l ≥ 0 and i+ r ≤ N − 2, we have that u(α) can be obtained as minimiser
of

E(u0, . . . , ui−l, ui, ui+r+1, . . . , uN−1;α, f)

=
r∑

k=−l+1

(ui − fi+k)2 + 2α (|ui − ui−l|+ |ui+r+1 − ui|)

+ F (u0, . . . , ui−l, ui+r+1, . . . , uN−1)

with some function F independent of ui. By (14), (15) the partial derivative
of E with respect to ui exists and is given by

∂E

∂ui
= 2

r∑
k=−l+1

(ui − fi+k) − 4αµi,α.

Here µi,α describes the relation between the region containing ui and its
neighbours for the regularisation parameter α as in (16). Setting the partial
derivative to zero, we obtain that

ui(α) =
1

mi,α

r∑
k=−l+1

fi+k + µi,α
2α

mi,α
. (18)

In the boundary case i− l + 1 = 0 or i + r = N − 1 we follow the same lines
and obtain (18) with µi,α defined by (17).

2. Next we show that initially merged pixels will not be split for any α in a
small interval [0, a1].
For α = 0 we have that u(0) = f . Let fi = ui(0) be contained in some region
of the form

fi−l0+1 = . . . = fi = fi+1 = . . . = fi+r0 (l0, r0 ≥ 1)

and

fi−l0 6= fi−l0+1 if i− l0 ≥ 0, fi+r0 6= fi+r0+1 if i + r0 ≤ N − 2.

By continuity of u(α) we can choose α1 > 0 so that ui(α) 6= ui−l0(α) and
ui+1(α) 6= ui+r0(α) throughout [0, α1). Assume that there exists α ∈ (0, α1)
so that ui(α) 6= ui+1(α), where we may assume that

ui(α) < ui+1(α). (19)

The opposite case ui(α) > ui+1(α) can be handled in the same way. Note
that at time α more pixels than ui and ui+1 may be separated. However, we
have by (18) with some 1 ≤ l ≤ l0 and some 1 ≤ r ≤ r0 that

ui(α) =
1
l

0∑
k=−l+1

fi+k + µi,α
2α

l
= fi + µi,α

2α

l
,

ui+1(α) =
1
r

r∑
k=1

fi+k + µi+1,α
2α

r
= fi + µi+1,α

2α

r
,



where we see by (19) and (16), (17) that µi,α ≥ 0 and µi+1,α ≤ 0. Thus,
ui(α) ≥ ui+1(α) which contradicts (19). Consequently ui(α) = ui+1(α)
throughout [0, α1), i.e., the pixels of our initial region stay merged.
Let a1 > 0 denote the largest number such that no merging of regions appears
in [0, a1). Then we have for all i = 0, . . . , N − 1 and all α ∈ [0, a1) that
µi,α = µi,0 and regarding that u(α) is continuous that

ui(α) = fi + µi,0
2α

mi,0
(α ∈ [0, a1]). (20)

3. Now we show that the absolute difference between neighbouring regions can-
not become larger with increasing α ∈ [0, a1).
Without loss of generality let for some fixed index i

ui−l+1 = . . . = ui < ui+1 = . . . = ui+r (l, r ≥ 1)

and

ui−l 6= ui−l+1 if i− l ≥ 0, ui+r 6= ui+r+1 if i + r ≤ N − 2.

We consider the non-boundary case i− l ≥ 0 and i+ r ≤ N −2 first. By (20)
we obtain for α + δ ∈ [0, a1), δ > 0 that

di(α) = ui+1(α)− ui(α) = fi+1 − fi + 2α
(µi+1,0

r
− µi,0

l

)
,

di(α + δ) = ui+1(α + δ)− ui(α + δ) = fi+1 − fi + 2(α + δ)
(µi+1,0

r
− µi,0

l

)
and consequently

di(α + δ)− di(α) = 2δ
(µi+1,0

r
− µi,0

l

)
.

By (16) it follows that

µi+1,0

r
− µi,0

l
=


0 if ui−l < ui < ui+1 < ui+r+1,

− 1
r if ui−l < ui and ui+1 > ui+r+1,

− 1
l if ui−l > ui and ui+1 < ui+r+1,

− 1
r −

1
l if ui−l > ui and ui+1 > ui+r+1

which yields the desired property di(α) ≥ di(α + δ).
In case of boundary regions we follow the same lines but replace (16) by
(17). Then we see that the absolute difference between neighbouring regions
becomes smaller with increasing α ∈ [0, a1).

4. We are now in the position to analyse the entire chain of merging events
successively.
For α > a1 and 4α = α− a1, we consider

ũi(4α) = min
u

E(u;4α, u(a1)).



We can repeat the same considerations as in Part 2 of the proof but with
initial setting u(a1) instead of f . It follows that there exists a2 such that
for all i = 0, . . . , N − 2 either ũi(4α) = ũi+1(4α) or ũi(4α) 6= ũi+1(4α)
throughout [a1, a2), where the absolute difference between neighbouring pix-
els does not become larger for increasing 4α. Further, we obtain by (20) and
(18) that

ũi(4α) = ui(a1) + µi,a1

24α

mi,a1

=
1

mi,a1

∑
j∈Ri,a1

fj + µi,a1

2a1

mi,a1

+ µi,a1

24α

mi,a1

,

where Ri,α = {j : uj(α) is in the region of ui(α)} while mi,a1 denotes the
size of the region containing ui(a1) and µi,a1 reflects the relation between
the region containing ui(a1) and its neighbouring regions. Since the relations
between regions do not change for 4α ∈ [0, a2 − a1) we can rewrite ũi(4α)
as

ũi(4α) =
1

mi,a1+4α

∑
j∈Ri,a1+4α

fj + µi,a1+4α
2(a1 +4α)
mi,a1+4α

=
1

mi,α

∑
j∈Ri,α

fj + µi,α
2α

mi,α
.

On the other hand, we have by (18) that

ui(α) =
1

mi,α

∑
j∈Ri,α

fj + µi,α
2α

mi,α
.

Thus, ui(α) = ũi(4α).
Now we can continue in the same way by considering [a2, a3) and so on. Since
we have only a finite number N of pixels and some of these pixels merge at
the points aj the process stops after a finite number of n steps with output
u(an) which by (18) reads as

ui(an) =
1
N

N−1∑
k=0

fk

for all i = 0, . . . , N − 1. This completes the proof. �

5 Conclusions

In this article we have seen that in the 1-D case, space discrete TV diffusion and
discrete TV regularisation are identical, if we identify the diffusion time with the
regularisation parameter. Given the relatively complicated relations between the



linear Gaussian and Poisson scale-spaces and their corresponding regularisation
methods, these results may seem to be of surprising simplicity. However, they
are natural consequences from the simple structure of the scale-space evolutions
of both TV processes: The evolution can be regarded as a sequence of region
merging events. Between two mergings, only extremal segments are allowed to
move. Their velocity is proportional to the inverse of the pixel number, and it
can be guaranteed that all segments merge within a finite extinction time. These
properties are more transparent than those of most other discrete scale-space
evolutions and put space-discrete TV denoising in an extraordinary position: It
is not only a nonlinear scale-space that preserves discontinuities, it also does not
require any additional parameters, it implements a multiscale segmentation, and
– last but not least – it is equivalent to its corresponding regularisation method.
We conjecture that the latter property also holds for the continuous TV diffusion
and regularisation process. Moreover, we are investigating if it can be extended
to the higher dimensional situation. If this is the case, the door will be opened
for a direct transfer between the results of two previously separated worlds: a
parabolic scale-space world and an elliptic regularisation world.
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