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Abstract

A technique is described which may be employed to es-
tablish a fully automated system for recognition of airborne
pollen. As the different pollen taxa have only marginal dif-
ferences, a full 3D volume data set of the pollen grain was
recorded with a confocal laser scanning microscope (LSM)
at a voxel size of about (0.2µm)3. This represents an intrin-
sic and complete data set. 14 invariant gray-scale features
based on an integration over the 3D Euclidian transforma-
tion group with nonlinear kernels were extracted from these
volume data sets. The classification was done with support
vector machines. The use of these general gray scale fea-
tures allows to easily adapt the system to other objectives
(e.g., pollen of a special area) or even other objects than
pollen (e.g., spores, bacteria etc.) just by exchanging the
reference data base. When using a reference data base with
the 26 most important German pollen taxa (385 samples),
the recognition rate is 92%. With a special database for al-
lergological purposes recognizing only Corylus, Alnus, Be-
tula, Poaceae, Secale, Artemisia and “allergological non-
relevant” the recognition rate is 97.4%.

1 Introduction

About 10% of the human population are allergic to
pollen. Today’s pollen-forecasts are based on time consum-
ing and expensive “manual” pollen countings done by ex-
perienced microscopists. Real-time data of actual pollen-
concentration are not available by that technique. In con-
trast to the microscopist, a pollen-recognition system based
on image recognition techniques could be integrated into a
pollen-trap to provide such real-time data.

Even though pattern recognition on images is widely
used in several biological applications, there are only very

few papers in the literature dealing with pollen recogni-
tion and most of them focus on fossil pollen and 2D data
[6, 7, 4]. Bonton et al.[1] proceed like human micro-
scopists, i.e. they use multiple images of the pollen from
different focus planes and extract the same “high-level”
features as human do (e.g., the number of pores) by use
of a plenty of highly pollen-taxa-specific or even pollen-
grain-orientation-specific algorithms for feature extraction
and they employ (to the authors knowledge) a simple hard-
coded classifier. Using a set of 350 pollen grains from 30
different taxa the according recognition rate is about 73%.

In contrast to such approaches, we use 3D volume data
and a general-purpose feature extraction, namely Euclidian
gray-scale invariants [11, 3], and we employ a classifier (a
set of Support Vector Machines [13]) that is trained auto-
matically with a labeled reference data base. In our pro-
grams the only a priori assumption is, that the objects are
rigid and have random orientations and positions. In other
words the system can easily be adopted to objects other than
pollen (e.g., spores, bacteria etc.) just by exchanging the
reference data base.

2 Material and Methods

2.1 Sampling, Preparation and Recording

To set up a reference data base, the pollen grains were
directly collected from the plants of interest in order to pre-
pare pure samples of the following pollen taxa:

Acer, Artemisia, Alnus, Alnus viridis, Betula, Carpi-
nus, Corylus, Chenopodium, Compositae, Cruciferae, Fa-
gus, Quercus, Aesculus, Juglans, Fraxinus, Plantago, Pla-
tanus, Poaceae, Secale, Rumex, Populus, Salix, Taxus, Tilia,
Ulmus, Urtica.

In conventional pollen counting translucent microscopy
is used. The pollen recognition of pollen which have been
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Figure 1. Alnus (alder) pollen grain: slices of the volume data set recorded with a confocal laser scanning microscope

collected in the open air, is complicated since one is con-
fronted with a huge variety of particles of not only biolog-
ical origin. The strong primary fluorescence of pollen pro-
vides an easily accessible feature which allows to reliably
separate them from the background and the other mostly
inorganic particles.

Even for a human pollen counter it is hard to recognize
a pollen from a single 2D view at some unfavorable orien-
tations of the pollen. As today’s computer codes are still by
far inferior to the object recognition capabilities of a human
observer, the identification of all the pollen from a single
2D image is extremely unlikely[8].

To obtain sufficient information for the recognition the
microscopist focuses the microscope to different planes of
the pollen grain. Similarly we record 2D images from sev-
eral focus planes and stack them up to a volume data set.
Translucent microscopy is not well suited for this purpose,
because the recorded images are the result of complicated
integrals of light defraction and refraction due to the inho-
mogeneous refraction coefficient of the pollen grain and its
surrounding. In fluorescence microscopy, however, all flu-
orescence active molecules of the pollen act as small light
sources. The resulting image therefore can be regarded as
the measurement of the local fluorescence activity, which is
largely independent from the direction of viewing and the
direction of illumination.

As a general problem, conventional imaging systems
generate a superposition of the wanted image of the focused
plane and out of focus images of neighboring planes. In
order to eliminate the contribution from these non-focused
planes, one can use either confocal microscopy, which
eliminates unwanted light by hardware components provid-
ing images with the highest possible quality at very high
costs, though. An alternative are deconvolution techniques
(Wiener filter), which remove the light dispersion by post-
processing of the digital images taken with a conventional
fluorescence microscope. For the development of the recog-
nition system we started with high-quality images from a
confocal laser-scan microscope (Fig. 1)

2.2 Pattern Recognition with gray-scale invari-
ants

A quite simple but very powerful way of a general fea-
ture extraction is the computation of so-called “gray-scale
invariants”, which were described first for two-dimensional
image data [11, 3], but can be straightforwardly extended to
three-dimensional volumetric data [10]. These gray-scale
invariants do not need any segmentation within the object,
but operate directly on the gray-values of the data set.

The advantageous property of such an invariant feature
is the following: The set of all possible 3D volume data
sets of one individual pollen grain – scanned in all possible
positions and orientations (Euclidian motion) – is an equiv-
alence class. An invariant transformation is able to map all
elements of this equivalence class into one point of the fea-
ture space and there represents one bit of information on the
intrinsic structure of the considered pollen grain, indepen-
dent of its position and orientation (Fig. 2).

volume data set(3-dim.) feature space (n-dim.)

Figure 2. Invariant transformation: All represen-
tations of an object (here: the object at any orientation
or position) are mapped into the same point in the fea-
ture space.

The basic recipe for calculating these invariants is to take
a non-linear kernel function of local support f(X) in order
to relate or combine the grey scale values of some neigh-
boring pixels or voxels and to integrate the result of this
function over all possible representations of the object in
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the equivalence class [11].

T [f ](X) :=

∫

G

f(gX)dg (1)

f : Kernel function
X : gray-value image or volume data
G : transformation group
g : one element of the transformation

group

For the sake of clearness, the 2D version of the formulas
(for images) are presented in the following. By replacing
the 2D translations and rotations with 3D operations and the
images with volume data sets one obtains the 3D versions
of the formulae:

For rigid objects, which is a fair approximation of pollen
grains in the present context, the different elements of the
equivalence class can be described by an Euclidian trans-
formation (rotation and translation) of the object:

T [f ](X) :=

~xmax
∫

~x=~0

2π
∫

ϕ=0

f(g~x,ϕX)dϕd~x (2)

~xmax : extension of the image

Actually, it is not necessary to apply the transformation to
the full image, instead the kernel function can be trans-
formed which considerably speeds up the computation and
results in linear complexity of the algorithm O(N). This is
illustrated by an example in figure 3.

A further speedup of this still expensive computation is
accomplished for a special class of kernel functions by us-
ing a convolution with the image of a circle (or in 3D: of
a spherical surface) C. This convolution may be computed
by means of the Fast Fourier Transform (FFT). For kernel
functions of the type

f(X) = fa

(

X(~0)
)

· fb

(

X(~q)
)

(3)

fa, fb : any functions that transform the
gray values

~q : span of the kernel function

one can rewrite equation 2 for the two-dimensional case
using A := fa(X) and B := fb(X) as

T [f ](X) :=
Nx

Ny
∫∫

x=0
y=0

A(x, y)

2π
∫

ϕ=0

B (x + |~q| cos(ϕ), y + |~q| sin(ϕ)) dϕ dxdy

a) b) c)

Figure 3. Calculation of a 2D gray-scale in-
variant: (a) non-linear kernel function for combining
some neighboring pixels, e.g., the multiplication of two
gray values of distance 3. (b) Evaluation for all angles.
The results are summed up, to become invariant to
rotations of the object. Gray values at fractional pixel-
positions are bilinearly interpolated (c) Evaluation at
all possible positions of the image. Again the results
are summed up, to become invariant to translations of
the object.
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T =
∑

X · (X ∗ C)

T =
∑

X · FFT−1
(

FFT(X) · FFT(C)
)

Figure 4. Fast calculation of a special class
of gray scale invariants:The sequential evalua-
tion of the rotated kernel functions (as shown in fig.
3b) is split into two steps: step 1: the gray values
touched by the second kernel point within the rotation
are summed up. step 2: the result is multiplied with the
gray value of the first kernel point. The evaluation of
step 1 for all positions in the image is a simple convo-
lution which could efficiently be calculated by means
of the Fast Fourier Transform (FFT).

which then can be written also as

T [f ](X) :=

Nx

Ny
∫∫

x=0
y=0

A(x, y) · (B ∗ C) (x, y) dxdy (4)

where C(x, y) =

{

1 :
√

x2 + y2 = |~q|
0 : otherwise

and ‘∗’ denotes a convolution. This again is illustrated for
one example in fig. 4. Besides saving computing time we
are released from the decision, by which angular steps we
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should proceed in the computation, which is not trivial, par-
ticularly in 3D volumes [10].

A more general method for saving computing costs has
been described in [12]: the considered features are com-
puted only approximately (Monte-Carlo-integration). Once
the permissible error is fixed, this results in a constant com-
plexity, independent from the size of the image.

Even though these features were designed to be only in-
variant to Euclidian transformations, they are also quite ro-
bust against other transformations like articulated motion or
even slight topological deformations, due to the finiteness of
the kernel support [3]

Different kernel functions can be used in order to de-
velop a set of gray scale invariants which are adapted to a
given problem. In fact, it is not difficult to construct fea-
tures that provide a required discrimination power. Using
a small-scale kernel results in a feature which is sensitive
to small-scale structures of the object. For example coarse
or fine-grained plasm. Correspondingly large-scale kernels
sense the large-scale structure of the object, e.g., the differ-
ence between spherical and ellipsoid objects.

In the case of the pollen recognition, the following fea-
tures turned out to provide a high discrimination perfor-
mance: a vector of 14 features is constructed by evaluating
the two kernel functions, f(X) = X(0, 0, 0) · X(0, 0, 2) and
f(X) =

√

X(0, 0, 0) ·
√

X(0, 0, 2) at 7 different scalings of
the object (1:1, 1:2, 1:4, 1:8, 1:16, 1:32 and 1:64). Since the
gray scale values of the input volume data sets were normal-
ized to unit variance the elements of the feature vector are in
the range [−1 : 1] corresponding to normalized correlation
coefficients.

Due to the non-linearity of the transformation and the
particularly shape of the resulting clusters in the feature
space, a simple MAP classifier based on normal distribu-
tions does not perform satisfactorily. A much better recog-
nition rate is achieved by the so-called support vector ma-
chines [13]. The principal idea behind the support vector
machine is to identify the clusters by searching for the thick-
est hyperplane, which separates this cluster from the re-
maining points. A good introduction to the theory of SVMs
is given by C. J. Burges Tutorial [2]

2.3 Measuring the recognition rate

In order to measure the quality of our recognition sys-
tem, we have used a reference data base with the 26 most
relevant German pollen taxa. 3D volume data sets of about
15 samples from each pollen taxon were recorded with a
resolution of ca. 5 voxels/µm in each direction using a con-
focal laser scanning microscope with a 40x oil-objective, an
excitation wavelength of 450-490nm and an emission wave-
length greater than 510nm.

With these 385 high-quality volume data sets we tested

our recognition system using the “leave one out” technique.
As classifier we use a set of 26 SVMs with a Gaussian ker-
nel where each SVM was trained to separate one particular
class from the rest. The radius of the Gaussian kernel was
determined by optimizing the recognition rate.

3 Results and Discussion

The achieved recognition rate for all 26 taxa was about
92%. The details are listed in table 1. For pollen forecasts,
however, we are interested only in the allergologically rele-
vant pollen. So it doesn’t matter if the computer cannot dis-
tinguish, for example, between an Ulmus and a Platanus.
So we can put all the allergologically irrelevant taxa into
one class resulting in a recognition rate for allergologically
relevant pollen of 97.4%.

With regard to this high recognition rate one has to keep
in mind that the examined pollen may have less variations
in size and morphology than airborne pollen because the
pollen for each taxa were taken just from one plant. Fur-
thermore our reference pollen are not expected to have de-
formations due to sampling stress in the pollen trap [5] and
there are no contaminated or agglomerated pollen grains.

Anyway, the nearly perfect performance of the automatic
recognition working on these high-quality pollen images is
encouraging enough to test the technique with reduced data
quality by using a normal fluorescence microscope with
subsequent deconvolution and real-world air samples with
deformed or contaminated pollen. Last not least, we can
use a pollen-calendar to reduce the reference data base to
the seasonally possible set of pollen, which again should
increase the recognition rate.

For establishing this system in a laboratory environment,
one main aspect is the time needed for the analysis. The
imaging with the LSM currently takes about 40s per ob-
ject (depending on its size) and the calculation of the 14
gray scale invariants for a 1283 voxel volume takes about
15s on a Pentium II Dual-Processor PC with 400MHz, so
that we end up with a recognition time of about 1min for
each object. This time will be drastically reduced by us-
ing the conventional fluorescence microscope, which can
record the same 3D volume in a few seconds. On the com-
putational side, the use of a faster processor and a reduction
of the resolution by a factor of 2 in each direction finally
may reduce the recognition time to a few seconds per ob-
ject.

Our current work also focuses on the 2D pre-recognition
of the objects, so that only pollen with an unfavorable orien-
tation or other doubtful objects have to be subjected to the
relatively time-consuming 3D recognition.
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Table 1. Classification Results using 3D LSM Data (leave-one-out Classification)

Acer
14 correct
1 → Tilia

Artemisiaa)

13 correct
1 → Compositae
1 → Platanus

Alnusa)

15 correct
no wrong

Alnus viridisa)

12 correct
no wrong

Betulaa)

13 correct
2 → Plantago

Carpinus
14 correct
no wrong

Corylusa)

13 correct
1 → Alnus

Chenopodium
12 correct
1 → Quercus
1 → Plantago
1 → Populus

Compositae
15 correct
no wrong

Cruciferae
13 correct
1 → Acer
1 → Populus

Fagus
15 correct
no wrong

Quercus
11 correct
1 → Acer
2 → Chenopodium
1 → Plantago

Aesculus
15 correct
no wrong

Juglans
13 correct
1 → Carpinus
1 → Poaceae

Fraxinus
12 correct
2 → Compositae
1 → Plantago

Plantago
13 correct
2 → Fraxinus

Platanus
15 correct
no wrong

Poaceaea)

15 correct
no wrong

Secalea)

11 correct
3 → Fagus
1 → Tilia

Rumex
15 correct
no wrong

Populus
14 correct
1 → Chenopodium

Salix
15 correct
no wrong

Taxus
15 correct
no wrong

Tilia
14 correct
1 → Poaceae

Ulmus
12 correct
2 → Platanus
1 → Populus

Urtica
14 correct
1 → Platanus

a)Allergological relevant pollen
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4 Conclusions and Outlook

The utilization of fluorescence microscopy for the pollen
recognition was found to have considerable advantages over
translucent microscopy. It gives valuable information for
the segmentation of the pollen from the background and
it allows the use of 3D volume analysis straightforwardly,
because one can measure the local properties of the object
largely independently of its orientation towards the direc-
tion of viewing and illumination.

The 3D information is required for a highly reliable
pollen recognition even by a microscopist, because a sin-
gle 2D view of a pollen grain at an unfavorable orientation
does not provide sufficient information for an unequivocal
classification.

The selected gray scale invariants were found to be a
powerful approach for object recognition on 3D volume
data. Up to now, there is no pollen-specific code in our
recognition software, which makes it reusable for a wide
range of other problems. The only limitation is, that the
objects have to be rigid within the support of the selected
kernel functions.

It was demonstrated, that our system can recognize
pollen on the basis of 3D volume data with a good relia-
bility by using data recorded with a confocal laser scanning
microscope and pollen, which are not deformed or contam-
inated. The recognition rate of 92% for all 26 pollen taxa
and 97.4% when combining all allergological irrelevant in
one class is encouraging. The result gives reason to test
the procedure with reduced data quality by using a conven-
tional fluorescence microscope with subsequent deconvolu-
tion and air samples with deformed or contaminated pollen.
We expect, that the described approach may replace the te-
dious and time consuming work of manual pollen counting
in near future.

Furthermore this approach opens up the possibility to di-
rectly integrate such a system into a pollen sampler resulting
in an online pollen monitor.

More informations concerning our project including
some 3D volume images of pollen may be found on our
web pages [9].
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